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Abstract: Backflow from river to lake (BRL) usually happens in inland lakes and affects water
exchange, matter migration, and variations in the water quality and eco-environment. However, at
present, discharge data derived from hydrological stations are the only way to monitor BRL, and
the influence scope of BRL has not been monitored through hydrological stations. To address this
problem, we propose a novel algorithm to monitor BRL using satellite images of Poyang Lake (the
largest freshwater lake in China). The following results were obtained: (1) According to the difference
in suspended sediment from rivers and lakes, an algorithm using the total suspended sediment (TSS),
which was used as a tracer, was designed for monitoring BRL in Poyang Lake. (2) An innovative
extraction method for the mutation line using the TSS was developed to analyze BRL via satellite
images. A gradient variation method was developed to extract the mutation line accurately. (3) The
satellites with daily acquisition or higher-frequency resolution images (e.g., Moderate-Resolution
Imaging Spectroradiometer (MODIS)) were satisfactory for monitoring the characteristics of BRL.
The MODIS-derived band combination Rrs(645) − Rrs(859))/(Rrs(555) − Rrs(859) yielded a higher
fitting accuracy (R2 = 0.858, RMSE = 10.25 mg/L) derived from an exponential model, which was
helpful to highlighting the mutation line. (4) The important parameters of BRL, such as the beginning
time, the duration, the end time, and the influence scope, were quantitatively determined by judging
the movement of the mutation line. This algorithm was applied to quickly and effectively extract
the information of two instances of BRL in Poyang Lake in July 2000 and July to August 2007, and
the results were accurate and reasonable. This algorithm can save a great deal on monitoring costs.
A BRL monitoring algorithm using remote sensing is an efficient government measure supplement
to address the limitations of hydrological stations. These results provide technological support for
lake management and can serve as a valuable reference for water bodies similar to Poyang Lake
worldwide.

Keywords: remote sensing; Poyang Lake; backflow from river to lake (BRL); total suspended
sediment (TSS); mutation line

1. Introduction

With the effects of natural climatic conditions and human activities, inland lakes are
undergoing dramatic changes, such as shrinking area, deteriorating water quality, and
serious damage to the ecological environment [1,2]. These problems have hit a plateau
of social sustainable development in inland lakes. Mastering the river-lake relationship
is an important task for the virtuous development of the ecological environment in a
watershed [3,4]. The water flows from the lake to the river when the water level of the
lake is higher than that of the river. The current of the river will flow backward to the lake
when the water level of the lake is lower than that of the river, which is called “backflow
from river to lake (BRL)”. BRL tends to increase the magnitude of the water levels in
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the lake’s main flow channels, and the effects of backflow on flow direction and water
velocities propagate to virtually upstream [5]. The BRL process, in the functioning of
many lakes, may affect the sediment transport and the fate of pollutants in the general
water quality [6,7]. Other potential impacts include storage and sediment modifications
to the lake [8]. This phenomenon typically occurs in Poyang Lake [9]. Poyang Lake is
the largest freshwater lake in China, taking in and sending out water. Its hydrological
characteristics depend on water from the Yangtze River and the five rivers in the upper
reaches of Poyang Lake. Monitoring of BRL in Poyang Lake has an important role in
observing the evolution of the water environment and matter exchange of the lake [10,11],
which provides a scientific basis for its comprehensive management. Innovative data
mining using time series remote sensing big data for the ecological monitoring of lakes
plays an important role in protecting the ecological environment. Therefore, it is necessary
to scientifically explore the occurrence, process, and influence of BRL.

BRL is usually monitored by setting up a hydrological station at the junction of the
river and lake to monitor the discharge and current direction. Hydrological data can be
used to analyze the situation of water entering and flowing into the lake and to monitor
whether the BRL phenomenon exists in the lake [12]. However, the historical BRL situation
before the construction of the hydrological station cannot be obtained. At present, it is
difficult to determine the phenomenon of BRL in many lakes because few lakes have a
hydrological station constructed at their exit. Even if there is a hydrological station at
the exit of a lake, the influence scope of BRL cannot be obtained due to the hydrological
measurement near the station without monitoring a larger area.

Total suspended sediment (TSS) is a critical water quality parameter in the aquatic
ecological environment [13]. The transparency, turbidity, and euphotic depth are all
closely related to TSS [14,15]. TSS is the main influencing factor of lake geomorphological
evolution and an important carrier of nutrient and pollutant transport [16]. However,
a difference in TSS concentrations in rivers and lakes usually exists because of different
watersheds, different natural or climatic conditions, and artificial factors [17]. As a water
color parameter, which is the main factor directly affecting remote sensing signals, the TSS
can be retrieved directly from remote sensing images. An empirical model, semi-analytical
model, or analytical model can be used, giving it strong universality [18,19]. Secondly,
TSS has strong water scattering characteristics and high estimation accuracy using remote
sensing [20]. Thirdly, the TSS can be retrieved with higher accuracy than chlorophyll-
a because the chlorophyll-a concentration is relatively smaller in a flood season, when
BRL usually occurs [21]. According to the difference in water suspended sediment from
different watersheds, an algorithm extracting the mutation line of the TSS, which refers to
the boundary formed by the great difference between the TSS concentration in river water
and that in lake water, would make it possible to monitor BRL. Therefore, we developed
an algorithm to dynamically monitor BRL by using remote sensing technology and extract
the beginning time, duration, end time, and influence scope of BRL.

Aiming at inland lakes, in this paper we propose using satellite images to retrieve the
TSS concentration in lake water to monitor the phenomenon of backflows from Yangtze
River to Poyang Lake. This algorithm solves the problem of wholly depending on data from
hydrological stations and incomplete information from hydrological station monitoring.

2. Materials and Methods
2.1. Study Area

Poyang Lake (115◦49′ E–116◦46′ E, 28◦24′ N–29◦46′ N) is located in the north of Jiangxi
Province, which is at the middle and lower reaches of the Yangtze River. Poyang Lake
Basin is composed of Ganjiang, Fuhe, Xinjiang, Raohe, Xiuhe, and the Poyang Lake area
(Figure 1). As a unique inland lake, Poyang Lake has high variability in water level. The
flood season begins in April, and the water level usually reaches a maximum value of
over 4000 km2 during June or July. On the contrary, the dry season is from November to
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February the next year, when the river channel is narrow with a water level of less than
1000 km2 [22].
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Figure 1. The location of Poyang Lake, the exits of the five rivers, hydrological stations and sam-
pling stations.

Poyang Lake contains a vast gene pool of animals and plants and is a National Nature
Reserve for migratory birds, so the biodiversity of the lake plays an important role. Reports
show that the water quality in Poyang Lake is gradually decreasing [23]. The Yangtze River
has a great impact on regulating the outflow from the lake, and backflows from the Yangtze
River to Poyang Lake are a direct and obvious phenomenon. The main hydrological
stations in Poyang Lake include Hukou, Xingzi, Duchang, Tangyin, and Kangshan [24].
Backflows from the Yangtze River to Poyang Lake are monitored using current data from
Hukou station because the station is located in the outlet of Poyang Lake—a privileged
geographical location for monitoring backflow. BRL occurs when the discharge at Hukou
station is negative. The discharge may reverse sometime between July and September, with
a frequency of 735 days from 1956 to 2016. In this time, there was no BRL in only 12 years,
and BRL occurred in the other 49 years [25].

2.2. In Situ Measurements

In situ measurements of water quality parameters and spectral reflectance curves
in Poyang Lake were carried out in September 2014 and June 2017, representing the wet
season, and in November 2017 and April 2018, representing the dry season. Seventy-one
sampling sites were collected from during four cruises. The total suspended sediment
concentration (ρTSS) was measured by filtering water samples on weighted Whatman
GF/F glass-fiber filters. The TSS concentration was determined by reweighing the sample
after the filter was dried at 45 °C for 24 h [26]. The in situ TSS ranged widely from 1 to
168.6 mg/L (mean ρTSS = 40.0 mg/L, standard deviation = 28.6 mg/L).

Samples from all in situ stations were collected to determine the ρTSS via spectral
measurement using an SVC HR-1024 field-portable spectroradiometer (Spectra Vista Cor-
poration, Poughkeepsie, NY, USA), which provides high-spatial-resolution hyperspectral
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data from 350 to 2500 nm. In the above-water water spectra measurement method used,
Rrs(λ)

(
sr−1) was computed as follows [27]:

Swater(λ) = Sup(λ)− rSsky(λ) (1)

Edown
(
0+
)
= πSdown(λ)/ρboard (2)

Rrs(λ) = Swater(λ)/Edown
(
0+
)

(3)

where λ is the wavelength; Swater(λ), Ssky(λ), Sdown(λ), and Sup(λ) denote the radiance
spectra of the water-leaving, skylight, downwelling, and upwelling, respectively; r is the
Fresnel reflectance of the water surface (about 0.022 for a calm water surface); and ρboard is
the reflectance (30%, provided by the manufacturer) of the reference plank.

2.3. Remote Sensing Data and Preprocessing

Due to the fact that the backflow duration in Poyang Lake is usually over one day [11],
it is necessary to monitor the lake water body using satellite images with a revisit frequency
of at least once per day and monitor the whole process of BRL dynamically in real-time.
The Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite, with a revisit
interval of one day is, thus, an effective satellite for extracting the characteristic parameters
of BRL.

The MODIS 500 m resolution daily data and MOD02HKM were downloaded from
the NASA website (https://modis.gsfc.nasa.gov/) in 1 April 2020. The images under
cloud-free conditions were used to extract the water TSS concentrations for Poyang Lake in
July 2000 and July to August 2007.

Before the application of remote sensing images, preprocessing via geometric correc-
tion, radiometric correction, and atmospheric correction was carried out. The UTM Zone
50 projection type was used, and WGS84 was selected as the datum. Many atmospheric
correction models have been proposed, such as the histogram matching method, dark
object method, and the 6S and MODTRAN atmospheric correction models. The 6S and
MODTRAN models are founded on the atmospheric transfer method, and the accuracy of
the models are higher, but there are more input parameters [22]. Although the histogram
matching method and the dark object method are relatively simple, they are built under
certain conditions, so the accuracy of correction is not high and the practicability is lim-
ited [28]. In this study the MODIS images were atmospherically corrected by applying the
Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) model based
on the MODTRAN4 atmospheric transfer method [29,30]. The reflectances of the satellite
images were computed.

2.4. MODIS Spectral Simulation

The 500 m resolution MODIS data include seven bands, namely, band 1 (620–670 nm),
band 2 (841–876 nm), band 3 (459–479 nm), band 4 (545–564 nm), band 5 (1230–1250 nm),
band 6 (1638–1652 nm), and band 7 (2105–2135 nm). Using the measured spectral data
to simulate MODIS bands can effectively eliminate atmospheric interference and help to
accurately extract band information and establish a model. The field Rrs spectral curve was
simulated using the relative spectra response function of the MODIS. The water spectral
curve and relative spectral response functions of the MODIS data are shown in Figure 2.
The remote sensing reflectance (R(λi)) of the MODIS was simulated using the following
formula [31]:

R(λi) =

∫ λ2
λ1

fi(λi)Rrs(λi)dλ∫ 2ג
1ג

fi(λi)dλ
(4)

where λ1 and λ2 are the starting and ending wavelengths, respectively, of band i; and fi(λi)
is the relative spectral response (RSR) function of the MODIS for band i at wavelength λ.

https://modis.gsfc.nasa.gov/
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3. Algorithm Development
3.1. Characteristic Parameters of BRL

Due to the fact that the optical matter in the water of Poyang Lake is dominated by
suspended sediment matter [32] it is the most appropriate to use the TSS as a tracer to
monitor BRL. If a clear and turbid boundary in the TSS concentration and the mutation line
move to the lake area, and the water flowing into the lake shows a smaller or greater TSS
concentration, it means that BRL happens at that time (the beginning of BRL). According
to the different durations of BRL, we should select time-series images with less than one
day resolution to monitor BRL, so that the short-term phenomena of BRL can be found.

It is key for BRL to monitor the variation degree of the TSS concentration in the water
flowing into the lake. Extracting the mutation line of the TSS concentration is an efficient
method for this. In this paper, a method for extracting mutation lines is constructed.
Firstly, the spatial distributions of the TSS concentration were retrieved using satellite
images of lake water, and the TSS concentration at the previous time (ρ(TSSi)) was used
as the background value. Secondly, in order to highlight the mutation line, a new image
was produced by the subtraction of the spatial distribution of ρ(TSSi) from that of the
TSS concentration at the next time point (ρ(TSSj)). In the end, when the ratio of TSS
concentrations in the water body area changes greatly more than a selected threshold, the
continuous pixels of the concentration difference form the mutation line (Figure 3). The
gradient is derived as:

Gradient = |ρ(TSSi) − ρ(TSSj)|/max(ρ(TSSi) or ρ(TSSj)) (5)

Water 2021, 13, x FOR PEER REVIEW 6 of 15 
 

 

the influence scope of the BRL, which is shown as the filled area in Figure 3b. (3) The 
duration of BRL is the time from the beginning to the end. 

  
Figure 3. Schematic processing of backflow from river to lake (BRL). (a) the beginning of the BRL; 
(b) the processing and the influence scope of the BRL. 

3.2. TSS Model Development Based on the Extracted Mutation Line 
The calibration dataset (51 samplings) and validation dataset (20 samplings) were 

randomly extracted from measured ρ୘ୗୗ and simulated MODIS-derived reflectance sync 
data of seventy-one sampling sites. The TSS retrieval model was developed based on cal-
ibration datasets and evaluating of that was used validation dataset. The MODIS-derived 
simulated reflectance and corresponding measured TSS concentration were used to de-
velop the best-fitting model for estimating the TSS from actual MODIS images in July 2000 
and July to August 2007. The R2 and RMSE between the measured and estimated values 
were calculated to assess the fitting and validation accuracy. The correlations between 
different bands and their combinations and the TSS concentration were analyzed to de-
termine the most sensitive bands and their combinations. 

The widely used linear, quadratic, exponential, and power models of against ρ୘ୗୗ 
and the simulated MODIS-derived reflectance were calibrated using the least squares 
technique, respectively. The ratio of red and green bands was a remote sensing technique 
widely used to identify the water TSS [33], and NIR band was less affected by thin cloud. 
The band combination (x) was founded in the retrieval model, and it was the ratio of the 
red band (band 1) minus the near-infrared band (band 2) and the green band (band 4) 
minus the near-infrared band (band 2), which can reduce the impact of the atmosphere 
and improve the sensitivity in monitoring the TSS concentration. The formula is as fol-
lows: ݔ = R − NIRG − NIR (6) 

where R, G, and NIR refer to the remote sensing reflectance of the band 1, band 4, and 
band 2, respectively. 

Through the empirical model method, the linear, exponential, power, multiple term, 
and other functional empirical relations between the measured TSS and a single band or 
band combination were then respectively calibrated using the least-squares technique to 
find the best-fitting model for TSS estimation. The determination coefficient (R2) and the 
root-mean-square error (RMSE) of all the calibrated models were obtained to determine 
the best-fitting model. However, the exponential model is less sensitive to low-TSS water 
and a small variation range of TSS; it is more sensitive to high-TSS concentration water 
and a large variation range of the TSS concentration, when it is easier to judge the muta-
tion line. The exponential model formula is as follows: ρ୘ୗୗ = aeୠ୶ (7) 

where ρ୘ୗୗ is the concentration of TSS; a and b are the fitting coefficients; and x is the 
input band or band combination. 
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Figure 3a shows the mutation line located at the junction of a river and a lake when
there is no BRL. The beginning time, the end time, the duration, and the influence scope
of BRL were judged through the following steps: (1) When the position of the mutation



Water 2021, 13, 1166 6 of 15

line (Line 1) changes and moves upstream (Line 2) into the lake, BRL begins. (2) When the
mutation line (Line 3) is stationary for a certain time and starts to move to downstream, the
BRL is over. At this time, the range from the mutation line to the outlet of the lake is the
influence scope of the BRL, which is shown as the filled area in Figure 3b. (3) The duration
of BRL is the time from the beginning to the end.

3.2. TSS Model Development Based on the Extracted Mutation Line

The calibration dataset (51 samplings) and validation dataset (20 samplings) were
randomly extracted from measured ρTSS and simulated MODIS-derived reflectance sync
data of seventy-one sampling sites. The TSS retrieval model was developed based on
calibration datasets and evaluating of that was used validation dataset. The MODIS-
derived simulated reflectance and corresponding measured TSS concentration were used
to develop the best-fitting model for estimating the TSS from actual MODIS images in July
2000 and July to August 2007. The R2 and RMSE between the measured and estimated
values were calculated to assess the fitting and validation accuracy. The correlations
between different bands and their combinations and the TSS concentration were analyzed
to determine the most sensitive bands and their combinations.

The widely used linear, quadratic, exponential, and power models of against ρTSS and
the simulated MODIS-derived reflectance were calibrated using the least squares technique,
respectively. The ratio of red and green bands was a remote sensing technique widely used
to identify the water TSS [33], and NIR band was less affected by thin cloud. The band
combination (x) was founded in the retrieval model, and it was the ratio of the red band
(band 1) minus the near-infrared band (band 2) and the green band (band 4) minus the
near-infrared band (band 2), which can reduce the impact of the atmosphere and improve
the sensitivity in monitoring the TSS concentration. The formula is as follows:

x =
R−NIR
G−NIR

(6)

where R, G, and NIR refer to the remote sensing reflectance of the band 1, band 4, and band
2, respectively.

Through the empirical model method, the linear, exponential, power, multiple term,
and other functional empirical relations between the measured TSS and a single band or
band combination were then respectively calibrated using the least-squares technique to
find the best-fitting model for TSS estimation. The determination coefficient (R2) and the
root-mean-square error (RMSE) of all the calibrated models were obtained to determine the
best-fitting model. However, the exponential model is less sensitive to low-TSS water and
a small variation range of TSS; it is more sensitive to high-TSS concentration water and a
large variation range of the TSS concentration, when it is easier to judge the mutation line.
The exponential model formula is as follows:

ρTSS = aebx (7)

where ρTSS is the concentration of TSS; a and b are the fitting coefficients; and x is the input
band or band combination.

4. Results
4.1. In Situ Spectral Data

Figure 3 shows that the measured Rrs values of Poyang Lake were similar to the typical
characteristics of inland water. The Rrs values at 400–500 nm were low due to the intense
absorption of chlorophyll-a and CDOM (chromophoric dissolved organic matter). The Rrs
values at 500–570 nm increased rapidly. A reflectance peak in the range of 570–590 nm
appeared and a second peak exited at around 810 nm because of higher backscattering of
TSS. The Rrs values at 570–700 nm rose in an obvious manner while the TSS concentration
increased gradually.



Water 2021, 13, 1166 7 of 15

4.2. TSS Model Development

Since the reflectances from 400 nm to 900 nm were more stable than those over 900 nm,
simulation of MODIS-derived bands 1–4 was employed to construct the TSS model, and
they positively correlated with TSS (Figure 4). The red band and green band were found
to be more sensitive than the others. For the red band, the exponential model explained
the variation in TSS with an R2 of 0.757. For the green band, the exponential model
explained the variation in TSS with an R2 of 0.604. The band combination of Rrs(645) −
Rrs(859))/(Rrs(555) − Rrs(859) yielded a higher fitting accuracy compared with the single
bands. The highest R2 (0.858) and the lowest RMSE (10.25 mg/L) were derived from an
exponential model (Figure 5a):

ρTSS = 0.172e5.534x (8)

where x is the ratio Rrs(645) − Rrs(859))/(Rrs(555) − Rrs(859).
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Figure 4. Comparison between total suspended sediment (TSS) and simulated Moderate-Resolution Imaging Spectrora-
diometer (MODIS)-derived single bands.
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Figure 5. The fitting model between in situ TSS and a simulated MODIS-derived band combination and its validation.
(a) the fitting model; (b) validation of the model.
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A scatter plot (Figure 5b) indicated a significantly strong correlation between the
measured and estimated TSS concentrations (R2 = 0.905, p < 0.001). The exponential model
of the band combination (x) obtained the best performance.

4.3. TSS Distribution Derived from MODIS

The spatial-temporal distribution of ρTSS values was estimated by using Formula (5);
The MODIS images used were cloud-free images of Poyang Lake taken in July 2000 and in
July and August 2007. Figure 6 shows the spatial-temporal distribution of ρTSS in Poyang
Lake during the period of a BRL in July 2000. To contrast the TSS variation before and after
the BRL, the TSS distributions from 6 to 11 July 2000 are shown. The northern lake was
rather clear with TSS of <5 mg/L. However, a red portion (ρTSS > 50 mg/L) at the exit of
the lake appeared and gradually became larger and larger.
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Figure 6. The spatial-temporal distribution of ρTSS in Poyang Lake during the period of a BRL in July 2000.

The spatial-temporal distributions of ρTSS in Poyang Lake during the period of a BRL
from July to August 2007 were also produced using MODIS cloud-free images (Figure 7).
There was a high TSS level (ρTSS > 50 mg/L) in the main lake and northern lake on 21 July
2007, and low TSS (ρTSS < 10 mg/L) in the southern lake. The large red portion moved
toward the south of the lake in the maps, and the water was continuously clearer to the
north of Songmeng Mountain.
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4.4. Characteristic Parameters of BRL

In this study, mutation lines were obvious when using a threshold of more than
0.8, and the results were obtained by using MODIS images from each day in July 2000
(Figure 8). To effectively judge whether BRL happened at that time, the mutation line of
each successive image could be superimposed to analyze their movement information
from Yangtze River into Poyang Lake. The ρTSS values in Poyang Lake were lower than
those of the water from the Yangtze River in July 2000. From Figure 8a, it seems that there
were mutation lines at the interface between the exit of the lake and the river.

In Figure 8a, Line 1 is located at the junction of the river and lake with no BRL. The
mutation line did not move from 1 to 6 July 2000, and then it moved towards the center of
the lake on 7 July 2000 (Figure 8a), which indicates that BRL had happened in the lake on 7
July 2000 (Line 2). The mutation lines from 8 July (Line 3) and 9 July (Line 4) continued to
gradually move towards the center of the lake and arrived at the position of the 10 July
mutation line (Line 5); however, the mutation line moved downstream in the lake on 11
July 2000 (Line 6).This result indicated that the mutation line was stationary on 10 July
(Line 5) and then started to move downstream, so 10 July was the end time of the BRL. The
inflow distance of the BRL was 21.40 km. Therefore, the period of BRL was from 7 to 10
July 2000 (4 days). Figure 8b shows that the area from the mutation line on 10 July 2000 to
the exit of the lake—the influence scope of the BRL—was an area of 110.90 km2 (Figure 8b).
According to the observation data of Hukou hydrological station (Table 1), the negative
discharge values from 7 to 10 July 2000 show a water current from the Yangtze River to
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Poyang Lake, so the parameters of BRL were completely consistent with the hydrological
data.
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Table 1. The observation discharge data of Hukou hydrological station from 7 to 10 July 2000.

Date 6 July 2000 7 July 2000 8 July 2000 9 July 2000 10 July 2000 11 July 2000

Discharge m3/s 1140 −1500 −1380 −984 −539 275

The suspended sediment in most of the main lake and the northern lake was affected
by sand mining, so the TSS concentration increased in July and August 2007. At the same
time, the water in the Yangtze River was relatively clearer than that in Poyang Lake after
the impoundment of the Three Gorges project located in the upstream area of the Yangtze
River [34–36]; the project was constructed in 2003, so the TSS flowing into the lake area
showed a sudden change from low to high concentration, which was in contrast to the BRL
in July 2000.

Figure 9 shows that the position of the mutation line moved upstream in the lake on
22 July 2007 (Line 1), which was the beginning time of BRL. The results indicated that the
mutation line was stationary on 7 August (Line 2) and started to move downstream, so
7 August was the end time of the BRL. The period of this BRL was thus from 22 July to 7
August 2007 (17 days). Figure 9 shows that the inflow distance of the BRL was 88.04 km,
and the filled area from the mutation line on 7 August 2007 to the exit of the lake—the
influence scope of the BRL—was 585.24 km2. Thus, the duration, inflow distance, and
influence scope of this BRL were greater than those of the BRL in July 2000.According to
the observation data from Hukou hydrological station (Table 2), negative discharge values
from 22 July to 7 August 2007 reflected a water current from the Yangtze River to Poyang
Lake, so the parameters of BRL were completely consistent with hydrological observation
data. Therefore, it seems that this algorithm can robustly obtain correct information on
BRL, despite the TSS concentration of the water backflow to the lake being higher or lower
than that of the lake area.
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Table 2. The observation discharge data of Hukou hydrological station from 21 July to 8 August 2007.

Date 21 July
2007

22 July
2007

23 July
2007

24 July
2007

25 July
2007

26 July
2007

27 July
2007

28 July
2007

29 July
2007

30 July
2007

Discharge
m3/s 900 −149 −1190 −2130 −2760 −3260 −3470 −3520 −3020 −2500

Date 31 July
2007

1
August

2007

2
August

2007

3
August

2007

4
August

2007

5
August

2007

6
August

2007

7
August

2007

8
August

2007

Discharge
m3/s −2210 −2070 −2450 −2820 −3040 −2980 −1560 −110 1010

5. Discussion
5.1. Validity of the Algorithm

There are several algorithms for obtaining the information of BRL before, such as in
situ observation, hydrodynamic model and particle tracking model. The temporal variation
of BRL and its influencing factors were analyzed through the observation hydrological
data recorded at Hukou Hydrologic station [9,10]. Hydrodynamic model reveals that, in
general, backflow disturbs the normal northward water flow direction in Poyang Lake
and transports mass southward into the lake. The current study represents a first attempt
to explore backflow and causal factors for a highly dynamic floodplain lake system [8].
The real-time field monitoring method is accurate and effective, and the disadvantage is
that there must be hydrological stations. However, the hydrological stations cannot obtain
the influence scope of the BRL. The numerical simulation method needs to collect a large
amount of data, and cannot reflect the real-time phenomenon of BRL. It can be seen that
remote sensing monitoring is a large area, real-time, economic and effective tool to capture
BRL phenomenon, which provides a well-developed prospect.

Optical substance classifications of lakes usually include sediment-dominated op-
tical substances, chlorophyll-a-dominated optical substances, and mixed optical sub-
stances [37,38]. Suspended sediment is the main optical substance in Poyang Lake, and
it is helpful to finding the mutation line. If lakes with vigorous algae growth are to be
monitored, using chlorophyll-a and other tracers can be used to realize BRL monitoring.
Further research on this will be carried out in the future.
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The model using the field data in 2014, 2017, and 2018 was founded in this study. The
lack of field spectral measurements in 2015 and 2016 may affect the accuracy of model with
discontinuous years. Due to the cloud coverage during field measurement, the sync satellite
data was unavailable, which would affect the construction of the model. Consequently,
the simulated MERIS data were used to construct TSS retrieval model, and the NSSI
algorithm using MERIS band 5 (560 nm) and band 11 (760 nm) was recommended and an
exponential function (R2 = 0.90, p < 0.01) finally chosen to apply to Poyang Lake [26]. The
simulated Sentinel 2 MIS spectra were also used in Poyang Lake, which showed that the
Sentinel 2 MSI B4-B8b models achieved acceptable results with highly fitting accuracies
between 81–93% of the variation of TSS [22].As well, an exponential model (R2 = 0.95,
RMSE = 15.2 mg/L) has been established by the simulated Landsat 8 OLI band 4 (660 nm)
data and TSS [39]. In this study, the simulated MODIS data were used to construct TSS
retrieval model, in which the exponential function of the band combination obtained the
best performance. However, there are differences between reflectances of the simulated
satellite data and that of the atmospheric corrected satellite images in optically complex
inland waters, which may affect the estimated accuracy of TSS.

The climate conditions affect dynamic monitoring of BRL via remote sensing. Cloud
cover or greater aerosol thickness can make it more difficult for satellite remote sensing to
retrieve the TSS or can affect the model accuracy [39–41]. In order to better reflect the BRL
process, cloud-free MODIS satellite images during July 2000 and July to August 2007 were
requested in these two cases. However, the partial processes of BRL may still be difficult to
obtain as well as a validation limitation were employed on 1 to 5 August 2007, on which the
study area was covered by clouds. To solve the problem of climate impacts, the platforms
of unmanned aerial vehicles can be employed to monitor lakes [42].

To discover BRL, the temporal resolution of sensors must be higher than the duration
of the BRL. Although Landsat, Sentinel, and other satellites can capture the phenomenon
of BRL, a temporal resolution of over five days is too low to obtain the characteristic
parameters of BRL. The non-geosatellites with one- or two-day resolution (e.g., MODIS, HJ-
1, etc.) [43] and geosynchronous Earth orbit satellites (e.g., GOCI) with 1 h resolution [44]
can greatly improve the accuracy of monitoring BRL characteristics. In order to meet
monitoring requirements, we may incorporate multiple satellites’ data to achieve high-
frequency observation, and further steps must be taken to address the inconsistency in
atmospheric correction and spatial resolution of multi-source satellites.

According to the width of the monitored lake, the spatial resolution of the images
should be less than the width of the BRL area, especially the narrow exit of the lake. It
is difficult to discover the mutation line for the mixed pixels if the spatial resolution of
the images is too small. At that time, the coarse resolution of images influence algorithm
developed, calibration process, the results obtained, etc.

When the difference in TSS concentration between the lake water and the river water
flowing into the lake is not obvious, the mutation line is difficult to produce. Conversely, if
the accuracy of information acquisition is higher, the mutation line is more obvious. In this
study, the RMSE was about 10 mg/L, so remote sensing could not respond sensitively due
to the low difference in TSS concentration.

5.2. Implications for Future Eco-Environment Management

The results of BRL monitoring using remote sensing can play an important role in
researching the impact of human activities, making scientific decisions on whether to build
water conservancy projects in the lake, and arranging to scientifically organize sand mining
activities. Mastering the influence scope of BRL can help to research the alternation of
the water quality and eco-environment between rivers and lakes, and to analyze matter
migration regularity.
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6. Conclusions

(1) In this paper, a new algorithm was proposed to monitor BRL using satellite remote
sensing, and an effective model was established. This algorithm was applied to
quickly and effectively extract information on two instances of BRL in Poyang Lake
in July 2000 and July to August 2007, and the results were found to be accurate and
reasonable.

(2) An innovative extraction method for the mutation line was proposed using satellite
technology. The 645 nm, 859 nm, and 555 nm bands of MODIS-derived images were
used as the bands sensitive to the TSS concentration to develop the fitting model.
A band combination of Rrs(645) − Rrs(859))/(Rrs(555) − Rrs(859) yielded a higher
fitting accuracy (R2 = 0.858, RMSE = 10.25 mg/L) derived from an exponential model,
which was helpful to highlighting the mutation line. A gradient variation method
was developed to extract the mutation line accurately.

(3) Using the algorithm, we were able to quickly mine the important parameters of BRL,
such as the beginning time, the duration, the end time, and the influence scope. The
influence scope of BRL is not available from hydrological stations and can now be
monitored in real time by remote sensing.

(4) Extracting the BRL information using real-time remote sensing is conducive to the
study of phytoplankton and organisms affected by BRL. This approach can also
greatly save on monitoring costs. The results should help in exploring the relationship
between rivers and lakes, matter migration, and so on, and provide an important
technical means for the study of lake ecological environments. This study addresses
the possibilities and limitations of this algorithm that should be considered in further
research.
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