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Abstract: Freshwater quality and quantity are some of the fundamental requirements for sustaining 

human life and civilization. The Water Quality Index is the most extensively used parameter for 

determining water quality worldwide. However, the traditional approach for the calculation of the 

WQI is often complex and time consuming since it requires handling large data sets and involves 

the calculation of several subindices. We investigated the performance of artificial intelligence tech-

niques, including particle swarm optimization (PSO), a naive Bayes classifier (NBC), and a support 

vector machine (SVM), for predicting the water quality index. We used an SVM and NBC for pre-

diction, in conjunction with PSO for optimization. To validate the obtained results, groundwater 

water quality parameters and their corresponding water quality indices were found for water col-

lected from the Pindrawan tank area in Chhattisgarh, India. Our results show that PSO–NBC pro-

vided a 92.8% prediction accuracy of the WQI indices, whereas the PSO–SVM accuracy was 77.60%. 

The study’s outcomes further suggest that ensemble machine learning (ML) algorithms can be used 

to estimate and predict the Water Quality Index with significant accuracy. Thus, the proposed 

framework can be directly used for the prediction of the WQI using the measured field parameters 

while saving significant time and effort. 

Keywords: WQI; Pindrawan tank area; drinking water quality; artificial intelligence; particle swarm 

optimization; support vector machine; naive Bayes classifier 
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1. Introduction 

A high enough quantity and appropriate quality of freshwater are some of the fun-

damental requirements for sustaining human life and civilization. Indeed, the tremendous 

population growth and miraculous achievements in science and technology have in-

creased groundwater utilization for domestic, industrial, and irrigation purposes multiple 

folds throughout the world over the last few decades. Rapid urbanization, overexploita-

tion, and unscientific waste disposal have also influenced the accessibility and quality of 

groundwater. Excessive population growth and rapid urbanization have forced the use of 

chemicals and pesticides for agricultural purposes, which often results in leaching and 

mixing into the groundwater. As indicated by the World Health Organization (WHO), 

inappropriate or polluted water causes around 80% of all diseases in human beings. Fur-

thermore, contaminated groundwater quality cannot be improved or re-established by 

preventing contamination from the source. Therefore, understanding and determining 

water quality is imperative in the study of water resources and environmental engineer-

ing. 

Water quality essentially determines the usability of water from a source in terms of 

the nature and concentration of the impurities present in the sample [1]. As a combined 

effect of the continuous deterioration in water quality and quantity, approximately one 

billion people worldwide face a shortage of adequate and safe water supply. These statis-

tics’ increasing nature makes it essential to monitor water quality for its efficient manage-

ment and supply [2,3]. 

The most efficient method for classifying water quality is using the Water Quality 

Index (WQI). Water quality is often estimated based on water quality indices [4,5]. It is a 

tool that has been extensively utilized to assess the performance of water quality manage-

ment approaches [6]. The approach and methodology used for calculating and interpret-

ing water quality indices have evolved over the years [7–11]. The estimated values of wa-

ter quality indices have been used to indicate water samples’ suitability for day-to-day 

use. They can be utilized effectively in the execution of water quality overhauling pro-

grams. 

The WQI’s variables comprise biological oxygen demand (BOD), temperature, dis-

solved oxygen (DO), total suspended solids (TSSs), ammoniacal nitrogen (AN), chemical 

oxygen demand (COD), and pH [12]. Groundwater quality indices (GQIs) are usually 

forecasted by measuring the standard variables, such as magnesium (Mg2+), calcium 

(Ca2+), and nitrate (NO−3) [13–15]. The value provided by the WQI is significant enough to 

help decision makers. However, estimating the WQI is not that simple because subindex 

calculations are done in the WQI equations themselves. Several methods are available in 

the literature for the computation of the WQI worldwide, e.g., United States National San-

itation Foundation Water Quality Index (NSFWQI), the British Columbia Water Quality 

Index (BCWQI), and the Canadian Water Quality Index (CWQI). 

The WQI aims to convert the complicated water quality information into straightfor-

ward data that is readily useable by researchers and conveyable to people in general. The 

calculation process in the case of some approaches applied in several countries, including 

India [6,16], can be exceptionally intricate and time consuming. As a result, the process 

always contains the risk of attracting unintended miscalculations [17]. Thus, the limita-

tions for the calculations of WQI are the following: (a) time consuming, (b) lengthy pro-

cess, (c) complicated process, and (d) different equations are used for WQI calculations, 

hence there are inconsistencies. It may be obvious from the above discussion that no 

standard method is available for the WQI. 

To conquer the above problems, a few scientists have proposed a nonphysical ap-

proach that can successfully predict WQI using machine learning (ML) and artificial in-

telligence (AI) [18–20]. After satisfactory training, an AI-based model can promptly pro-

duce a WQI value by eliminating the sub-index calculations. Awareness of AI algorithms 

is increasing due to benefits that include nonlinear structures, the capability to calculate 

complicated trends, the capability to manage huge datasets consisting of different data 
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scales, and insensitivity to absent data. The forecasting capability of ML–AI algorithms 

greatly relies on the procedures and exactness of the data collection and analysis. The 

continuous evolution of computational ability has allowed researchers to use diverse ar-

rangements of ML–AI models. Approaches such as artificial neural networks (ANNs) 

[17,21–26] adaptive neuro-fuzzy inference systems [27–31], and support vector machines 

(SVMs) [32] have been effectively applied to predict the quality of water worldwide. Abba 

et al. (2020) [33] describe in detail the ML–AI techniques that are used for WQI measure-

ment. Most of these ML–AI algorithms can perform with a certain degree of accuracy and 

it is challenging to compare them based on their performance [25,34]. 

The AI techniques used in the present study, sometimes include complex manual 

implementation to reduce its actual effectiveness for water quality management person-

nel. Practitioners have a great interest in learning the codes such that the codes can be 

used for solving complex models like the one discussed above. A comprehensive compar-

ison of such models’ applications with required software packages must be carried out to 

improve the accuracy of predictions and the suitability of the AI-based models. However, 

various data mining programs do not involve vast manipulation of several AI models; 

instead, the majority of them just support fundamental methods without optimization. 

Our study also aimed to develop a user-friendly interface in MATLAB for practition-

ers that do not have a programming background. The recommended interface is based on 

a nature-inspired metaheuristic classification system that integrates particle swarm opti-

mization (PSO), along with an SVM and NBC. The water quality was forecasted using 

fundamental AI techniques, which involved a particle swarm optimization (PSO) algo-

rithm combined with support vector machines (SVMs) for prediction. The classification 

and predictive AI system investigated in the study was developed using four AI models 

(single), hybrid metaheuristic regression, and four ensembles (i.e., stacking, voting, bag-

ging, and tiering). The baseline models encompassed single models by using two AI tech-

niques: SVM and NBC, respectively. Subsequently, the ensemble models integrated the 

registered single models and utilized voting, bagging, tiering, and stacking methods. The 

goal of the present work was to propose a framework for flexible water quality modeling. 

The analytical technique had similar goals: the models’ predictive accuracy and applica-

bility. The framework will empower administrators and hydrologists to choose the best 

analytical tools for water management using AI techniques. 

These models should be selected based on specific requirements. However, some-

times applying an ensemble model can significantly enhance the model accuracy and re-

duce the computational cost. In the present study, the combination of the PSO algorithm’s 

applicability with an SVM and NBC was exploited. A framework was proposed for pre-

dicting the WQI in the Pindrawan tank area, Raipur region, Chhattisgarh, India. 

2. Study Area 

The Pindrawan tank command area was the area under study (Figure 1); it is situated 

within 81°45′–81°50′ E and 21°20′–21°25′ N in the upper Mahanadi River valley (south-

eastern part) and Raipur district of Chhattisgarh, India. A total of nine villages, namely, 

Pauni, Amlitalab, Khauna, Deogaon, Bangoli, Dhansuli, Kurra, Baraonda, and Nilja, come 

under the study area, which has a tropical wet and dry climate. The temperature in this 

part of India remains moderate throughout the year. The highest temperatures in the year 

are observed from March to June. 
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Figure 1. Map of the study area showing the Pindrawan tank command area’s geographical location in Chhattisgarh State, 

India. The figure shows the location of the study area at the country and state levels, as well as the village boundaries that 

are under the Pindrawan tank command area with drinking water sample locations (green color points). 

3. Methodology 

3.1. Data Collection and Water Quality Estimation 

The groundwater samples were collected in 2018 during the pre-monsoon period 

from hand pumps and bore wells (37 sites), which are extensively utilized for drinking in 

the Pindrawan tank area. The identification of the sampling points was performed using 

topographic sheets and GPS, and the maps were prepared using ArcGIS 10.1 (ESRI, Cali-

fornia USA). Topographic sheets were utilized to prepare the base map and recognize the 

general features of the area. GPS techniques were used to identify the geographic position 

of each sampling point. The collected groundwater samples were investigated for the con-

centration of different parameters, namely, electrical conductivity (EC), pH, total dis-

solved solids (TDSs), total hardness (TH), alkalinity, bicarbonate (HCO3−), chloride (Cl−), 

sulfate (SO42−), nitrate (NO3−), fluoride (F−), calcium (Ca2+), magnesium (Mg2+), sodium 

(Na+), potassium (K+), iron (F−), and chromium (Cr2+), per the specification of the Federa-

tion and American Public Health Association (2005). The EC and pH of the collected sam-

ples were measured using an EC and pH meter on the field. Fluoride concentrations were 

analyzed based on the selective electrode method. TH, chloride, and alkalinity were meas-

ured using titrimetric methods. Heavy metals were measured using an atomic absorption 

spectrum and prescribed safety measures were considered to avoid contamination. 

The locations of the sampling stations are presented in Figure 1. The concentrations 

of the parameters were compared with the acceptable limits prescribed by BIS (2012) [35]. 

The permissible limits of potassium, bicarbonate, and sodium are reported in [36,37]. 
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The WQI of the collected samples was calculated using the weighted arithmetic Wa-

ter Quality Index (WQI) method [38–40]. The weights (Wi) that were assigned to each pa-

rameter according to their impact on the water quality are shown in Table 1. 

Table 1. Water quality parameters used when calculating the WQI. 

Parameters 
Indian 

Standards 

Weight 

(Wi) 

Unit Weight 

(Wi) 
Parameters 

Indian 

Standards 

Weight 

(Wi) 

Unit Weight 

(Wi) 

EC 300 1 0.024 Alkalinity 200 3 0.073 

PH 6.5−8.5 2 0.049 TH 300 2 0.049 

TDS 500 3 0.073 Fluoride 1 4 0.098 

Calcium 75 2 0.049 Iron 0.3 4 0.098 

Magnesium 30 2 0.049 Chromium 0.05 4 0.073 

Potassium 12 2 0.049 Chloride 250 2 0.049 

Sodium 200 1 0.022 Bicarbonate 250 3 0.073 

Sulfate 200 3 0.073 Total  41 1 

Nitrate 45 3 0.073     

Based on the corresponding WQI values, the quality of the groundwater for drinking 

purposes can be classified into five categories, as presented in Table 2. 

Table 2. WQI classification based on the same WQI used by Ramakrishnaiah et al., 2009 [41]. 

WQI Class 

0−50 Excellent water quality 

50−100 Good water quality 

100−200 Poor water quality 

200−300 Very poor water quality 

>300 Unfit for drinking 

3.2. Utilization of AI for the Prediction of the WQI 

The present study utilized two powerful machine learning approaches for the esti-

mation of the WQI classes by considering the parameter (variables) values as inputs. All 

16 variables resembled a variable vector. The analysis was carried out using 1250 variable 

vectors (250 for each class), which were generated using PSO to contain the whole array 

of every class. Calibration was conducted using 1250 variable vectors (250 from each class) 

by applying tenfold cross-validation, and the assessment was done using 250 variable 

vectors (50 from every class). 

3.2.1. Classification and Prediction Using a PSO–SVM Approach Based on the Water 

Quality Index 

The PSO approach is an extremely powerful algorithm that can optimize different 

model parameters depending on a population’s behavior. The approach was proposed by 

Eberhart and Kennedy in 1995 [42]. The PSO approach has been efficiently used to solve 

a multitude of nonlinear problems in diversified fields, such as geology [43,44] , landslide 

analysis [45,46], forest fire mapping [47], and flood modeling [48,49]. The algorithm is 

initialized with a population of arbitrarily selected solutions between the maximum and 

minimum range of the parameters. Several advantages of the PSO approach, including 

the ease of implementation and convergence, fewer parameters, and the use of parallel 

computing, makes this approach a more comfortable choice compared to other available 

optimization techniques. The algorithm was developed based on the conduct of a group 

of fish or birds selecting the smallest path to a food source [50]. The algorithm can improve 

the exchange of information between samples in a population through an interactive 

learning process that helps the population arrive at a consistent solution. Each solution is 

considered as “bird”, also known as “particle”, in the solution space. Such interactions 

between members of the population allow this algorithm to demonstrate a robust search 

proficiency and advanced adaptability to various problems. In PSO, particles (solutions) 
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will be collected randomly, and then the best particles will be found by renewing the gen-

eration. In each generation, each particle is modified using the next two “best” parame-

ters. The first is the best value based on fitness that has been obtained by it until now 

(fitness parameters are also stored). This value is called individual best value (pbest). 

Pbest is the best value of thepartile among all the values obtained so far. The other “best” 

parameter, which comes from the particle swarm analyzer, is the best value that ha been 

obtained by any  particle in the current population. This highest value is called global 

best (gbest). The movement of the particles is controlled by these optimal values of pbest 

and gbest. After finding an improved position, they will continue to control the movement 

of the flock. In the solution space [51], a particle is comprised primarily of two vectors, 

namely, velocity (Vi) and position (Xi) [52], by using Equations (1) and (2) respectively. 

Figure 2 gives the PSO algorithm that is used for the particle optimization. The optimiza-

tion of these two vectors in the dth dimension is performed through the following equa-

tions: 

���
��� = ����

� + �����(�������
� − ���

� ) + �����(�������
� − ���

� ) 
 

(2)

���
��� = ���

� + ���
���                                                                                                           (2) 

where, w is known as the inertia weight. The value of these parameters specifies the num-

ber of particles following the current velocity. The parameters c1 (cognitive coefficient) and 

c2 (social coefficient) are known as the acceleration factors. The parameters c1 and c2 rep-

resent the self-reasoning capability and the ability to acquire information from any parti-

cle’s contemporary global optimal solution, respectively. r1 and r2 are two independent 

arbitrary parameter numbers in the range [0, 1] [53]. �������
�  and �������

�   are known as 

the local optimum (best-known position value of any particle i) and the global optimum 

(optimal value obtained by the swarm of all particles). 

 

Figure 2. Flowchart for the optimization of the particles. 
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The coordinate attained by every individual particle in the solution space is recorded 

by the algorithm. These coordinates are representations of the best solution (fitness value) 

that has been attained by the particle and is called the local optimum (pbest), whereas the 

best solution attained by any particle in the vicinity of a specific particle is known as the 

global optimum (gbest). Although, the particles in the PSO approach tend to move arbi-

trarily, the best achieved position of the particles (pbest) and the group’s best position 

(gbest) have significant influence over their movement. 

Presently, the PSO approach was utilized to produce the optimized values of the 

WQI, along with all of the 16 water quality variables by considering the variables’ lower 

and upper limits, as presented in Table 3. Based on the corresponding WQI values, the 

groundwater quality for drinking purposes was classified into five categories (Table 2). 

To achieve the optimized values of the WQI and water quality variables corresponding to 

the different classes of water quality, the WQI parameter was considered as the fitness 

function. The algorithm was set up with an initial population of 50 and processed up to a 

maximum generation of 500; therefore, a total of 50 × 500 = 25,000 optimized values were 

generated. The ranges of values for each variable used in the WQI function are presented 

in Table 3. 

Table 3. Comparison of chemical parameters with prescribed standards. 

Parameter 

Experimentally 

Obtained Range of 

Concentration in the 

Collected Samples 

Permissible 

Limits 

Percentage of 

Samples 

Exceeding 

Permissible 

Limits 

Undesirable Effect 

pH 7.26–8.59 6.5 to 8.5 2.70 

Irritation in eyes, skin, and 

mucous membranes; skin 

disorders 

EC 152–1998 300 89.19 Cardiac dysrhythmias 

TDS (mg/L) 98.8–1199 500 21.62 Gastrointestinal irritation 

Alkalinity (mg/L) 60–335 200 29.73 
Unpleasant and harmful to 

aquatic life and humans 

Chloride (mg/L) 20–330 250 8.11 Salty taste 

Calcium (mg/L) 4–60.5 75 0 Scale formation 

Magnesium (mg/L) 4–20.2 30 0 
Cerebrovascular disease (Yang, 

1998) 

Potassium (mg/L) 0–30.9 12 16.20 Bitter taste 

Sodium(mg/L) 1.2–18.3 200 0 High blood pressure 

Nitrate (mg/L) 3.4–8.2 45 0 Methemoglobinemia 

Sulfate (mg/L) 25–50 200 0 Laxative effect 

Bicarbonate (mg/L) 2.5–6.5 250 0 
Vomiting, dehydration, chronic 

obstructive pulmonary disease 

Fluoride (mg/L) 0.25–0.84 1 0 
Mottling of teeth, deformation of 

bones 

Iron (mg/L) 0.015–0.785 0.3 5.41 

Diabetes, hemochromatosis, 

stomach problems, nausea, and 

vomiting 

Chromium (mg/L) 0.007–0.737 0.05 56.76 
Hearing loss, blood disorders, 

hypertension, death at high levels 

TH (as mg/L) 138–320 200 43.24 

Scale formation in pipes 

anencephaly, urolithiasis, parental 

mortality 

The procedure for generating the optimal variables’ values was as follows: 

Step 1—The fitness function was explained using the WQI function, initializing “50 

as population” and “500 as the maximum generation.” 

Step 2—Each variable’s maximum and minimum limits were set while using the WQI 

function according to Table 3. 
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Step 3—Every particle’s movements were recorded in every generation in the vector 

form comprising the value of the WQI, together with the subsequent values of the 16 var-

iables. 

Step 4—The category (class) of each variable vector was obtained by considering its 

corresponding WQI, as presented in Table 2. 

Step 5—A total of 250 variables vectors were selected from each category in such a 

manner that the entire range of the particular category should be covered, as given in 

Table 2. 

In every generation, the populace shifted from the initial position to a new appropri-

ate place and produced new fitness values. Every particle’s movement in every generation 

was recorded in the vector form containing the WQI value along with the subsequent 

variables’ values. Every random particle updated its fitness value (WQI) in each genera-

tion, which was stored in the database and related variables. In PSO, the population’s 

values (swarm) and max iteration (generation) depend on the user. The flowchart for this 

work is shown in Figure 3. The classification of the WQI values was performed using a 

support vector machine and a naive Bayes classifier. Before proceeding with the classifi-

cation, the dataset was normalized between 0 and 1 to enhance the accuracy. The varia-

bles’ values in vector format were treated as a feature vector in the normalized dataset. 

 

Figure 3. Flowchart describing the workings of the PSO. 

3.2.2. Classification Using a Support Vector Machine 

The SVM classifier[54] plays an essential and comprehensive role in classification due 

to its high accuracy and ability to deal with high-dimensional data. The simple form of 

the classification is the binary used for separating two types of objects belonging to posi-

tive (+1) and negative (−1) classes. A support vector machine uses two kinds of concepts 
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to distinguish between two classes: (1) separation from the margin and (2) the kernel func-

tion. 

The simple two-dimensional data can be classified by using a straight line. The points 

that fall above the line belong to one class, and the points that fall below the line belong 

to another class. The high-dimensional data can be classified by using the hyperplanes. 

However, in a binary classification, multiple planes can be drawn such that they separate 

the data into two classes. As such, which plane will be selected for the classification? In 

this case, the hyperplane that gives the maximum margin will be selected for classifica-

tion. Therefore, we choose the hyperplane such that the distance from it to the nearest 

data point on each side is maximized. The classification of the data with the best margin 

hyperplane is shown in Figure 4. 

 

Figure 4. Classifications of data using various hyperplanes. 

In Figure 4, there are two types of data points: filled and unfilled dots. Three planes 

exist, which are named H1, H2, and H3. H1 does not successfully classify the data points. 

Planes H2 and H3 are both capable of classifying data points, but H2 gives a smaller mar-

gin than plane H3. 

This is why plane H3 is selected for the classification. Sometimes the data is not clas-

sified by hyperplanes because of its distribution in a vast space. In that case, we use a 

nonlinear separation for the classification. The SVM classifier can efficiently perform this 

nonlinear classification by using kernel functions. The nonlinear classification is presented 

in Figure 5. In Figure 5, there are two types of objects, as identified by the solid and hollow 

dots. The objects represented in this figure cannot be separated using a linear hyperplane; 

the support vector machine performs this task using kernel functions. The kernel function 

separates the data in the feature space by using a linear hyperplane. 

 

Figure 5. Use of the kernel function in an SVM. 
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In this work, the SVM classifier separates the individual water quality classes with 

hyperplanes by using the radial basis kernel (Gaussian) function [55–58]. The distance of 

a feature vector from the hyperplanes determines its probability of featuring in a specific 

class. The normalized dataset and the class labels were used as inputs in the present study. 

The dataset was randomly divided 80:20, where 80% of the dataset was used for training 

purposes using tenfold cross-validation. In the tenfold cross-validation, the entire dataset 

was divided randomly into ten equal-sized subsamples. A single subsample was used for 

testing purposes, and nine subsamples were used for training purposes on ten subsam-

ples. This process was repeated ten times until each of the 10 subsamples were used ex-

actly once for testing purposes. The remaining 20% of the dataset was used for testing and 

validation purposes. 

3.2.3. Classification Using Naive Bayes Classifier 

Naive Bayes classifiers are based on Bayes Theorem with a family of algorithms with 

the same principle, i.e., each pair of features being categorized is independent of every 

other. The fundamental naive Bayes assumption is that every feature makes an unbiased 

and identical contribution to the outcome. A naive Bayes classifier is a probabilistic ma-

chine learning model that is used for a classification task. The crux of the classifier is based 

on Bayes’ theorem: 

)(

)()|(
)|(

BP

APABP
BAP   (3)

By using Equation (3), the probability of event A happening can be measured by con-

sidering that event B has occurred. Here A is the hypothesis and B is the evidence. One 

assumption that is considered here is that all features are independent/autonomous, 

which means the presence of one particular feature does not affect the other. Hence it is 

called naive. Before the PSO–NBC analysis, the dataset was normalized to enhance the 

performance of the model. A total of 80% of the dataset was used to train the algorithm, 

whereas 20% of the dataset was used to study the algorithm’s prediction accuracy. In this 

work, continuous values that were associated with each feature were assumed to be dis-

tributed according to a Gaussian/normal distribution. 

4. Results and Discussions 

4.1. Water Quality Index (WQI) Analysis of the Field-Based Samples 

The concentration, distribution, and impact of different physicochemical parameters 

observed from water samples collected from the Pindarwan tank area are discussed in 

this section. The ranges of concentrations observed for various parameters and the per-

centages of total samples exceeding the prescribed limit are presented in Table 3, along 

with their undesirable effect on groundwater quality and human physiology. This section 

provides an overview of the spatial distribution of the physicochemical parameters that 

were measured in the Pindarwan tank area; a more detailed description is provided in 

Figures A1–A15 in the Appendix A.  

Out of 37 samples, 32.43% of the samples had excellent water quality, 43.24% of the sam-

ples had good water quality, 21.62% of the samples had poor water quality, and 2.71% of 

the samples had very poor water quality. This may be due to the heavy concentrations of 

metals, such as Pb and Cr, due to nearby industries, which involve mining activities, ther-

mal power plants, etc. The areas corresponding to these WQI values are presented in Fig-

ure 6. 

Figure 7 represents a correlation plot between the WQI and the parameters observed 

from the study area’s water samples. The correlation between the independent parame-

ters can be neglected in the plot since these plots are mostly empirically based on specific 

values. In decreasing order, the influence of different parameters can be presented as chro-
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mium, sodium, fluoride, potassium, chloride, conductivity, total dissolved solids, alkalin-

ity, bicarbonate, and pH. Contributions from the rest of the parameters on the overall wa-

ter quality were much less compared to these parameters. Through observing Figure 7, it 

can be concluded that water quality for drinking was susceptible to heavy metal concen-

trations, such as chromium. 

 

Figure 6. Spatial distribution of the WQI. 
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Figure 7. Correlation plot between various groundwater quality parameters. 

Based on the WQI, the sample area’s drinking water quality was divided into four 

categories. No sample was observed to be unsuitable for drinking based on the analysis. 

Very poor water quality was observed from the Raikheda pond area due to a very high 

chromium concentration. Poor water quality was observed in significant parts of the De-

ogaon, Dhansuli, Bangoli, Amlitalab, and Khauna villages. Most areas of all the villages 

had good water quality. Excellent water quality was observed in Saragaon, Nilja, Dhan-

suli, Bangoli, Khauna, Baronda, and Pauniarea. The observed water qualities may suggest 

that most of the study area’s water quality is satisfactory and there is no immediate danger 

for the population. However, the values of certain parameters, such as the chromium con-

centration, total hardness, and total dissolved solids, were alarmingly high for many areas 

and could become worse. This may significantly influence the present scenario of the wa-

ter quality in the study area under consideration. Therefore, concerned authorities should 

note the situation and plan proper steps for maintaining or improving the current situa-

tion of the drinking water quality in the study area. 

Furthermore, the averages and ranges of the values of different parameters corre-

sponding to water quality are presented in a boxplot format in Figure 8a–p. The concen-

tration of  some parameters such as alkalinity, chloride, conductivity, chromium, iron, 

bicarbonate, sodium, and TDSs are found to be directly proportional and has much more 

significant impact on the WQI of the study area. These are, therefore, the parameters that 

have to be first taken care of when aiming to improve the water quality for the specific 

study area. The influences presented in Figure 8a–p are the combined effect of the concen-

tration of each parameter and the relative weight of each parameter. Therefore, even if a 

parameter’s relative weight is much less, it could make a significant impact if it had a very 

high concentration. However, these plots are strictly applicable to the present study area 

and no inference should be derived from these plots for any other samples. The boxplots 

and correlation plots can be extremely useful for conveying a detailed picture regarding 

the water quality of the study area and the influence of different parameters on the water 

quality. 
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Figure 8. Ranges of various parameters corresponding to the water quality: (a) alkalinity, (b) calcium, (c) chloride, (d) 

conductivity, (e) chromium, (f) iron, (g) fluoride, (h) bicarbonate, (i) potassium, (j) magnesium, (k) sodium, (l) nitrate, (m) 

sulfate, (n) TDSs, (o) total hardness, and (p) pH. 

4.2. Result from the PSO–SVM Study 

The performance of the model is presented using the confusion matrix in Figure 9a. 

The confusion matrix is used to explain the model’s classification and overall performance 

on the testing datasets whose original labels are known. The instances in a predicted class 

and actual class are represented in every row and each column respectively (or vice versa). 

In Figure 9a, the rows from the top to the bottom correspond to the excellent, good, poor, 

very poor, and unfit for drinking water qualities, respectively, as predicted using the SVM 

classifier. 

Furthermore, the columns from left to right follow a similar arrangement of the target 

class (actual classifications based on the WQI values). Each column related to these classes 

had 50 variable vectors (water quality class from excellent to unfit for drinking), totaling 

250 variable vectors. In the first row, 50 variable vectors are presented, indicating 50 ex-

cellent water class WQIs, where the system predicted them all as being in the excellent 

category. Similarly, in the second, third, fourth, and fifth rows, a sum of 61, 54, 69, and 16 

variable vectors are presented, respectively. The result indicates that the algorithm pre-

dicted 61 samples as good quality, 54 as poor quality, 69 as very poor quality, and 16 as 

unfit for the drinking category. The prediction accuracies corresponding to each class are 
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also presented in the last column from the left-hand side. The overall accuracy of the al-

gorithm was found to be 77.60%. Furthermore, a difference between the classifications 

based on actual values of the WQI and the predicted classification based on the SVM clas-

sifier is presented in Figure 9b. 

 

(a) (b) 

Figure 9. Comparison between the predicted class and target class using the SVM approach: (a) confusion matrix and (b) 

column plots. 

4.3. Discussion of the PSO–NBC Approach 

The PSO–NBC study was carried out by considering the same dataset as in the PSO–

SVM approach. The test accuracy is discussed using the confusion matrix presented in 

Figure 10a. The rows and columns marked as 1 to 5 indicate the excellent (1), good (2), 

poor (3), very poor (4), and unfit for drinking (5) water qualities. The 51 variable vectors 

in the first row indicate that the algorithm identified 51 variable vectors as excellent water 

quality when there were 50 actual excellent water categories (1 more due to misclassifica-

tion). Similarly, in the second (50 variable vectors of good water quality), third (50 variable 

vectors of poor water quality), fourth (50 variable vectors of very poor water quality), and 

fifth rows (50 variable vectors of unfit for drinking water quality), the algorithm placed 

57 (good water quality), 46 (poor water quality), 51 (very poor water quality), and 45 (unfit 

water quality) variable vectors. The prediction accuracy of the algorithm corresponding 

to each class is presented in the sixth column. The total accuracy of the algorithm was 

observed to be 92.80%. 

The comparisons of the model-predicted outcomes against the actual WQI values are 

graphically represented in Figure 10b. 
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(a) (b) 

Figure 10. Comparison between the predicted class and target class using the NBC approach: (a) confusion matrix and (b) 

column plots. 

4.4. Comparison between the PSO–SVM and PSO–NBC Approaches 

The performances of the PSO–SVM and PSO–NBC approaches used in the present 

study are presented in Figure 11. 

 

Figure 11. Comparison of the predicted outcomes using the PSO–SVM and PSO–NBC approaches. 

The figure indicates that the PSO–SVM algorithm predicted some classes (excellent 

and poor water categories) with significant accuracy; however, significant deviations 

were observed in the model’s performance for the other categories. On the other hand, the 

prediction accuracies of PSO-NBC were much higher for all the classes and did not dis-

tinctly deviate for any specific categories. Therefore, a naive Bayes classifier aided by par-

ticle swarm optimization can be efficiently used to construct a machine learning model to 

classify water for drinking purposes. 

5. Conclusions 

The process of WQI estimation is often associated with handling large quantities of 

identical data. This can create significant confusion during the calculation process and 

make decision making difficult. A machine-learning-based predictive model can assemble 

the necessary information and predict the groundwater quality with significant accura-

cies. This study aimed to utilize modern machine learning techniques for the prediction 

of water quality for drinking. The groundwater samples collected from parts of the Pin-

drawan tank command area were used for testing and validation of the developed model. 
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The collected samples were tested for different parameters of water quality and the sub-

sequent values of WQI were computed. Conclusions derived from the present work are 

as follows: 

1. The calculated WQI values suggested that 32.43% and 43.24% of the water samples 

of the study area represented excellent and good water qualities, respectively. Simi-

larly, it can also be observed that 21.62% and 2.71% of the water in the study area 

were of poor and very poor drinking water qualities. Very poor water quality was 

observed from the Raikheda pond area due to very high chromium concentration. 

Poor water quality was observed in significant parts of the Deogaon, Dhansuli, Ban-

goli, Amlitalab, and Khauna villages. 

2. The major cation and anion data revealed that all anions were within the limits, ex-

cept for potassium, where 13% of the samples exceeded the limit. However, the heavy 

metals pollution in the area due to mining activities could be a cause for concern 

soon. A total of 48.6% of the samples from the area exceeded the permissible limits 

of chromium, which can cause conditions such as hearing loss, blood disorders, hy-

pertension, and death at high levels. 

3. The study further suggests that ensemble machine learning algorithms can be used 

for the estimation and prediction of a WQI with significant accuracies. In the present 

study, a particle swarm optimization approach coupled with a naive Bayes classifier 

provided a 92.8% accurate prediction of the WQI indices. Therefore, with the help of 

a user interface, this algorithm can be efficiently utilized for the estimation of WQIs, 

which can save significant effort and time. 

The general outcomes from the present research indicate the benefits of using ensem-

ble machine learning techniques, where outcomes from several different algorithms can 

be combined and used to achieve predictions with enhanced accuracies. Finally, with the 

help of a user interface, the algorithm developed in the present study can be used for 

water quality estimation in different regions across the globe. 

The classification in the present study was carried out by taking the synthetic dataset 

that was generated using particle swarm optimization. However, the developed approach 

can be further improved if more real data is available. Therefore, the authors suggest us-

ing a larger field dataset to obtain better accuracy, though this is often a difficult under-

taking provided the painstaking process of sample collection and laboratory analysis for 

all the water quality parameters. The developed algorithm can be further improved by 

studying its performance and fine-tuning it with different input parameters. 
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Appendix A 

Table A1. Locations used for the groundwater samples. 

Sample 

No. 
Lat Long 

Sample 

No. 
Lat Long 

Sample 

No. 
Lat Long 

1 81.8282 21.3761 13 81.8367 21.3994 25 81.8155 21.4273 

2 81.8023 21.3764 14 81.8373 21.3977 26 81.8124 21.4226 

3 81.8077 21.371 15 81.834 21.4001 27 81.8152 21.4252 

4 81.7961 21.3815 16 81.828 21.3760 28 81.8584 21.4041 

5 81.8028 21.3801 17 81.8258 21.3736 29 81.8377 21.4311 

6 81.7961 21.3815 18 81.8282 21.3761 30 81.8566 21.4033 

7 81.8391 21.4107 19 81.7824 21.3942 31 81.8001 21.4089 

8 81.8353 21.4134 20 81.7807 21.3896 32 81.8426 21.4000 

9 81.8371 21.4103 21 81.7837 21.3985 33 81.8405 21.3729 

10 81.8383 21.4010 22 81.7837 21.4066 34 81.8384 21.4329 

11 81.842 21.3943 23 81.8001 21.4089 35 81.8384 21.4325 

12 81.8433 21.4002 24 81.8056 21.4119 36 81.819 21.4177 
      37 81.8145 21.4183 

 

Figure A1. Spatial distribution of EC. 
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Figure A2. Spatial distribution of PH. 
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Figure A3. Spatial distribution of potassium. 



Water 2021, 13, 1172 21 of 35 
 

 

 

Figure A4. Spatial distribution of chloride. 
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Figure A5. Spatial distribution of iron. 
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Figure A6. Spatial distribution of magnesium. 
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Figure A7. Spatial distribution of calcium. 
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Figure A8. Spatial distribution of SO4. 
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Figure A9. Spatial distribution of HCO3. 
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Figure A10. Spatial distribution of HNO3. 
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Figure A11. Spatial distribution of fluoride. 
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Figure A12. Spatial distribution of alkalinity. 
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Figure A13. Spatial distribution of TDSs. 
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Figure A14. Spatial distribution of Cr. 
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Figure A15. Spatial distribution of TH. 
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Figure A16. Flowchart of the procedure followed in the study. 
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