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Abstract: River restoration is a multi-billion-dollar business, yet it is unclear whether benthic com-
munity health, which is routinely monitored, can be used as a proxy for the health of the hyporheos.
Applying a Before-After-Control-Impact approach to a UK case study, we compared the effects of
removing an impoundment on the hyporheos with effects on the benthos. We compared invertebrate
biological traits that we expected to respond to the restoration. We constructed sample-size based
diversity curves and determined β-diversity between compartments and reaches. Two years post-
restoration, hyporheic taxon richness was significantly lower in the restored reach compared to the
control. However, three years post-restoration taxon richness was significantly higher in the impact
reach. The composition of the control and impact reach hyporheos was most dissimilar at the first
sampling time point post-restoration and at this time there was a universal decrease in the relative
abundance of burrowing organisms respiring through gills. We did not detect a signal of restoration
on benthic assemblage diversity and composition, perhaps because reach-scale restorations can be
overwhelmed by catchment-scale disturbances. Thus, the hyporheos and the benthos responded
differently to restoration. Given the importance of the hyporheic zone in the provision of ecosystem
function and services, it is clear that it should be included in future monitoring protocols that aim to
assess river restoration success.

Keywords: riverine connectivity; groundwater-fed rivers; diversity estimates; dissimilarity index;
BACI; biological traits

1. Introduction

Rectifying historic alterations to river systems is now a multi-billion-dollar industry [1].
In the past, restoration activities have focused on improving channel morphology with the
expectation that biodiversity recovery will follow [2]. However, biodiversity improvements
are often slow or non-existent [3], leading to a move to ‘functional’ river restorations [4]
that aim to restore the biogeochemical, ecological, and hydrogeomorphic processes in
rivers. However, research on assessing the efficacy of such functional restoration projects is
in its infancy [5].

It is widely accepted that rivers comprise three dimensions: longitudinal, lateral and
vertical, and that connectivity between these compartments is vital for the delivery of
the ecosystem functions and services that rivers provide [6]. The vertical element of this
continuum is termed the hyporheic zone; an ecotone where surface water and groundwater
interact and is known to play a major role in river functioning, acting as a bioreactor by
recycling carbon, energy, and nutrients [7,8] and attenuating pollutants, e.g., [9,10]. The
composition, abundance and biomass of the hyporheic zone community (hyporheos), and
thus its ability to mediate biogeochemical activity, are strongly influenced by the physical
and chemical conditions within the hyporheic zone [11]. Sediment grain size, and by
extension interstitial pore size, are important variables as they determine the living space
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available to the hyporheos and are strongly related to the porosity and permeability of the
sediment [12]. In turn, this influences the hyporheic exchange flow [13,14], determining
the supply of organic matter and dissolved oxygen in the hyporheic zone and therefore the
distribution and abundance of the hyporheos [11].

Even though the hyporheos mediates biogeochemical processes, very few river restora-
tion studies on the hyporheic zone have considered the biological community but see [15].
Existing research suggests that some common river restoration techniques incidentally
benefit the hyporheos because they improve surface and hyporheic zone connectivity.
Examples include flushing fine sediment from benthic gravels to improve fish spawning
areas, e.g., [16], and removing weirs to increase exchange processes and decrease residence
times [17]. Furthermore, no previous studies have examined simultaneous responses of
the benthic and hyporheic communities in the context of river restoration. Indeed, it is
very rare for studies to adopt a coupled benthic-hyporheic zone sampling strategy to
address any research question but see [18–26]. These studies yielded mixed results; James
et al. detected no differences in the response of benthic and hyporheic communities to
drought [20], whereas Stubbington et al. did [23]. It therefore remains unclear whether
benthic community health, which is routinely monitored, provides a proxy for the health
of the hyporheos or whether both communities should be routinely monitored.

In this study, we assess the effects of removing an impoundment, by notching a weir,
on the hyporheos and compare it to that on the benthos. We do this by comparing these
two communities in a control (no restoration) and an impact (restoration) reach of the River
Lambourn, in southern England, UK. We collected benthic and hyporheic samples in both
reaches in two seasons (spring and autumn) 1 year before restoration and at 2, 3 and 5 years
post restoration, to track community change.

We hypothesise that:

1. The hyporheos in the impact reach will differ more strongly in diversity and composi-
tion pre- and post-restoration than the control reach, since we expect weir notching
will result in an increase in exchange processes between the surface stream and
hyporheic zone.

2. The responses of the hyporheos to the restoration will differ from the benthos because
they are discrete communities [27] driven by differing environmental variables.

2. Methods
2.1. Restoration Scheme

The purpose of the restoration was to restore natural river processes by improving
hydraulic and sediment connectivity. The restoration took place on a stretch of the upper
River Lambourn (Figure 1) in the autumn of 2013. Works involved the notching of an 8 m
wide weir, which was impounding approximately 150 m of river and the narrowing of the
channel using reworked gravels and brushwood. A more natural sinuous channel with
exposed and vegetated gravel bars was created.

To assess the effects of the restoration, invertebrate monitoring of the benthic and
hyporheic zone was carried out at two sites (control and impact site; see Figures 2 and 3).
The control site was located upstream of the previous impounding influence of the
weir and without any tributaries or discharges entering the channel between the two
sites. Physical characteristics of the two sites during the study period are given in
Supplementary Materials, Table S1.
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Figure 1. Study site location on the River Lambourn, southern England, UK. © Environment Agency 2021. All rights re-
served. © Crown copyright and database rights 2021 Ordnance Survey 100024198. 
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flow. 
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bourn [31] and on other chalk streams have shown that the hyporheic zone is very shallow 
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ples were collected. In the laboratory, invertebrates were separated from sediment, and 
identified to species where possible using a dissecting microscope at 40–400× magnifica-
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The invertebrate community inhabiting the benthic zone was sampled using a stand-
ardised kick sample method [34]; the bed of the river is disturbed by kicking the substrate 
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Figure 3. Control (site 2) and Impact (site 1) before (A,B, 2013) and after restoration (C,D, 2018). Red lines indicate extent of
surveyed stretch. Hatching indicates bank and instream features (e.g., plant growth and gravel bars). Arrows represent
direction of water flow.

2.2. Sampling

To assess the invertebrate communities of the hyporheos and benthos prior to restora-
tion, sampling took place at both control and impact sites in spring and autumn 2013.
Restoration works began shortly after autumn monitoring, but due to extensive flooding in
the area, no samples were taken in 2014. Post restoration monitoring took place in spring
and autumn 2, 3 and 5 years post restoration (2015, 2016 and 2018 respectively).

The invertebrate community inhabiting the hyporheic zone was sampled using a
Bou Rouch pump [28]. With the pump shaft inserted to 30 cm below river bed level,
five litres of river water after [29,30] were extracted at five locations at each site (five
replicates per sampling occasion). A 30 cm depth was selected because previous studies
on the Lambourn [31] and on other chalk streams have shown that the hyporheic zone
is very shallow compared to rivers draining other geologies, e.g., [32,33]. The locations
of sampling points were approximately ten meters apart, zig-zagging across the river.
Extracted water samples were poured from the collection bucket through a 63 µm plankton
net, and the contents were bagged and preserved in industrial methylated spirit (IMS).
A total of 80 samples were collected. In the laboratory, invertebrates were separated
from sediment, and identified to species where possible using a dissecting microscope at
40–400× magnification.

The invertebrate community inhabiting the benthic zone was sampled using a stan-
dardised kick sample method [34]; the bed of the river is disturbed by kicking the substrate
whilst zig-zagging in an upstream direction. A pond net (150 mm frame with a 250 µm
mesh), trailed behind the kicking leg, catches dislodged fauna. The 3-min of sampling
are proportionate to the extent of the microhabitats present. A further 1-min hand search
is undertaken, and any additional fauna added to the net. The samples collected by this
method were transferred to a container and preserved in IMS. In the laboratory, the samples
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were processed and invertebrates identified to species where taxonomically possible using
a dissecting microscope at 40–400× magnification.

2.3. Analysis

Both hyporheic and benthic invertebrate data sets were pooled across seasons (spring
and autumn) to provide an annually integrated measure of community composition. Inver-
tebrate taxonomy was standardised through the Global Names Resolver (http://resolver.
globalnames.biodinfo.org/, accessed on 1 September 2020) using the Global Biodiversity
Information Facility dataset. Following the approach of [22] we selected six invertebrate
biological traits that we expected to respond to these changes (Supplementary Materials,
Table S1) and allocated taxa to one modality for each trait using tables in [22,35].

Sample-size based diversity curves were constructed for both hyporheic and benthic
invertebrate data using the iNext package in R [36]. Since species diversity in a sample
is highly dependent on sample size or sampling efforts, this approach, which models the
cumulative number of taxa found with increasing number of individuals in a sample,
provides a robust way of comparing diversity where sample sizes differ. Thus, it allows a
fair comparison and assessment of diversities across multiple assemblages (i.e., between
control and restored samples; Table 1) that may vary in the size of their species pools or in
the way in which they are sampled. Diversity estimates that are independent of sample size
effects can be achieved through rarefaction (i.e., ’down-sample’ the samples containing the
largest number of observed individuals until they contain the same number as the smallest
sample) and extrapolation (extrapolate diversity curve to larger sample size, guided by an
estimated asymptotic diversity) approaches [31]. Here we fit sample-size based rarefaction
and extrapolation curves of Hill numbers (measures of diversity [37]), which provides a
unified framework for estimating species diversity, and for making statistical comparisons
based upon these estimates [37]. Hill numbers are represented by a diversity order q, which
determines the measures’ sensitivity to species relative abundances and here we use two
of the most widely used species diversity measures: species richness (q = 0) and Shannon
diversity (q = 1), the effective number of common taxa.

For each compartment, sample-size based diversity curves were constructed for each
reach (control and impact) and period: before (2013) and after restoration (2, 3 and 5 years
post restoration). The 95% confidence intervals around these fitted curves were calculated
based on a bootstrap method [37]. For any fixed sample size in the comparison range, if
the 95% confidence intervals do not overlap, then significant differences at a level of 5%
among the expected diversities (whether interpolated or extrapolated) are guaranteed [36].
As recommended, we extrapolated these curves up to double the smallest sample size or
the largest observed sample size between treatments (i.e., the control and impact reaches),
whichever is larger [36,37]). Consequently, we selected the largest observed sample size
(across all years and reaches) as a base sample size for both the hyporheos and benthos data
(2906 and 8419 individuals, respectively) (Table 1). Whilst the curves were extrapolated to
these values for the purpose of visualizing the data, we compared the estimates of diversity
(richness and Shannon) and their confidence intervals between the control and impact
reaches for each sampling year at two points along the sample size continuum: smallest
observed sample size (i.e., traditional rarefaction approach) and largest observed sample
size (extrapolation approach). Estimates at these points (Table 1) were made using the
estimatedD function implemented in the iNEXT package.

http://resolver.globalnames.biodinfo.org/
http://resolver.globalnames.biodinfo.org/
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Table 1. Summary statistics for sample-size based rarefaction and extrapolation diversity curves and beta-diversity dissimilarity (CNESSa) analysis.

Period Year Reach Individuals Richness_Rarerified 95% CI Richness_Extrapolated 95% CI Dissimilarity_Min Dissimilarity_Max

H
yp

or
he

os

Before 2013
Control 519 21.00 16.92 to 25.08 26.83 17.33 to 36.33

0.06 0.57Restored 1279 25.29 22.00 to 28.58 36.00 30.71 to 41.29

After 2015
Control 1037 34.72 31.46 to 37.97 41.00 36.71 to 45.29

0.75 0.57Restored 610 26.00 21.00 to 31.00 32.80 24.34 to 41.25

After 2016
Control 1026 40.00 34.16 to 45.85 55.92 40.79 to 71.06

0.25 0.47Restored 2906 45.60 42.09 to 49.12 64.00 55.77 to 72.23

After 2018
Control 2173 15.11 12.74 to 17.47 21.00 16.85 to 25.15

0.16 0.51Restored 993 24.00 18.20 to 29.80 32.31 21.64 to 42.97

Be
nt

ho
s

Before 2013
Control 5537 37.08 33.61 to 40.55 46.00 40.99 to 51.01

0.11 0.45Restored 2733 40.00 35.39 to 44.61 47.18 38.06 to 56.29

After 2015
Control 4148 48.31 44.10 to 52.52 50.00 44.90 to 55.10

0.13 0.47Restored 3569 51.00 44.45 to 57.55 53.58 46.85 to 60.32

After 2016
Control 2737 36.95 35.17 to 38.73 37.00 35.22 to 38.78

0.39 0.41Restored 2475 35.00 33.01 to 36.99 35.19 32.67 to 37.72

After 2018
Control 8419 67.40 62.58 to 72.23 73.00 67.48 to 78.52

0.13 0.41Restored 5898 68.00 62.48 to 73.52 72.45 65.41 to 79.50
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We used the chord-normalised expected species shared index of dissimilarity (CNESS)
to provide a measure of β-diversity between reaches and compartments (hyporheos and
benthos). This metric is not confounded by the number of individuals encountered [38,39])
and reflects the probability of obtaining the same set of species when randomly drawing a
specific number of individuals, m, from a community. High CNESS dissimilarity values in
this context reflect a low probability that two samples are drawn from the same community.
For low values of m (the sample size parameter) the similarity between samples is strongly
determined by dominant species, whereas for high values, the composition of the entire
species assemblage becomes increasingly important [33]. CNESSa values were obtained
using the R function from Zou and Axmacher [39], which is a standardized version of
CNESS dissimilarity where values range between 0 (samples are the same) and 1 (samples
are 100% different). We used m values of 1 and the largest common sample size in each
dataset (519 in hyporheos and 2475 in benthos; Table 1) to investigate the dissimilarity of
dominant taxa, as well as entire assemblage, in this respect.

3. Results

In total, 103 invertebrate taxa were identified from all benthic samples, 68% of which
were identified to species, 22% to genus level, 8% to family level and 2% to order level.
The sampling of the hyporheos yielded a total of 71 taxa, 43% of which were identified to
species, 23% to genus level, 22% to family level and 12% to order level.

3.1. Hyporheos

Taxon richness prior to restoration was initially higher in the impact reach than the
control reach, although 95% confidence intervals overlap with estimates from the control
reach at all sample sizes (interpolated and extrapolated) (Figure 4). However, two years
post restoration (2015), taxon richness was significantly lower in the impact compared to the
control reach (95% confidence intervals do not overlap) for both rarefied and extrapolated
sample sizes (i.e., smallest (610 individuals) and largest (1037 individuals), observed
samples sizes, respectively) (Figure 4). Three years post restoration (2016 sampling),
richness curves for the control and impact reach overlapped between both rarefied and
extrapolated sample sizes (Figure 4, Table 1), whilst 5 years post restoration (in 2018)
taxon richness was significantly higher in the impact compared to the control reach (95%
confidence intervals do not overlap) for rarefied, but not extrapolated, sample sizes (993
and 2173 individuals, respectively).

Unlike richness, Shannon diversity levelled off quickly with increasing sample size, as
this index is increasingly dominated by the frequencies of the more common taxa (Figure 4).
Prior to restoration, the effective number of common taxa (Shannon Hill number) was
identical between the control and impact reach. In the initial period post restoration (2015
sampling), the effective number of common taxa was higher in control versus impact reach,
whilst in the latter period post restoration (2016 and 2018) this pattern reversed with more
common taxa present in the impact reach (Figure 4). The analysis of beta-diversity supports
these findings as dissimilarity in the composition of control and impact assemblages
(CNESSa index) was much higher at the first sampling time point post restoration than
at any other time point (Table 1), when a low (m = 1) but not high (m = 519) sample size
parameter was used. That is, dissimilarity between reaches was strongly determined by
dominant rather than rare taxa.
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Figure 4. Sample-size based rarefaction (solid line segment) and extrapolation (dotted line segments) diversity curves for
hyporheic assemblages in control (black) and impact (red) reaches of the River Lambourn pre and post restoration. The
shaded areas represent 95% confidence intervals.

Differences in hyporheic invertebrate composition at the first sampling time point post
restoration (2015) were associated with a change in the frequency of invertebrate traits, with
a decrease in the relative abundance of burrowing organisms (Supplementary Materials,
Figure S1) that respire through gills (Supplementary Materials, Figure S2). Insecta and
Malacostraca were the dominant invertebrate classes (Supplementary Materials, Figure S3).
Prior to restoration, the benthos was dominated by Trichoptera (primarily Agapetus sp)
followed by Amphipoda (Gammurus pulex/fossarum) with similar proportions recorded at
both the control and impact sites (Figure 5c). Within the orders, the changes in invertebrate
composition at the first sampling time point post restoration were predominantly driven
by a relative increase in amphipods (chiefly Gammurus pulex/fossarum) and a decrease in
Trichoptera in the control reach (Figure 5a). Supplementary Materials, Table S3 lists the
taxa present at each site, year and compartment.

3.2. Benthos

Except for small sample sizes, all of the confidence intervals for the two diversity
curves for each time point overlap (Figure 6, Table 1), suggesting that taxon richness did
not differ statistically between reaches for any of the sampling occasions. Beta-diversity
was also similar between the control and impact reach for all time points (Table 1) with
little variation in CNESSa dissimilarity values for both low and high values of m, signifying
limited difference in the composition of dominant and rare species attributed to the effects
of restoration. The composition of major invertebrate classes (Supplementary Materials,
Figure S3b) was largely conserved across reaches and time points. The relative proportion
of the orders showed slight differences prior to restoration and variability throughout the
post restoration surveys (Figure 5b).
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3.3. Coupling of Hyporheic and Benthic Assemblages

The analysis of beta-diversity found that dissimilarity between compartments was
lowest (i.e., coupling of benthos and hyporheos was greatest) between control assem-
blages at the first sampling time point post restoration (Figure 5c), when using a low
sample size parameter (m = 1). Dissimilarity in composition was much higher when
a large (m = 519) sample size parameter was used (Figure 5c), i.e., similarity between
compartments in the control reach at the first sampling time point post restoration was
strongly determined by similarity in numerically dominant taxa, rather than rare inver-
tebrate taxa. Inspection of the dominant taxa in both compartments (from classes Insecta
and Malacostraca; Supplementary Materials, Figure S3) revealed that the proportional
abundance of amphipods (chiefly Gammurus pulex/fossarum) was the dominant driver of
similarity between benthic and hyporheic control reaches at the first sampling time point
post restoration (Figure 5). Dissimilarity between hyporheic and benthic assemblages in
the impact reach through time was less variable (Figure 5). However, dissimilarity was
reduced at the first sampling time point post restoration for the large (m = 519) sample size
parameter (Figure 5), highlighting a change predominately among rare invertebrate taxa
(Supplementary Materials, Table S3).

4. Discussion

Our study, for the first time, examined the responses of both hyporheic and benthic
riverine communities to a restoration intervention at multiple time points over a 5-year
period. Our findings show that alpha diversity (taxon richness and Shannon) in the
hyporheos declined in the impact (restored) reach relative to the control reach at the first
sampling time point post restoration, and that dissimilarity in community composition in
the impact and control reach was highest at this time point. The purpose of notching the
weir was to reduce the effects of the impoundment by increasing the velocity of the stream,
facilitating the flushing out of accumulated fine sediments in the impact reach, enlarging
interstitial pore space and boosting hydrological exchange, and as a result connectivity,
between the hyporheic zone and the rest of the river system [40]. This flushing, combined in
the short term with the unusually high discharge observed in 2014, may have also washed
out species that are adapted to this habitat, resulting in the observed lower diversity. This
interpretation is supported by our finding that burrowing organisms with gills (including
Tanypodinae, Chironomini, Ceratopogonidae, Simulidae, Rhyacophila and Ephemera) were
less frequent in the hyporheos of the impact reach, at this time point (2015), than in the
control. These burrowers bio-irrigate the sediment, creating macropores that contribute to
the creation of preferential flow paths through the hyporheic zone [41,42]. Undoubtedly,
the use of functional trait data provides a helpful additional approach to monitoring the
effectiveness of restoration activities [43].

Five years after the restoration, there was a clear signal of higher diversity in the
hyporheos of the impact reach relative to the control reach, and diversity was higher than
pre-restoration. Over time, a more natural sinuous channel was created in the impact
reach. This likely resulted in areas with improved surface water/groundwater exchange
where downwelling water brings oxygen and food resources into the hyporheic zone
resulting in higher invertebrate diversity [44]. This effect could be particularly pronounced
in groundwater-fed streams such as the River Lambourn where downwelling is limited
and the river channel is very susceptible to colmation, meaning that connectivity between
the benthic and hyporheic zones is reduced [45]. Vegetated and exposed gravel bars also
developed in the impact reach. These structures induce lateral hyporheic exchange flows,
further increasing the heterogeneity of the available habitat [46].

The fluctuations in diversity we observed throughout our study in both the control
and impact reaches underline the importance of undertaking long term post restoration
monitoring even though this is rarely done. For example, [47] found that fewer than 4% of
the studies they examined, that were designed to assess the success of river restoration inter-
ventions, undertook 5 years of post-restoration monitoring. In the control reach, we found
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marked changes in hyporheos composition and coupling of the benthic and hyporheic
assemblages in the first time point after restoration (2015) compared to before restoration
and later time points following restoration. This likely results from high discharges in
2014 and highlights that riverine environments, and therefore riverine communities, are
inherently variable. Thus, the inclusion of a control reach in river restoration monitoring is
essential to account for natural variability in the system and to enable restoration practi-
tioners and managers to understand what types of restoration measures will accomplish
their goals [48]. However, a large study of restoration projects in the U.S. [49] found that
only 11% of projects included before and after monitoring at the restored site and at a
reference site. Similarly, of the 179 projects added in the River Restoration Centre (RRC) UK
National River Restoration Inventory in 2017 only 5% specifically reported any monitoring
outcomes [50].

In contrast to the hyporheos, although there were some observed changes in taxa
recorded, we did not detect a signal of restoration on benthic assemblage diversity and
composition. This may partly reflect that, although the weir had an impounding influence
on habitat composition, the effect on invertebrate composition and community structure
was limited. The lack of ability to detect a signal of restoration appears to be a common
finding, e.g., [3,51,52], and there is increasing recognition that reach-scale restoration
interventions can be fragile; beneficial effects may be reduced by disturbance to the system
and reach-scale improvements may be short-lived unless they are complemented with
catchment-scale interventions such as changes in agricultural practices to reduce fertilizer
and fine sediment inputs [53,54]. This is particularly true in streams which are groundwater
fed at base flow and where flows that flush out fine sediments are rare [45]. Catchment-
scale factors, such as upstream ecological quality, missing source populations [55] and
anthropogenic flow alterations [56], may also hamper site specific restoration efforts.

We found that the extent of coupling (i.e., beta-diversity) between the benthos and
hyporheos varied during the course of the five-year monitoring. In particular, dissimilarity
between compartments was reduced in the control reach at the first sampling time point
post restoration and this was driven by an increase in the relative abundance of dominant
taxa such as the amphipod Gammurus pulex/fossarum. We also observed a more subtle effect
whereby dissimilarity between hyporheic and benthic assemblages in the impact reach was
reduced at the first sampling time point post restoration, which was attributed to a change
among rare invertebrate taxa. However, it should be noted that different mesh sizes were
used to sample the benthos (250 µm) and hyporheos (63 µm). It is therefore possible that
differences in beta-diversity between benthic and hyporheic communities may be impacted
to some extent by the occurrence of small taxa in the hyporheic samples (e.g., Ostracoda),
that were less well represented in the benthic samples (Supplementary Materials, Table S3).
Nonetheless, our results highlight the importance of assessing coupling between hyporheic
and benthic assemblages for understanding variation in baseline conditions and the wider
impacts of river restoration.

The hyporheos and the benthos responded differently to the restoration procedure in
our study, emphasizing that results from monitoring benthic communities cannot be relied
upon to inform understanding of the impact of restoration on hyporheic communities.
No previous studies have reported the impact of river restoration on the benthos and
hyporheos simultaneously. However, given the importance of the hyporheic zone in the
provision of ecosystem function and services, such as pollution attenuation and the supply
of disturbance and predation refuges [9,11], it is clear that the hyporheic zone should be
included in future monitoring protocols that aim to assess river restoration success.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/w13070996/s1, Figure S1: Relative abundance of hyporheic invertebrate movement traits in
the control and impact (restored) reach pre and post restoration. Modalities: 1: Ability to burrow
2: non-burrowing, Figure S2: Relative abundance of hyporheic invertebrate respiration traits in the
control and impact (restored) reach pre and post restoration. Modalities 1. tegument, 2. gills, 3. Other,
Figure S3: Relative abundance of hyporheic (a) and benthic (b) invertebrate groups in the control and

https://www.mdpi.com/article/10.3390/w13070996/s1
https://www.mdpi.com/article/10.3390/w13070996/s1
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impact (restored) reach pre and post restoration. To aid visualization of the data, invertebrate classes
that make up a very low proportion of total abundance (Entognatha and Hydrozoa) were excluded,
along with invertebrates not classified to class level (nematodes), Table S1: Physical characteristics
for the impact and control sites on the River Lambourn at each sampling time point from 2013 to
2018, Table S2: Biological traits and modalities of aquatic invertebrates used in this study, Table S3:
Taxa present at the impact and control sites on the River Lambourn in each year and compartment
(benthic and hyporheic).
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