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Abstract: Increasing pollutant emissions in the Lake Hawassa watershed (LHW) has led to a severe
water quality deterioration. Allocation and quantification of responsible pollutant fluxes are suffering
from scarce data. In this study, a combination of various models with monitoring data has been
applied to determine the fluxes for Chemical Oxygen Demand (COD), Biochemical Oxygen Demand
(BOD5), Total Dissolved Solid (TDS), Total Nitrogen (TN), Nitrate and Nitrite-nitrogen (NOx-N), Total
Phosphorous (TP) and phosphate (PO4-P). Water, wastewater and stormwater samples were collected
and analyzed at eight monitoring stations from rivers and point sources and six monitoring stations
of stormwater samples. The flow simulated with soil and water assessment tool (SWAT) could be
very well calibrated and validated with gauge data. This flow from SWAT model, measured flow
during monitoring and pollutant concentrations were used in FLUX32 to estimate pollutant fluxes
of main rivers and point sources in LHW. The formulas provided by Ethiopian Roads Authority
and Gumbel’s theory of rainfall frequency analysis was employed to determine the 2-years return
period rainfall depth for the City of Hawassa. The integration of HEC-GeoHMS and SCS-CN with
the catchment area enabled to determine stormwater pollution load of Hawassa City. The estimated
pollutant flux at each monitoring stations showed that the pollutant contribution from the point
and nonpoint sources prevailing in the study area, where the maximum fluxes were observed at
Tikur-Wuha sub-catchments. This station was located downstream of the two point sources and
received flow from the upper streams where agricultural use is predominant. Furthermore, Hawassa
city has been identified as a key pollutant load driver, owing to increased impacts from clearly
identified point sources and stormwater pollutant flux from major outfalls. Agricultural activities,
on the other hand, covers a large portion of the catchment and contributes significant amount to
the overall load that reaches the lake. Thus, mitigation measures that are focused on pollutant flux
reduction to the lake Hawassa have to target on the urban and agricultural activities.

Keywords: pollutant loading estimator (PLOAD); FLUX32; water quality; pollutant export coeffi-
cients; point and non-point source pollutant flux

1. Introduction

Currently due to the rapid advances in modelling, numerous water quality models
were developed with various modelling algorithms for various land use and water bodies
for pollutants at different spatio-temporal scales [1,2]. The data demand for water quality
models increase with the complexity and scope of application [3].

Generally, most developed countries, namely the US or European countries have
established better and advanced surface water quality models [2]. One of pivotal factors
in the primary goals of environmental management would be assessing the water quality
despite limited observations [4]. In the developing world reliable application of water
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quality models is often challenging owing to lack of sufficient and quality data and access
to patented software is limited by finances. Furthermore, nearly for all rivers the gauged
data are limited and fragmented. The Rift Valley Lake basin is among the data scarce
areas of Ethiopia and the historical measured pollutant flux including sediment data
is very limited [5,6]. In Hawassa, on the other hand, wastewater management is a big
concern because most residents use latrines. Wastewater treatment plants for the partly
existing sewer system for buildings with flushing systems is missing [7] and stormwater is
discharged without any treatment. Furthermore, Lake Hawassa is encircled by agricultural
land, residential places, industrial and commercial hubs and is located near the city of
Hawassa. As a result, it is prone to a range of environmental risks and the water quality
deteriorates over time, posing a danger to the biodiversity [8]. Hence, studying the pollutant
load of the basin is necessary to obtain more realistic information [5].

The estimation of pollutants load from non-point sources is usually accomplished by
means of watershed models. However, due to the intensive input data requirements and
complexity by most of the models, it is disconcerting to quantify diffuse source loads in
developing countries such as Ethiopia owing to limited hydrological, meteorological and
water quality data [9,10].

In order to fulfil the existing gaps in the developing world such as Ethiopia, setting
up frequent monitoring and assessment is a critical task. In this sense, simple models
that do not require intensive input datasets are worthwhile common approaches for the
prediction of diffuse pollutions from various land uses including urban and industrial
land uses [11–13].

On such occasion, a common approach such as pollutant export coefficients represent-
ing the rate of pollutant loadings by land area, that predict an annual load from land to
water, are often a discretionary means to estimate loadings from non-point sources [6,14,15].
Export coefficients modelling is a simple approach that can be adopted for data-poor areas
and for preliminary assessments connecting land use to water quality. It is generally based
on the postulation that a particular land use will export distinctive magnitudes of pollu-
tants to a downstream water body on a yearly basis [16]. To justify this postulation, the
pollutant export coefficients must be developed for the locally specific conditions [15]. If
this is achieved, reliable and relatively accurate pollutant transport models can be set up to
support watershed level point and nonpoint source pollution management [17].

Therefore, in this study we employed pollutant loading estimator (PLOAD) to de-
termine the pollution loads with the help of export coefficient modelling. The approach
was used as a means of preliminary pollutant load estimation at different watersheds in
Ethiopia [6,9], Tanzania [18], China [10,19], USA [20], Japan [15], UK [12], Lithuania [21],
Egypt [22], Philippines [23] and Rwanda [24].

The watershed of lake Hawassa comprises rural and urban areas. So, for conducting
a comprehensive pollutant flux in the watershed, pollutant flux of (i) rivers, (ii) point
sources (PS) and (iii) urban stormwater runoff have to be investigated. Namely the impact
of stormwater runoff has so far not been addressed and requires a deeper investigation.
A prerequisite for this is a reliable runoff information at watershed scale. In recent decades
a number of hydrological models have been developed and used to envisage the runoff
information in different hydrological units over years. A widely used approach to esti-
mate runoff from spatial data is the Soil Conservation Service curve number (SCS-CN)
method [25,26]. In this study, we also applied the SCS-CN method to estimate rainfall-
runoff depth for the city of Hawassa.

A characteristic problem in the watershed under investigation is the lack of sufficient
monitoring water quality data due to budget constraint. This complicates prediction of
pollutant loads from point and non-point sources, as land use, emissions and ambient
water quality cannot be linked directly. Currently the government focuses on the reduction
in the point source pollution. However, estimation of pollutant flux from nonpoint sources
in data-limited watersheds in Ethiopia (in general and in the study area in particular)
are perplexing, due to lack of baseline data to direct development targets. Thus, the use
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and identification of simple, cost effective and economical water quality models is greatly
imperative to estimate the pollutant flux of rivers and point sources that are in turn helpful
for surface water quality management. To support this target, this study is aimed at
determining the annual pollutant loads contributions from point, nonpoint sources and
stormwater to the Lake Hawassa watershed, identify the probable pollution flux hotspots
and calibration of pollutant export coefficient for the study area by integrating PLOAD,
SWAT, FLUX32, HEC-GeoHMS and SCS-CN with monitoring data.

2. Materials and Methods
2.1. Study Area

Ethiopia has endowed with several lakes of volcanic and tectonic origins, among which
Lake Hawassa is an endorheic freshwater lake formed in collapsed calderas and located
in Lake Hawassa Watershed (LHW) [27]. Within the Central Ethiopian Rift Valley Basin,
the Lake watershed is located between 6◦45′ and 7◦15′ N latitude and 38◦15′ to 38◦45′ E
longitude, in Sidama and Oromiya Regional States (Figure 1), covering 1431 km2 [28].
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Figure 1. Study area map and monitoring station’s location. (a) Lake Hawassa watershed (LHW) and
monitoring stations from point source (PS), rivers and stormwater, (a) Major river basins in Ethiopia,
(b) countries sharing boundaries with Ethiopia (c).

Streams from the eastern catchment flow to Lake Cheleleka wetland and are drained
by the Tikur-Wuha River that feeds Lake Hawassa. Tikur-Wuha River is the main rivers in
Lake Hawassa watershed, located in the middle section of the catchment where most of the
untreated household and industrial wastewater are discharged. The Lake has been used as
the main source for drinking, irrigation, aquatic life and recreational uses. Despite this, the
lake and its tributaries has been affected by various sources of pollution [7].

The climate of the Hawassa sub-basin is sub-humid and distinctly seasonal. The
months from April to October are wet and humid, and the main rainy season is between
July and September, the area receives a mean precipitation of 1028 mm rainfall annually.
The mean minimum precipitation is 17.8 mm in December (dry season) and the mean
maximum precipitation is 119.8 mm in August (rainy season) [29]. The long term mean
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annual temperature of the area varies from 12.5 to 26 ◦C [30], whereas the mean monthly
evapotranspiration in the low lands ranges from 39 mm in July to 100 mm in January [29].

2.2. Sampling and Analysis of Monitoring Parameters

Water, wastewater and stormwater sample were collected and analyzed for some
selected physicochemical parameters in the Lake Hawassa watershed from March 2020 to
December 2020. Sample collection for the wet season were conducted after rainfall events.
The locations of monitoring stations were determined using Global navigation satellite
system. Water temperature, pH, total dissolved solids and conductivity were determined
onsite. For the estimation of pollutant flux in the Lake Hawassa watershed, water and
wastewater samples were collected from eight monitoring stations from rivers and point
sources (Figure 1, Tables 1 and 2). Monitoring stations for stormwater in Hawassa City
were established at the major outlets to monitor the urban stormwater quality. The urban
runoff samples were collected from six monitoring stations for two rainfall events (Figure 1
and Table 3).

Table 1. Monitoring stations from rivers in Lake Hawassa Watershed.

Code Monitoring Sites Latitude (Y) Longitude (X) Area (ha)

MS1 Wesha River 7◦5′13.8′′ 38◦36′51.3′′ 5754.9
MS2 Hallo River 7◦3′14.4′′ 38◦36′43.2′′ 4152.3
MS3 Wedessa River 7◦0′21.6′′ 38◦35′6.0′′ 14,615.5
MS6 Tikur-Wuha River 7◦5′22.6′′ 38◦30′25.4′′ 61,479.8

Table 2. Monitoring stations from point sources in Lake Hawassa Watershed.

Code Monitoring Sites Latitude (Y) Longitude (X) Altitude (Z)

MS4 BGI effluent discharge site 7◦1′31.8′′ 38◦30′57.4′′ 1686
MS5 Moha Soft Drinks Factory 7◦1′26.9′′ 38◦30′47.5′′ 1671
MS15 Referral Hospital 7◦1′47.6′′ 38◦27′46.1′′ 1686
MS19 Hawassa Industrial Park 7◦4′49.4′′ 38◦28′44.4′′ 1690

Table 3. Monitoring stations for stormwater from outfalls of drainage system in Hawassa City.

Code Monitoring Sites Latitude (Y) Longitude (X) Area (ha)

MS20 Near Referral Hospital 7◦1′28.71′′ 38◦28′14.63′′ 306
MS21 Near Amora-Gedel 7◦2′30.67′′ 38◦27′37.83′′ 206.6
MS22 Near Fiker Hayk 7◦3′12.99′′ 38◦28′18.46′′ 97
MS23 Near Chambalala Hotel 7◦3′48.37′′ 38◦28′31.07′′ 377.4
MS24 Near ELPA office 7◦4′4.86′′ 38◦28′41.68′′ 95
MS25 Near South spring Hotel 7◦5′29.34′′ 38◦28′56.12′′ 123.6

Composite samples were collected in pre-cleaned 2 L polyethylene plastic bottles that
are sterilized for biochemical oxygen demand (BOD) and chemical oxygen demand (COD)
analyses. The bottles were washed with concentrated nitric acid and distilled water before
sample collection and placed in a cooler box, kept under 4 ◦C and immediately transported
to the laboratory for analysis. Samples of nitrate and phosphate were prefiltered at site
and kept in a cooler box before analysis. The analytical methods and instruments used for
analysis are shown in Table 4. All the analytical methods were carried out according to the
standard methods for the examination of water and wastewater [31].
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Table 4. Analytical methods and instruments used for the analysis of selected parameters in LHW.

Parameters Analytical Methods and Instruments

TDS Portable multi-parameter analyzer, Zoto, Germany
BOD5 Manometric, BOD sensor
COD Closed Reflux, Colorimetric

PO4-P and TP Spectrophotometrically by molybdovandate (Hach DR-3900)
NO3-N Photometric measurements, Wagtech Photometer 7100 at 520 nm wavelength
NO2-N Spectrophotometrically by salicylate, (Hach DR-3900)

TN Spectrophotometrically by persulfate digestion (Hach DR-3900)

2.3. Data Treatment

The data treatment needs to be performed for missing data and outliers in the climate
and monitored water quality data before executing SWAT, PLOAD, FLUX32 and Gumbel’s
theory of distribution. Hence, outliers were treated according to Grubbs [32] test approach
with XLSTAT 2016. However, missing data was handled by the multiple imputation of
missing values technique using Markov Chain Monte Carlo method [33].

2.4. Estimation of Flow

Instantaneous flow in study basin has been measured at the time of sample collection
using the current meter (Toho Dentan CMS-11C, Tokyo, Japan). Since flow and pollutant
concentrations are dynamic, determination of time series data of flow is crucial besides the
instantaneous flow. In the study watershed under investigation, there are four monitoring
stations in the study area out of which only one station is gauged and having stream flow
records, the other three lack stream flow records. The problem of missing records can be
circumvented by model based flow estimations [9,15]. In order to estimate the discharge
at the ungauged sites, we applied the soil and water assessment tool (SWAT), a semi-
distributed, process-oriented hydrological watershed-scale model [34]. The input data to
the model-like land use map, digital elevation model (DEM), soil map, hydrology (stream
flow) and weather data were collected from Ministry of Water, Irrigation and Electricity,
Ethiopian meteorology Agency. The basic concept of the model is to subdivide a basin
into sub-basins and further combine land cover, soil and slope to obtain the hydrologic
response unit (HRU) where all land areas have homogeneous land use, soil and slope
combinations. In each HRU, hydrological components are calculated for surface water,
soil and groundwater [35]. Accordingly, the SWAT model was simulated from 1996–2015
where two-year warmup period, twelve years (1998–2009) calibration and 6 years (2010–
2015) of validation for the full data available. The flow calibrated and validated by SWAT
at Tikur-Wuha catchment was used to generate flow in the ungauged sub-catchment
outlets (monitoring stations) in Tikur-Wuha catchment and later used as an input for
FLUX32 for pollutant load estimation along with the instantaneous flow and measured
pollutant concentrations.

In this juncture, the area ratio-based method was among the streamflow transfer tech-
niques that has been used to estimate the streamflow at ungauged stations from the SWAT
calibrated flow. In the area ratio technique, the single source area ratio method is widely
used and the easiest approach to determine the runoff at ungauged stations [36]. The trans-
fer of flow from the gauged to the ungauged was reasonable as the ungauged catchments
are located within the gauged catchment having similar hydrological, meteorological, land
use and soil properties. Hence, the streamflow at an ungauged site is estimated by using
Equation (1) taken from [37].

Qy

Qx
=

Ay

Ax
(1)

where, Ax and Ay are the drainage area of the ungauged and gauged site, respectively,
Qx is the observed streamflow at a gauged site, and Qy is the estimated discharge at an
ungauged site.
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2.5. Watershed Model Selection

Examination of pollutant loads from point and non-point sources that are contributing
to pollution of surface water bodies are crucial for watershed management. A number of
physical and empirical models has been established to comprehend complex hydrological
and ecological processes associated with point and nonpoint source pollution [38].

The mechanistic watershed models can provide more accurate results on pollutant
losses, but such models need a huge amount of input data. These intensive input data
requirements make such a modelling a highly challenging task hindering its use [39]. Thus,
for estimation of pollutant load the local conditions and data availability should be taken
in to consideration for selection of models [10].

There exist various watershed and river models with different focus and abilities.
Before selecting an appropriate approach, we reviewed commonly applied models with
regard to our goals and data availability (Table 5).

Table 5. Some selected modelling tools and their selection criteria evaluation.

Name of the Model
and References Characteristics Application Domain

of the Model
Accessibility of

the Software
Input Data

Requirement

AGNPS [40]

A distributed model that evaluates
the agricultural NPS pollution and

simulates the transport of sediments
and chemicals

Catchment Public domain Data-intensive

GWLF [41]
A semi-distributed/lumped model
that estimates runoff, sediment and

nutrient loadings
Catchment Public domain Moderate

MONERIS [42]

A conceptual model, which allows
the quantification of nutrients

emissions via various point and
diffuse pathways into river systems

river Public domain Data-intensive

MIKE 11 [43]

A distributed hydrodynamic model
of flow and water quality in streams
and simulates solute transport and

transformation in complex
river systems

River Proprietary Data-intensive

QUAL2E [44]

A one dimensional and steady-state
model typically used for water

quality modelling of pollutants in
rivers, streams and well-mixed lakes

River/Lake Public domain Minimum

SPARROW [45]

Semi distributed statistical
regression model that is designed to
account for the spatial variability in

contaminant flux in stream water
quality to impose the mass balance

Catchment/River Proprietary Data-intensive

HSPF [46]

An analytical tool designed to
simulate hydrology and water

quality for conventional and toxic
organic pollutants

Catchment/River Public domain Data-intensive

PLOAD in BASINS
4.5 System [47]

A Simple or an export coefficient
based method that is used to

estimate NPS contribution from each
land use by incorporating point

source and GIS-based land-use data

Catchment level Public domain Minimum
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Table 5. Cont.

Name of the Model
and References Characteristics Application Domain

of the Model
Accessibility of

the Software
Input Data

Requirement

SWMM [48]

A distributed physically based,
dynamic, continuous urban

stormwater runoff quantity and
quality model

Urban catchment Public domain Data-intensive

WASP [49]

A surface water quality modelling
tool used to analyse a variety of
water quality problems in water

bodies such as ponds,
rivers/streams, lakes/reservoirs,

estuaries and coastal waters

River/Lake Public domain Data-intensive

SWAT [35]

A semi-distributed model that is
used for the prediction of the effects
of alternative land use management

practice on water, sediment, crop
growth, nutrient cycling, and
pesticide in watersheds with
varying soils, land use and

management conditions

Catchment level Public domain Data-intensive

AGWA [50]

A distributed multipurpose
hydrologic analysis system that

integrated several sub-models to
predict runoff and erosion rates

Catchment level Public domain minimum

Among the reviewed models BASINS (better assessment science integrating point and
nonpoint sources) model is a comprehensive watershed model framework that integrates
numerous watershed models such as SWAT (Soil and Water Assessment Tool, Austin,
TX, USA), HSPF (Hydrological Simulation Program FORTRAN, Athens, Greece), GWLF-
E (Generalized Watershed Loading Function, Ithaca, NY, USA), SWMM (Stormwater
Management Model, Cincinnati, OH, USA), PLOAD (Pollutant Loading Estimator, Athens,
Greece) and instream and water quality models such as AQUATOX and WASP (Water
Quality Analysis Simulation Program, Athens, Greece) as plug-ins was found to be the
most plausible option for the watershed under investigation [47].

Many researchers were in favour of PLOAD model due to its capability and adapt-
ability in different watersheds [6,9,10]. Angello et al. [9] and Belachew et al. [6] engaged
PLOAD model to estimate the point and nonpoint source pollutant loads in data-scarce
Little Akaki and Borkena Rivers in Ethiopia, respectively and both suggested the use of
PLOAD model in data-poor catchments for point and nonpoint source pollutant load
estimation. In this study, therefore, we used the PLOAD model due to its adaptability and
small number of input data requirement.

PLOAD (pollutant loading Estimator) is a BASINS plugin, developed by Cornell,
Howland, Hayes, Merryfield and Hill (CH2M-HILL) is a simple model that uses GIS-based
data sources such as land use, watershed shapefile, export coefficient (EC) and allows best
management practices (BMP) specifications and point sources load. In PLOAD the point
and non-point nutrient loads from each land use for the physicochemical parameters (BOD,
COD, TN, PO4-P, NOx-N and TDS) were estimated based on the export coefficients and
can be applied for urban, suburban and rural areas [20,51,52].

PLOAD uses two approaches to estimate the point and the nonpoint sources load
contribution: simple and export coefficient method. Both approaches can be applied based
on data availability and applicability on a watershed. However, a simple method is used
in smaller watersheds, usually, less than 1 square mile, whereas the export coefficient
approach was used to compute the annual pollutant loads in a mixed land use and can be
run for multiple scenarios [6,11,20,47,51,52].
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In the study area, we used the export coefficient approach where pollutant loads in
PLOAD are calculated by

PL = ∑n
i=1 EC ∗ALu (2)

where PL is the pollutant loading rate for land use type (kg yr−1), ALu is the area of the
land use type Lu (ha). To estimate diffuse pollution, each land use category has been
assigned the export coefficient values (kg ha−1 yr−1).

2.6. Pollutant Export Coefficient

The export coefficients (ECs) are distinct values of the specific attributes for a particular
land-use and a measure of the total quantity of pollutants exported from each unit area in
the watershed over a specified time period [6,11]. Each land use is assumed to contribute
to the pollutant load per land area when predicting catchment non-point source load
contribution by ECs.

The watershed in our study area was delineated using ArcSWAT and land use was
reclassified into seven groups using the USGS classification system, as Wondrade et al. [29]
quotes Anderson et al. [53], as bare lands, cultivated land, forest land, range land, urban or
built up area, water bodies, and wetlands. Accordingly, Cultivated Land encompasses the
highest share (50.65%), followed by range land (16.58%), forest Land (13.11%), Bare Land
(6.75%), Water Body (6.43%), Builtup (5.47%) and Wetland (1.02%), (Figure 2).
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Mathematically, the pollutant load using export coefficient with an inclusion of precip-
itation induced pollution can be expressed by Johnes [12].

Li,j = ∑n
k=1 (Ek,j∗Ak,j + Pi,j) (3)

where Li,j is calculated load of constituent i at the sub-catchment outlet j (kg yr−1); n
is the number of land uses contributing; Ek,i is the export coefficient of land use k for
the constituent i (kg ha−1 yr−1); Ak,j is area of land use k for the sub-catchment j; Pi,j is
precipitation induced constituent i load at a sub-catchment j (kg yr−1). Pi,j is assumed
negligible for the case of Lake Hawasa Watershed.

The use of reasonable export coefficients is decisive for simulation accuracy of all
export coefficient models [19]. Since this is the first comprehensive investigation carried
out so far on export coefficient modelling in Lake Hawassa Watershed, defining export
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coefficients appropriate for the Lake watershed is difficult. In this regard, the export
coefficients of the Lake watershed were determined by borrowing the values from liter-
ature review (Table 6) from the studies conducted in Ethiopia [6,9]. Tanzania, Uganda
and Kenya [18], china [10,19,54–56], USA [20,57,58], Japan [15], UK [12], Lithuania [59],
Egypt [22], Philippines [23] and Rwanda [24].

Table 6. Range of published export coefficients (kg ha−1 yr−1) selected for PLOAD calibration for
various land uses in LHW.

Land Use
Export Coefficient from Literatures, kg ha−1 yr−1

TN TP TDS BOD5 COD NOx PO4-P

Urban 1.5–36.9 7 0.19–6.23 9 292–2263 5 2238 8 3196 8 95 8 1.73 3

Agriculture 2.1–79.6 1,2 0.05–18 1,2 2280 8 76 8 260 6 36.1 8 14 11

Forest 1.0–6.3 1 0.007–1.11 1,2 250 5 50 10 66.5 10 2.12 3 0.7 3

Bare land 0.51–6 1 0.05–0.25 1,2 100 10 3.47 4,12 1–5 4,12 67.3 11 5.1 11

Water 0.69–3.8 2 0.09–0.21 2 10–150 10 50 10 50 10 0.46 3 10.1 11

Rangeland 3.2–14 1,2 2–18 1,2 24–101 5 0.5 4 0.5 4 0.46 3 2.1 4

Wetlands 2.33 5 0.14 5 128 5 5.85 5 36 5,12 1.8 5 0.05 5

Export coefficient selected for PLOAD calibration in LHW, kg ha−1 yr−1

TN TP TDS BOD5 COD NOx PO4-P

Agricultural 55 2 2220 67 88 33 14
Bare Land 5 0.2 100 3.4 5 67 4.8

Range Land 12 2 100 0.5 0.5 0.45 2
Forest Land 6 1 250 50 50 2 0.7

Urban 36 2 2260 2195 2340 91 1.7
Water Body 0.75 0.2 150 50 50 0.45 10

Wetlands 2.3 0.13 100 5.85 35.5 1.8 0.05

[60] 1, [5] 2, [17] 3, [8] 4, [61] 5, [20] 6, [40] 7, [21] 8, [14] 9, [22] 10, [23] 11, [52] 12, NOx reported in literature as
NO3 + NO2.

2.7. Estimation of Pollutant Loads at the Catchment Outlets

FLUX32 is a window-based program designed by the US Army Corps of Engineers in
collaboration with the Minnesota Pollution Control Agency for estimating pollutant loads
from intermittent quality data and continuous flow data [62]. The software estimates pollu-
tant flux using six different methods such as averaging, flow weighted mean concentrations,
integration, ratio and regression methods. Using the FLUX32 program, pollutant loads at
river catchment outlets were predicted using multiple regression approach. Since the flow
and pollutant concentrations are both time series, a regression approach (Method 6) was
preferred for load calculation in the lake watershed under consideration [6,9]. Regarding
the pollutant flux for point sources (industrial setup), a direct load averaging (method 1)
was applied as the point source load is supposed to be relatively constant across flows and
seasons [6,63]. Based on the recommended coefficient of variation (CV), the simulation
performance of the FLUX32 program was excellent for CV (0–0.1), good for CV (0.1–0.2),
fair for CV > 0.2, and generally unsuitable for CV > 0.3 [62].

Hence, the load in FLUX32 at each monitoring station and sub-catchment outlets were
calculated by using the equation expressed:

Wi = ∑ exp

[
a + (b + 1) ∗ ln (Qi) +

SE2

2

]
(4)

where Qi = mean flow on day i (m3/s); ci = measured constituent concentration (mg/L);
a = intercept of ln (c) vs. ln (q) regression; b = slope of ln (c) vs. ln (q) regression;
SE = standard error of estimate for ln (c) vs. ln (q) regression and qi is instantaneous
flow (m3/s); Wi = pollutant load/flux (kg/yr).
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2.8. Calibration and Validation of PLOAD

In the PLOAD, nonpoint source load from each land use for selected physicochem-
ical parameters (BOD5, COD, TN, PO4-P, NOx and TDS) were calculated using export
coefficients. After having assigned the land uses with their respective ECs, the PLOAD
model efficiency has been assessed by measuring the percentage error using Equation (5)
by comparing the uncharacterized nonpoint source load from each sub catchment outlet as
a measured load (Table 7).

Table 7. Coefficient of variation (CV) for monitoring stations in LHW.

Monitoring Stations COD BOD5 TN TDS TP PO4-P NO3-N NO2-N

MS1 0.01 0.001 0.06 0.003 0.001 0.06 0.005 0.0
MS2 0.005 0.03 0.043 0.001 0.04 0.02 0.03 0.04
MS3 0.003 0.05 0.04 0.04 0.04 0.014 0.023 0.0004
MS6 0.001 0.001 0.0004 0.0 0.001 0.001 0.001 0.0004

Since PLOAD does not have a direct calibration interface, the export coefficients were
calibrated using the Excel solver [64]. Then, the sum of the percentage errors from four
sub-catchments outlets were used to calibrate the export coefficient values of the land use
applied in the PLOAD model. The total relative error was chosen as an objective function
to be minimised in the GRG nonlinear method [65].

% Relative error = ∑(Measured load− Predicted load)
Measured load

∗ 100 (5)

The model performance and validation were calculated using another set of data for
the same season following the same procedure.

2.9. Estimates of Rainfall and Runoff Depth for Various Return Periods
2.9.1. Estimates of Rainfall Depth for Various Return Periods

The annual maximum daily rainfall was converted into shorter durations of 5, 10, 15,
30, 60, 120, 360, 720 and 1440 min that can be based on the ratios provided by the Ethiopian
Roads Authority [66], Equation (6). This formula is widely applied for the disaggregation
of daily rainfall and recommended for intensity computation and verification [67–69].

Pt = P24 ∗ t
24
∗ (b + 24)n

(b + t)n (6)

where, Pt = rainfall depth for time ‘t’; P24 = 24 h rainfall depth; Coefficients b = 0.3 and
n = 0.78 to 1.09.

The daily 24 h rainfall data for the years 1996 to 2020 was collected from Ethiopian
meteorology Agency was analysed, and the annual maximum 24 h rainfall data was
extracted. Gumbel’s extreme value distribution and the empirical reduction formula were
used to estimate the 2, 5, 10, 25, 50 and 100 years return intervals for the short duration
rainfall depth. Accordingly, the rainfall frequency (P in mm) durations of 5, 10, 30 min and
1, 2, 3, 6 and 24 h with a stated recurrent interval (T in years) is estimated by the equation
taken from [70–72].

Pt = µ+ Kσ (7)

where Pt is the rainfall, µ = average annual daily maximum rainfall, σ = standard deviation
of annual daily maximum rainfall, T = return period and K is the Gumbel frequency factor,
which is a function of the return period and sample size, when multiplied by the standard
deviation gives the departure of a desired return period rainfall and is given by:

K =
Yt− Yn

Sn
(8)
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where Yt is a reduced variate, and a function of T is given by:

Yt = − ln
(

ln
(

T
T− 1

))
(9)

In utilizing Gumbel’s distribution, the arithmetic average in Equation (10) is used:

µ =
1
n

n

∑
i=1

Xi (10)

where µ is the average of the maximum precipitation corresponding to a specific duration
and Xi is the individual extreme value of rainfall and n is the number of events or years of
record. The standard deviation is computed using Equation (11):

σ =

√
1

n− 1

n

∑
i=1

(Xi− µ)2 (11)

where σ is the standard deviation of data.

2.9.2. Estimates of Runoff Depth

The soil conservation services and curve number (SCS-CN) is the most widely used
and well-documented conceptual technique for identifying the association between runoff
and storm rainfall depth [73,74]. This method accounts for the catchment runoff charac-
teristics that are responsible for producing the direct runoff such as soil type, land use
and antecedent moisture conditions [75]. Due to its popularity, the SCS-CN method has
been the object of many studies in rainfall-runoff modelling [76], analysing the impact of
land use changes such as urbanization on runoff values [77], for the assessment of runoff
generation from rainfall events across the globe [26,78]. This data basis along with the
simplicity and the universality of the method makes the SCS-CN method very effective for
runoff estimation in poorly gauged regions [79].

According to SCS-CN, the relationship between the rainfall depth, direct runoff and
catchment retention can be described in Equation (12), as described by [73].

Q =
(P− Ia)2

P− Ia + S
(12)

Here, Q is calculated the storm runoff, Ia is the rainfall lost as initial abstractions and S
is the maximum retention storage of the soil. P − Ia is also regarded as effective rainfall.

The initial abstraction accounts for all water losses due to interception, depression
storage, surface detention, evaporation and infiltration before runoff begins. Typically, the
amount of initial abstraction is normally set to 20% of maximum retention storage [78]
depicted in Equation (13).

Ia = 0.2S (13)

Combining Equations (12) and (13) gives

Q =
(P− 0.2S)2

(P + 0.8S)
(14)

On the other hand, in contemporary studies [80–83] the amount of initial abstraction of 5%
of maximum retention storage is considered to be more appropriate and Equation (14) becomes:

Q =
(P− 0.05S)2

(P + 0.95S)
(15)
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The maximum potential storage can be expressed as function of the curve
number CN [73,84]:

S = 25.4(
1000
CN

− 10) (16)

Here, S is expressed in mm, and CN is a non-dimensional quantity ranging from 0 (no
runoff) to 100 (all effective rainfall becomes runoff).

2.10. Estimation of Curve Number (CN)

With the above postulated relation between Ia and S, the curve number is the only
parameter of the SCS-CN method for calculating runoff volume and peak discharges [73].
This makes it very comfortable to link spatial data to hydrologic modelling, using Geo-
graphical Information Systems (GIS). Here, we used HEC-GeoHMS and ArcGIS 10.3 as
a hydrologic modelling software to estimate CN [74,85]. HEC-GeoHMS is an extension
of geospatial hydrological modelling developed by HEC for the efficient manipulation of
hydrological models [86]. We generated CN by combining soil layer, the digital elevation
model (DEM) and land use layer with CNLookup tables, as described in [87].

3. Result and Discussion
3.1. Flow Simulation and Pollutants Flux in the LHW

The SWAT model was calibrated in Figures 3 and 4 having a coefficient of determina-
tion (R2), Nash–Sutcliffe efficiency (NSE), mean percentage error, mean absolute percentage
error and percent bias (PBIAS) values of 0.8, 0.76, 0.69, 10.3 and −11.6 during calibration
and 0.8, 0.76, 3.9, 11.6 and −3.9 during validation, respectively. The goodness of fit (R2,
NSE, MPE, MAPE and PBIAS) was found to be very good indicating the performance of
the model output for the intended purpose was acceptable. The model performance deter-
mined by the Nash-Sutcliff (NSE) was 0.8 during calibration and validation in the study
area, which is good for interpreting the model output [5]. Similar results were reported
elsewhere [88–90] for the model simulation and observation.
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Figure 3. Observed and simulated average monthly flow for Lake Hawassa watershed (calibration
and validation).
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The SWAT generated flow at sub-catchment outlet was used to calculate the load in
FLUX32. Accordingly, the flow-weighted concentration calculated by method 6 (Equation (4))
was less than 0.2 of all other methods in FLUX32. The residual plot of bias for flow, date and
month at each sub-basin outlet in LHW was in the range of 0–0.05, indicating it is acceptable.
Similarly, the plot of slope significance was in the range of 0.8–0.99. The recommended
coefficient of variation (CV) is in the range of 0–0.2 during flow-weighted load calculation
and it is in the range of 0–0.058, showing surprisingly good performance of FLUX32 in the
watershed under investigation (Table 7).

Similar trends were also reported by Angello et al. [9] and Belachew et al. [6] in
Ethiopia for FLUX32 program simulation performance indicators.

3.2. Calibration of the PLOAD Model

Pollutant loads estimated via selected export coefficients (Table 6) by employing the
PLOAD model was used as an initial estimate, whilst loads calculated with FLUX32 at
selected sub-basin outlets (monitoring stations) in LHW were used for the PLOAD model
calibration. During calibration of PLOAD in Excel Solver, the export coefficients were used
as independent variables, and their range of values were considered as constraints to set
the upper and lower bounds based on the literature during optimization.

Accordingly, at the initial stage of calibration or pre-optimization, the total percentage
error between the model predicted and measured load at all monitoring stations for the
investigated pollutant parameters are presented in Table 8. The PLOAD prediction for
the COD, BOD5 and PO4-P were already relatively accurate before calibration and could
be further improved. In contrast, the total relative errors of PLOAD predictions at all
monitoring stations for TDS, TN, TP and NOx before optimization were in the order of
hundreds or thousands of magnitudes. By optimizing the export coefficients using the
solver function, the model error could be reduced considerably.
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Table 8. The total percentage error between measured and simulated load at the initial stage of calibration/pre-optimization and after optimization in all monitoring
stations in LHW.

Sub-Basin
COD BOD5 TDS TN TP PO4-P NOx-N

Pre-
Optimization Optimization Pre-

Optimization Optimization Pre-
Optimization Optimization Pre-

Optimization Optimization Pre-
Optimization Optimization Pre-

Optimization Optimization Pre-
Optimization Optimization

MS1 41.54 0.0002 9.5 0.00 798.4 0.01 193.3 0.0001 298.6 0.011 28.7 0.0003 1161 0.004
MS2 41.62 0.0001 1.9 0.00 84.7 0.00 92.8 0.00 33.7 0.0 25.1 0.0001 65.6 0.003
MS3 59.81 0.0003 26.7 0.0003 1062 0.9 251.7 0.003 670 0.001 39.4 0.001 1328 0.037
MS6 90.03 0.0023 87.1 0.001 2419 3.12 254.3 91.97 1001 0.023 99 0.005 1754 63.24

∑abs. error 233 0.003 125.2 0.001 4364 4.03 792.1 92 2003 0.035 192.1 0.006 4309 63.3
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Still, the PLOAD model underestimated the TDS load at Wedessa (MS3) and Wesha
sub-basin (MS1) which are located at the upstream portion of LHW, TN and NOx-N at
Tikur-Wuha River catchment outlet (MS6). There is a general trend that the total error
increases with the size of the sub-basin. Belachew et al. [6] in Kombolcha catchment
and Angello et al. [9] in the Akaki River catchment, Ethiopia, have also come up with
similar findings.

For COD, BOD5, TP, and NOx, the export coefficients after optimization showed
significant differences for urban, forest land, range land and cultivated land uses. Wet-
land, bare land and water bodies showed the least variance in pollutant loading, which
could be attributable to decreased area coverage and EC contribution in the watershed.
Angello et al. [9] also found similar findings in the Akaki River in Ethiopia.

The pollutant loading estimator was also performed using the mean and median
values obtained from the optimized export coefficients. At all monitoring stations, the
overall percentage error between the model predicted and measured load was 123.83%
for mean and 125.33% for median. Furthermore, the observed PLOAD prediction for
both mean and median at monitoring stations demonstrated either an overestimation or
underestimation of pollutant loads. As a result, the loads calculated using the mean and
median ECs were left out of the equation. Consequently, area-specific ECs has been proven
to be a useful technique for estimating pollutant loads in the LHW. For effective pollutant
load estimations, Angello et al. [9], Cheruiyot and Muhandiki [91] and Shrestha et al. [15]
advised the use of area-specific and local ECs. The optimized EC’s values can be further
used for effective management of the nonpoint source pollution in the Watershed. Likewise,
the PLOAD was validated for a different data set without change in the optimized export
coefficient and showed the model prediction is acceptable with a relatively smaller sum of
total errors.

The calibrated pollutant ECs showed that the urban land use showed varying export
coefficients as the pollutant loading rate for urban land use for COD, BOD5, TDS, TP and
NOx-N varied with location. The contributions of nonpoint sources among the various ur-
ban land uses, as well as the basin’s size, are responsible for the observed spatial differences
in ECs (Table 9).

Table 9. Range of export coefficients after calibration of PLOAD for various land uses in LHW.

Land Uses
Export Coefficient from Literatures, kg ha−1 yr−1

TN TP TDS BOD5 COD NOx-N PO4-P

Agriculture 11.9–62.5 0.02–3.3 62–211.4 42.9–76 68.4–260 0.03–36.1 11.1–14.4
Bare Land 5 0.2 93–100 3.46 5 7–67 4.8–5.1

Range Land 11.6–11.8 0.24–2.64 93.8–100 0.5 0.5 0.46 2
Forest Land 5.85–6 0.43–1.02 167–250 46.6–51 48.3–56 2–2.1 0.7

Urban 36 1.95–2.53 2096–2243 1490–2238 1950–3196 88.2–98.02 1.7
Water Body 0.75 0.2 150 50 50 0.45 10

Wetlands 2.3 0.12–0.15 100–123 5.85 35.5 1.8 0.05

The agricultural land use for the calibrated pollutant EC’s showed significant varia-
tions among monitoring stations. The contribution of pollutant loading rate for agricultural
land for COD, BOD5, TDS TN and NOx-N demonstrated, the agricultural land use varies
spatially in pollutant loading rate contribution. TP and PO4-P, on the other hand, have
revealed a slight variation among the stations.

3.3. Pollutants Flux in LHW by Using PLOAD

The pollutant flux at each of the sub-basin outlets were calculated with the help of
FLUX32. A similar approach was also followed by Angello et al. [9], Belachew et al. [6],
Xin et al. [92], Liu et al. [56], Gurung et al. [20], Lin and Kleiss, [51], Edwards and Miller [52]
and Shen et al. [10]. The estimated pollutant flux at each monitoring stations showed that
the organic pollution contribution from the point and nonpoint sources prevailing in the
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study area, where the maximum COD and BOD5 load was observed at MS6 with 4976.35
and 3543.54 t/y, respectively (Table 10). This station was located downstream of the two-
point sources (the BGI effluent discharge site and the Moha soft drinks factory), as well as
receiving flow from the upper streams that make a confluence.

Table 10. Pollutant flux at catchment outlets of LHW by using PLOAD, t/y.

Catchment Outlets COD BOD5 TDS TN TP PO4-P NOx-N

MS1 635.4 327 659.2 50.9 1.69 49.3 11.2
MS2 531.8 197.1 238.8 43.6 1.09 31.6 7.84
MS3 2665.5 881.8 2229.5 65.9 2.19 115.4 21.1
MS6 4976.4 3543.5 8741.5 149.6 3.28 284.9 43.1

Furthermore, at the same monitoring station, the PO4-P, TN, TP and NOx-N loads
were calculated, and the results revealed that the pollutant flux at MS6 (downstream) is
greater than the rest of the catchment outlets at upper streams. This is because the land
uses at MS6 monitoring stations are dominated by urban lands (large- and small-scale
industries), followed by agricultural activities and residential settlements. This river section
is highly polluted as most of the untreated household wastes, stormwater runoff from
urban and rural areas and industrial effluents are discharged onto it.

The non-point source contribution, on the other hand, was well demonstrated at
sub-basins of monitoring stations located in the upper catchment (MS1 to MS3) with the
COD and BOD5 load, as shown in Table 10, indicating that the pollutant flux from non-
point sources is significant even if no identified point sources were present. Moreover,
the catchments were dominated by agricultural land uses with small urban areas. Similar
findings were also reported by the studies conducted by Belachew et al. [6] in Ethiopia and
Jain et al. [93] elsewhere. This could be due to relatively small flow and less anthropogenic
influence in the upper catchment.

3.4. Pollutant Flux from Point Sources in Hawassa City

Saint George Brewery, BGI (MS4) and Moha soft drinks factory (MS5) have all dis-
charged their effluents into a wetland that feeds the Tikur-Wuha River, which flows
into Lake Hawassa. According to the findings of the study, as shown in Table 11, both
point sources contributed significant amounts of pollutant loads to the Tikur-Wuha River
(MS6) on top of the non-point pollutant loads from the upper catchment that later joined
Lake Hawassa.

Table 11. Point source (PS) loads of selected physicochemical parameters using FLUX 32 in Hawassa
City, t/y.

Monitoring Sites COD BOD5 TN TDS TP PO4-P NOx-N

MS4 106.2 25.6 8.9 932.9 7.1 12.3 1.894
MS5 92.0 31.7 3.7 287.6 1.5 11.5 0.074

MS15 14.9 3.3 2.1 93.9 0.2 1.7 0.171
MS19 211.7 53.7 4.3 287.4 0.7 3.6 0.510

On the other hand, Referral hospital and Hawassa Industrial Park were two of the
point sources that release their effluents in to Lake Hawassa directly. Referral Hospital is the
major known single source for pollutant load contribution to lake Hawassa. Additionally, it
may threaten the lake by release of various hazardous substances and pollutants, which are
not covered by the investigated parameters. Having known the impact of wastes, Hawassa
University constructed a waste stabilization ponds (WSP’s) with the intention that the
wastewater released are treated based on the discharge standards of the effluents into the
water bodies. Nevertheless, the findings of the study revealed that the existing WSP’s is not
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efficient enough to treat the effluent with the desired treatment level as it contributes huge
amount of pollutant loads into the lake. The hospital contributes 14.9 tons COD, 3.3 tons
BOD5, 2.1 tons TN, 93.9 tons TDS, 0.2 tons TP, 1.7 tons PO4-P and 0.171 tons NOx-N
annually. Additionally, Hawassa industrial park was designed initially to comply the zero-
emission standard, with no pollutants discharged directly into the Lake. However, during
the study periods, huge amounts of pollutants were discharged directly into the Lake as
evidenced by personal observation and informal interview. The result on Table 11 showed
that Hawassa industrial park contributes COD, BOD5, TN, TDS, TP, PO4-P and NOx loads
with their annual loads of 211.7, 53.7, 4.3, 287.4, 0.7, 3.6 and 0.51 tons, respectively.

3.5. Estimation of Rainfall Depth for the City of Hawassa

The daily maximum rainfall data for the year 1996 to 2020 (25 years) as shown in
Figure 5 was collected from the Ethiopian meteorology agency for Hawassa City.
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Figure 5. Daily maximum rainfall depth (mm) from 1996 to 2020 for Hawassa city.

The rainfall depth at different durations was plotted in Figure 6 for short duration
rainfall of 5, 10, 15, 30, 60, 120, 360, 720 and 1440 min for a return period of 5, 10, 25, 50
and 100 years by making use of Gumbel’s extreme value distribution and the empirical
reduction formula. The rainfall frequency (mm) produced by the 24 h rainfall for 2-year
return period (62.7 mm) was then used in the direct runoff determination by SCS-CN
method. The obtained result of rainfall frequency of this study in Hawassa City is also in
agreement to the intensity duration frequency developed by Ethiopian roads authority for
the region containing Hawassa city [66].
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3.5.1. Estimation of Curve Number (CN) for the City of Hawassa

The soil layer, the digital elevation model and land use layers were clipped for
Hawassa City. Thereafter, the land use of Hawassa City was reclassified, the hydrologic
soil group maps and the land use layer were merged. The CNLookUp table was prepared
for land use and sinks in DEM was filled. The land use map, soil hydrologic map and DEM
of Hawassa City is shown below in Figure 7.
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Subsequently, the merged land use and hydrologic soil group maps, DEM and the
CNLookUp table were combined to create the CN grid using HEC-GeoHMS following the
procedures stated by Merwade [87]. Accordingly, the curve number for monitoring stations
in Hawassa City was obtained and used to estimate the runoff depth as shown in Figure 8.
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Figure 8. Curve number for stormwater samples collected over six (n = 6) monitoring stations in
Hawassa City.

The result showed that the values of CN in Hawassa City ranged from 30–100 indicat-
ing high CNs (81–100) corresponding to the urbanized areas of the watershed which has
the capability for producing the highest amount of runoff during a storm event. The CN
values varies with the subtype of urban land use (i.e., residential, commercial, industrial).
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Whilst low curve numbers (30–77) corresponding to the forested and cultivated areas that
generate little runoff due to high infiltration rate. The result of the study revealed that the
CN ranged from 81 for MS21 and MS23 to 89 for MS20, MS22, MS24 and MS25.

3.5.2. Estimation of Runoff Depth for Hawassa City

The runoff depth (Q) can be estimated using Equation (15) based on the rainfall
frequency produced by the 24-hr rainfall for a two-year return period (Figure 6), curve
number (Figure 8) and maximum potential storage Equation (15). As a result, the direct
runoff result for the corresponding monitoring stations is depicted in Figure 9.
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Figure 9. The runoff depth (mm) for the stormwater samples collected over six monitoring stations
in Hawassa City.

3.6. Stormwater Pollutant Flux in Hawassa City

The city of Hawassa has various urban catchments that can convey urban storm runoff
with open storm drains and the urban runoff joins the lake at various outfalls. For selected
parameters, the stormwater quality characteristics were determined and the results of
concentrations of stormwater at monitoring stations were depicted in Figure 10.

The findings of investigations were higher than that of Wondie [93,94], a study con-
ducted in Bahir-dar city, despite the fact that Rădulescu et al. [95] and Li et al. [96] reported
comparative findings in Romania and China, respectively. The annual pollutant loads
(t/y) for selected physicochemical parameters for each monitoring outfall were estimated
utilizing the catchment area (ha) and the corresponding direct runoff determined using
the 24 h rainfall frequency (mm) for a two-year return period. As a result, the stormwater
pollutant loads of selected physicochemical parameters in Hawassa City were tabulated in
tons per year (Table 12).

The most heavily contaminated site, according to this research, was MS20 (near
Referral Hospital), which encompasses residential settlements, commercial centers and
institutions (hotels, restaurants, cafeteria, hospitals). MS21 (near Amora-Gedel) and MS23
(near Chambalala Hotel) sites include residential settlements, businesses and commercial
centers, all of which contribute significantly to pollution load. In the Amora-Gedel site,
there are resort, hotels, cafeterias, a fish market, a recreation center and Gudumale, where
the people of Sidama celebrate their new year festivities. Consequently, a considerable
amount of pollutant load was released into the nearby lake during storm occurrences.
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Table 12. Stormwater pollutant loads of selected physicochemical parameters in Hawassa City, t/y.

Monitoring Sites Contributing to COD BOD5 TDS TN TP

MS20 Lake Hawassa 87.7 43.2 13.2 0.64 0.42
MS21 Lake Hawassa 50.9 27.1 21.3 0.26 0.15
MS22 Lake Hawassa 14.1 4.1 3.6 0.25 0.21
MS23 Lake Hawassa 49 25.6 23.8 0.56 0.22
MS24 Lake Hawassa 22.5 7.2 9.3 0.16 0.12
MS25 Lake Hawassa 32.2 11.2 11.6 0.17 0.05

4. Conclusions

In this study, we applied a combination of various models (PLOAD, SWAT, FLUX32,
HEC-GeoHMS and SCS-CN) with monitoring data to estimate the pollutant flux in the
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data-limited LHW. The chosen approach was effective in reckoning the annualized diffused
source pollution load and is capable to estimate the impact of the spatially distributed
emissions on the pollutant flux of receiving streams. It helps to identify the primary source
of scattered pollution and provides an effective way for determining organic pollutants
and nutrient loads in data-scarce areas.

Estimates of export coefficients from land use in Ethiopia is hardly common and there
have been few previous experiences with estimating pollutant loads from the catchments.
Thus, transformation of published export coefficients from other studies to characteristics
of study area (land use, soil type, slope, climate) was made. In the catchments with no
frequent data, estimation of pollutant flux with ECs involved uncertainties. However, the
error can be significantly reduced by calibrating with monitored data. Generally, more
detailed studies incorporating frequent monitoring of water quality and quantity for the
main rivers are advisable to derive the land use specific pollutant loads that better conform
to reality.

The estimated pollutant flux at each monitoring stations showed that the organic and
nutrient pollutant contribution from the point and nonpoint sources prevailing in the study
area, where the maximum pollutant loads were observed at Tikur-Wuha sub-catchments.
This station was located downstream of the two-point sources and received flow from the
upper streams where agricultural use is predominant. The integration of HEC-GeoHMS
and SCS-CN with the catchment area enabled to determine stormwater pollution load of
Hawassa City. Accordingly, Hawassa city has been identified as a key pollutant load driver,
owing to increased impacts from clearly identified point sources and stormwater pollutant
flux from major outfalls. Agricultural activities, on the other hand, cover a large portion of
the catchment and are a considerable contributor to the overall load that reaches the lake.
Thus, mitigation measures that are focused on pollutant flux reduction to the lake Hawassa
have to target the urban and agricultural activities.
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