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Abstract: Polycyclic aromatic hydrocarbons (PAHs) consist of a group of over 100 different organic
compounds mainly generated by anthropogenic activities. Because of their low water solubility, they
tend to be accumulated in sediment, where their degradation rate is very low. Few studies have been
carried out so far to investigate the effects of PAHs on Artemia franciscana. Artemia is easy to manage
at laboratory scale, but it is not a sensitive biological model considering the traditional endpoints
(i.e., mortality). In addition to evaluating the lethality on nauplii and adults of A. franciscana after
24 and 48 h, we focused on the genotoxicity to investigate the potential effects of phenanthrene (PHE),
naphthalene (NAP), fluoranthene (FLT), and benzo(k)fluoranthene (BkF). Results showed that FLT
was the most toxic both for nauplii and adults after 48 h of exposure. Real-time qPCR showed that
all toxicants, including BkF, which had no negative effects on the survival of the crustacean, were
able to switch the gene expression of all nine genes. This work has important ecological implications,
especially on contaminated sediment assessment considering that PAHs represent the most abundant
organic group of compounds in marine environment, opening new perspectives in understanding
the molecular pathways activated by crustaceans.

Keywords: polycyclic aromatic hydrocarbons; crustacean; short-term effects; toxicity; genotoxicity

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a group of over 100 different organic
compounds generated by natural events or anthropogenic activities. PAHs predomi-
nantly originate from anthropogenic processes, especially from incomplete combustions
of organic fuels. Certain naturally occurring processes, such as volcanic eruptions and
forest fires, contribute to the increase of these organic compounds in the environment. In
Santos Bay and Estuary, the anthropogenic contributions to PAHs in sediments resulted of
about 99% (i.e., concentrations varied from 79.6 for uninhabited area to 15,389.1 ng/g for
area located in the proximity of industries [1]).

PAHs are formed by two or more fused benzene rings, and their toxicity depends on
the number of benzene rings [2–4]. Because of their low water solubility and hydrophobicity,
in the water column, PAHs tend to associate with suspended particulate matter and are
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eventually deposited in sediments, where their degradation is very slow [5]. The level
of PAHs in the water column is closely linked to the level of PAHs in sediments [6,7]. In
fact, PAHs concentration in the water column increase with increased concentration in
surface sediment [6,7]. Although they are not very soluble in water, their concentration
in the water column remains stable for a long time, thus representing a great problem
for biota and consequently for human health [8–10]. Specifically, the half-lives of low-
molecular-weight PAHs (naphthalene, acenaphthene, fluorene, and phenanthrene) ranged
from approximately 3 to 8 days, whereas half-lives of high-molecular-weight PAHs (pyrene,
chrysene, benzo[a]pyrene, dibenz[a,h]anthracene) ranged from 73 to 1780 days [11–13].

For these reasons, the European Water Framework Directive 2000/60/EC (WFD)
was developed aiming to achieve and ensure good ecological and chemical water sta-
tus [14]. The list of monitored pollutants has recently been updated with a new daughter
Directive (2013/39/EU) to identify a number of emerging chemicals of concern, including
non-polar organic substances (e.g., PAHs and PCB) and polar compounds (e.g., pharma-
ceuticals and pesticides) [15].

In aquatic environments, PAHs can have several toxic effects, such as immunotoxicity, em-
briotoxicity, and cardiotoxicity, especially impacting fish, benthic organisms, and other marine
vertebrates [16–19]. Five different PAHs (naphthalene (NAP), phenanthrene (PHE), fluoran-
thene (FLT), fluorene (FLR), pyrene (PYR), and hydroxypyrene), known to be potentially toxic,
inhibited and reduced the larval development and growth of both Mytilus galloprovincialis
and Paracentrotus lividus, whereas NAP was able to impact the embryos and larval stages of
Ciona intestinalis [16]. The benzo(a)anthracene (BaA), one of the most toxic PAHs, showed
higher toxicity on crustaceans Daphnia magna (LC50 = 4.3 µg/L) and Ceriodaphnia reticulata
(LC50 = 4.7 µg/L) than that displayed Artemia salina at conceivable concentrations in the
environment (from 1 to 32 µg/L) [20,21]. At the same manner, PHE and FLT were able
to impact the survival of D. magna (LC50 = 50 and 10 mg/kg, respectively), Hyalella azteca
(LC50 = 15 and 5 mg/kg, respectively), and Chiromonus riparius (LC50 = 20 and 15 mg/kg, re-
spectively) [22]. After PYR, FLT, and anthracene (ANT) exposure, D. magna and Artemia salina
crustaceans displayed higher sensibility than those registered for the mosquito Aedes aegypti,
the amphibian Rana pipiens, and the fish Pimephales promelas [23].

To the best of our knowledge, few studies have been carried out so far to investigate
direct toxic effects of individual PAHs on A. franciscana, but no work has been conducted
to establish the possible changes in expression levels of genes after organic compounds
exposure. Rojo-Nieto et al. [24] established that mixtures of ten PAHs (naphthalene, ace-
naphthene, phenanthrene, fluoranthene, fluorene, pyrene, anthracene, benzo(a)pyrene,
benzo(a)anthracene, and chrysene) found in sediment samples from the Bay of Algeciras
did not have impact on survival of A. franciscana using passive dosing. Similarly, the
passive dosing of three PAHs (toluene, 1-methylnaphthalene, and phenanthrene) did not
impact the hutching of cysts [25].

The crustacean A. franciscana has been considered as a model species to investigate the
ecotoxicological response of marine invertebrates to environmental pollutants [26–28]. The
main advantage of this species is that nauplii can be hatched as needed from commercially
available durable cysts to avoid the maintenance of laboratory cultures as required for many
model species used in ecotoxicity tests. In any case, these tests (namely “Toxkit”) employing
dormant stages (“cryptobiotic eggs”) have the same efficacy and sensitivity as tests with
cultured animals [29]. Moreover, the embryo hatches and grows rapidly in laboratory
conditions (the nauplius stage is reached in 24 h), and the small body size permits to
conduct tests in small beakers or even plates. In addition, Artemia is a eurialine organism
with large adaptability to a range of salinities (5–300 PSU) and temperatures (6–40 ◦C) [30].
However, Artemia models revealed several disadvantages due to a limited sensitivity
towards a wide range of substances in comparison to other species so that the possibility
to underestimate potential effects may occur [26,31]. In fact, in the recent years, the use
of this crustacean in ecotoxicology has become increasingly rare [31]. For these reasons,
in this work, we are interested in giving a new life to this model organism by proposing
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genotoxicity as a new endpoint. Since changes of gene expression induced by some
toxicants may be very subtle and differences of animal reactivity between experimental
groups may not be noticed by simple observations, the genotoxicity could be considered
a good approach providing more detailed toxicological information. Therefore, the use
of A. franciscana for evaluating the molecular aspects that are on the base of toxicological
effects could confirm this branchiopod crustacean as a good biological model.

Thus far, few studies investigated the stress response of Artemia spp. through the
evaluation of key genes involved in larval growth, molting, stress, and detoxification
processes [32–37]. In this work, as well as evaluating PHE, NAP, FLT, and BkF acute
(24 h–48 h-LC50) toxicity on nauplii and adults by measuring survival, we defined for the
first time the molecular response of PAHs toxicity. In particular, after 48 h under sublethal
exposure for both tested life stages, the effect on several key genes involved in stress
response (hsp26, hsp60, hsp70, COXI, and COXIII) was assessed. In addition, the impact on
developmental genes (HAD-like, tcp, UCP2, and CDC48) was also evaluated for nauplii.

Sediment can be the final main sink and source of PAHs and genotoxicity can represent
an easy and fast screening method for their ranking [38–40]. Prior to direct PAHs con-
taminated sediment investigation, we decided to highlight the sensitivity of genotoxicity
endpoint in A. franciscana from spiked saltwater solutions.

In this study, we tested the PHE, NAP, FLT, and benzo(k)fluoranthene (BkF) toxicity
on embryos and adults of the branchiopod crustacean A. franciscana Kellog 1906, using
environmental concentrations (from 0.025 to 10 mg/L, from 0.36 to 2.3 × 102 mg/L, from
0.41 to 3.9 × 102 mg/L, and from 0.025 to 9.4 × 101 mg/L for NAP, PHE, FLT, and BkF,
respectively) detected in polluted sediments subjected to various pollution sources [38].

2. Materials and Methods
2.1. Ecotoxicity Test

Acute toxicity test using both A. franciscana nauplii and adults were performed ac-
cording to standard methods [41] using lethality as an endpoint. Effects were measured
after 24 and 48 h of exposure for both adults and nauplii up to the third instar (corre-
sponding to 48 h old specimen that are considered as the most sensitive stage). Certified
dehydrated cysts of brine shrimp A. franciscana (AF/F2005) were purchased from the
company ECOTOX LDS (Gallarate, Italy). Hatching of the cysts was obtained by incu-
bating 100 mg of cysts in glass Petri dishes containing seawater prepared by dissolving
36 g of Instant Ocean® salt in deionized water, stirred for 24 h under aeration and then
filtered through 0.45 µm Millipore cellulose filters. Newly hatched brine shrimp larvae
(Instar I nauplius stage) were separated from unhatched cysts and transferred, taking ad-
vantage of phototactic movements, into new glass Petri dishes with synthetic seawater
(SSW) prepared according to ISO 10253/16 [42].

2.2. Chemicals

The naphthalene, phenanthrene, fluoranthene, and benzo(k)fluoranthene (Sigma-Aldrich,
Saint Louis, USA) were used in the toxicity tests. The purity was greater than 97%. Stock
solutions of NAP, PHE, FLT, and BkF were prepared by dissolving the above indicated
chemicals in dimethyl sulfoxide (DMSO) [43–45]. Maximum DMSO in test solutions did not
exceed 1% v/v, which is not toxic to A. franciscana [46]. The solubility of PAHs in seawater
depends on temperature, salinity, and the analytical method used for the determination.
Details about were reported in Supplementary Materials (Supplementary Table S1). Auto-
claved glass tubes containing stock solutions (XX mg/L) of each PAH in DMSO were kept
in the dark at room temperature. The solutions were sampled and analyzed for four PAHs
according to Carotenuto et al. [47].

2.3. Acute Toxicity Test

Acute toxicity test on nauplii was performed by adding 10 nauplii to each well
of 24-well plates, containing 2 mL of solutions at increasing concentrations of NAP
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(0, 0.025, 0.05, 0.1, 0.2, 0.4, 0.5, 1, 2.5, 5, 10 mg/L), PHE (0, 0.36, 1, 2, 3, 4, 5, 10, 57.5,
115, 230 mg/L), FLT (0, 0.41, 1, 2.5, 5, 12.5, 25, 50, 97.5, 195, 390 mg/L), and BkF (0, 0.025,
0.5, 1, 1.5, 3, 6, 12, 23.5, 47, 94 mg/L) tested in SSW.

Toxicity on adults was evaluated by adding 5 crustaceans to each well of 6-well plates,
containing 10 mL with solutions of various concentrations of NAP, PHE, FLT, and BkF
mentioned above. The plates were kept at 25 ± 1 ◦C with salinity 35 ppm for 48 h in a
light regime of 16:8 h light:dark, without providing food. At 24 and 48 h, the number of
nauplii and adults (which were motionless for 10 s) was counted under a stereomicroscope
(Leica EZ4 HD) to calculate the mortality. Tests were considered as valid when mortality in
control (organisms exposed to 0 mg/L of organic compounds) was <10% after 48 h. All the
experiments were performed in triplicates.

2.4. Organisms Exposures for RNA Extraction

Two hundred nauplii of A. franciscana were exposed to NAP, PHE, FLT, and BkF at
0.26 mg/L, 1.15 mg/L, 0.81 mg/L, and 84.6 mg/L, respectively, whereas 10 A. franciscana
adults were exposed to NAP, PHE, FLT, and BkF at 1.45 mg/L, 1.15 mg/L, 0.81 mg/L, and
84.6 mg/L, respectively. These concentrations were chosen because they did not cause
mortality in acute tests. All the experiments were performed in triplicates.

Samples were collected after 48 h of exposure by centrifugation at 4000× g for 15 min
in a swing-out rotor at 4 ◦C in a 2 mL tube, kept on ice, and were further homogenized
in TRIzol (Invitrogen, Paisley, UK) using a TissueLyser II (Qiagen, Valencia, CA, USA)
and steal beads of 7 mm diameter (Qiagen, Valencia, CA, USA). Total RNA was ex-
tracted and purified using Direct-zolTM RNA Miniprep Plus Kit (ZYMO RESEARCH).
The amount of total RNA extracted was estimated by the absorbance at 260 nm and
the purity by 260/280 and 260/230 nm ratios, using a NanoDrop spectrophotometer
2000 (Thermo Scientific Inc., Waltham, MA, USA), to exclude the presence of proteins, phe-
nol, and other contaminants [48].

2.5. cDNA Synthesis and Real Time q-PCR

For each sample, 1000 ng of total RNA was retrotranscribed with an iScript™ cDNA
Synthesis kit (Bio-Rad, Milan, Italy), following the manufacturer’s instructions. The vari-
ations in the expression of five genes involved in stress response (hsp26, hsp60, hsp70,
COXI, and COXIII [49]; see Supplementary Figure S1) were evaluated for adults. For
nauplii, the variations in the expression of four other genes involved in developmental
and differentiation processes (HAD-like, tcp, UCP2, and CDC48, [49]) were also tested
(Supplementary Figure S1).

Undiluted cDNA was used as a template in a reaction containing a final concentration
of 0.3 mM for each primer and 1 × SensiFASTTM SYBR Green master mix (total volume of
10 µL) (Meridiana Bioline). PCR amplifications were performed in AriaMx Real-Time PCR
instrument (Agilent Technologies, Inc., Santa Clara, CA, USA), according to the manu-
facturer’s instructions, using the following thermal profile: 95 ◦C for 10 min, one cycle
for cDNA denaturation; 95 ◦C for 15 s and 60 ◦C for 1 min, 40 cycles for amplification;
95 ◦C for 15 s, one cycle for final elongation; and one cycle for melting curve analysis
(from 60 ◦C to 95 ◦C) to verify the presence of a single product. Each assay included
a no-template control for each primer pair. To capture intra-assay variability, all real-
time qPCR reactions were carried out in triplicate. Fluorescence was measured using
Agilent Aria 1.7 software (Agilent Technologies, Inc.). The relative expression ratios were
calculated according to [50,51] using REST software (Version No., Relative Expression
Software Tool, Weihenstephan, Germany; Equation (1)):

R =
E∆Cq target (Mean Control−Mean Sample)

target

E∆Cq reference (Mean Control−Mean Sample)
reference

(1)
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The expression of each gene was analyzed and internally normalized against GAPDH [49]
using REST software (Relative Expression Software Tool, Weihenstephan, Germany) based
on the Pfaffl method [50,51]. Relative expression ratios above 1.5 were considered as signif-
icant. The nonparametric Mann–Whitney test was applied to ∆Cq (Cq gene of interest—
Cq reference) values between treated and control samples (n = 3). p-Values < 0.05 were
considered significant. Statistical analyses were performed using GraphPad Prism Software
(version 8.02 for Windows, GraphPad Software, La Jolla, CA, USA, www.graphpad.com,
accessed on 1 February 2021). Fold-change values were represented through a Heatmap
generated by GraphPad Prism Software.

2.6. LC50 Calculation and Statistical Analyses

Toxicity data were reported as mean ± standard deviation (SD). Data were checked
for normality using the Shapiro–Wilk’s (S–W) test (p-value < 0.05). The significance of
differences among treatments and the control was checked by two-way ANOVA fol-
lowed by post hoc Tukey’s test for multiple comparisons (GraphPad Prism Software
version 8.02 for Windows, GraphPad Software, La Jolla, CA, USA, www.graphpad.com,
accessed on 1 February 2021). p-Values < 0.05 were considered statistically significant. The
calculation of LC50 values was done by GraphPad Software through four parameters of
the logistic equation, which corresponds to the dose-response curve with the slope of the
variable slope.

3. Results
3.1. PAHs Analysis

Samples were analyzed to verify NAP, PHE, FLT, and BkF nominal concentrations
ranging from 0.025 to 10 mg/L, 0.36 to 2.3 × 102 mg/L, 0.41 to 3.9 × 102 mg/L, and
0.025 to 94 mg/L, respectively (shown in Table 1). The gas chromatography-mass spec-
trometry (GC-MS) (2010plus-TQ8030, Shimadzu, Japan) determinations showed a good
agreement between nominal vs. analytical concentrations, whose ratios were less than
1.5 in most cases (Table 1).

3.2. Naphthalene, Phenanthrene, Fluoranthene, and Benzo(k)fluoranthene Toxicity on Nauplii

After 24 h of exposure to NAP, a statistically significant increase in toxicity (p < 0.0001;
see Supplementary Table S2) was observed only at the two highest tested concentrations of
4.23 mg/L (38 % mortality) and 10.1 mg/L (43% mortality) (Figure 1A).

After 48 h, mortality became statistically significant (p < 0.01) already at 0.11 and 0.26 mg/L
and reached 80% (p < 0.0001) at 4.23 and 10.1 mg/L (Figure 1A and Supplementary Table S2).

After 24 h of exposure (Figure 1B) PHE induced an increase of the percentage of
dead (about 26%) with respect to control already from 3.45, 4.23, and 7.48 mg/L. The
data reported at these concentrations were statistically significant as compared to the
two lowest (0 and 0.21 mg/L; p < 0.01) and highest (98.6 and 223.4 mg/L; p < 0.01; see
Supplementary Table S2) concentrations. At 48.7, 98.6, and 223.4 mg/L, significant increase
of toxicity (about 43.3%, 50%, and 50%, respectively) respect lower tested concentrations
(0, 0.21, 0.71, 1.15, and 2.26 mg/L; p < 0.0001; see also Supplementary Table S2) has been
shown. The scenario after 48 h of exposure was similar to the one described after 24 h.
About 26% of dead nauplii was registered at 1.15 mg/L (p < 0.05; Supplementary Table S2).
At 2.26 and 3.45 mg/L, the toxicity (about 34%) was statistically significant compared to
0, 0.21, 7.48, 48.7, 98.6, and 223.4 mg/L (p < 0.0001; Supplementary Table S2). At 7.48, 48.7,
and 98.6 mg/L, about 70% of mortality was registered, whereas a percentage of about 90%
of dead was displayed at 223.4 mg/L.

www.graphpad.com
www.graphpad.com
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Table 1. Comparisons of nominal vs. analytical concentrations of naphthalene (NAP), phenanthrene
(PHE), fluoranthene (FLT), and benzo(k)fluoranthene (BkF) in seawater. The data were reported
in mg/L.

Compounds Nominal
Concentration Analytical Concentration Nominal/Analytical Concentration Ratio

NAP 0.025 0.015 1.67
0.05 0.032 1.56
0.1 0.078 1.28
0.2 0.11 1.82
0.4 0.26 1.54
0.5 0.41 1.22
1 0.76 1.32

2.5 1.45 1.72
5 4.23 1.18

10 10.1 0.99

PHE 0.36 0.21 1.71
1 0.71 1.41
2 1.15 1.74
3 2.26 1.33
4 3.45 1.16
5 4.23 1.18

10 7.48 1.34
57.5 48.7 1.18
115 98.6 1.17
230 223.4 1.03

FLT 0.41 0.29 1.41
1 0.81 1.23

2.5 2.14 1.17
5 4.41 1.13

12.5 9.91 1.26
25 20.4 1.23
50 45.6 1.10

97.5 91.6 1.06
195 179 1.09
390 325 1.20

BkF 0.025 0.016 1.56
0.5 0.41 1.22
1 0.78 1.28

1.5 0.98 1.53
3 2.4 1.25
6 5.3 1.13

12 10.4 1.15
23.5 19.5 1.21
47 41.7 1.13
94 84.6 1.11
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Figure 1. After 24 h and 48 h, the percentage of dead nauplii in control (0 mg/L) and treated samples
with (A) NAP at the concentrations of 0.025, 0.05, 0.1, 0.2, 0.4, 0.5, 1, 2.5, 5, and 10 mg/L; (B) PHE at
the concentrations of 0.36, 1, 2, 3, 4, 5, 10, 57.5, 115, and 230 mg/L; (C) FLT at the concentrations of
0.41, 1, 2.5, 5, 12.5, 25, 50, 97.5, 195, and 390 mg/L; and (D) BkF at the concentrations of 0.025, 0.5, 1,
1.5, 3, 6, 12, 23.5, 47, and 94 mg/L was regarded. Data are reported as mean ± standard deviation
two-way ANOVA by Tukey’s test (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

Taking into the consideration FLT exposure (Figure 1C), an increase of the percentage
of dead (about 18%) with respect to control was already recorded from 9.91, 20.4, 45.6, and
91.6 mg/L. The data reported at these concentrations were statistically significant compared
to the four lowest (0, 0.29, 0.81, and 2.14 mg/L; p < 0.01) and the two highest (179 and
325 mg/L; p < 0.0001; see Supplementary Table S2) concentrations. At 179 and 325 mg/L,
significant increase of toxicity (about 35% and 70%, respectively) with respect to lower tested
concentrations (4.41, 9.91, 20.4, and 45.6 mg/L; p < 0.0001; Supplementary Table S2) has
been shown. After 48 h, at 0.81 mg/L, a significant increase of toxicity (about 40%) has been
displayed with respect to 0 (p < 0.0001) and 0.29 mg/L (p < 0.001; see also Supplementary
Table S2). However, the toxicity increases of about 80% (2.14 and 4.41 mg/L). These
data were statistically significant respect to compared to the three lowest (0, 0.29, and
0.81 mg/L; p < 0.0001) and the highest (20.4, 45.6, 91.6, 179, and 325 mg/L; p < 0.001;
Supplementary Table S2).

When we considered BkF toxicity (Figure 1D) after 24 h, no effect has been recorded.
Only after 48 h, at 2.4, 5.3, 10.4, 19.5, 41.7, and 84.6 mg/L, a significant increase in toxicity
(about 10%) was shown with respect to the control (p < 0.01; Supplementary Table S2).

3.3. Naphthalene, Phenanthrene, Fluoranthene, and Benzo(k)fluoranthene Toxicity on Adults

After 24 h of exposure, NAP and PHE and BkF did not affect the survival of A. franciscana
at all tested concentrations (Figure 2).
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Figure 2. After 24 h and 48 h, the percentage of dead adults in control (0 mg/L) and treated samples
with (A) NAP at the concentrations of 0.025, 0.05, 0.1, 0.2, 0.4, 0.5, 1, 2.5, 5, and 10 mg/L; (B) PHE at
the concentrations of 0.36, 1, 2, 3, 4, 5, 10, 57.5, 115, and 230 mg/L; (C) FLT at the concentrations of
0.41, 1, 2.5, 5, 12.5, 25, 50, 97.5, 195, and 390 mg/L; and (D) BkF at the concentrations of 0.025, 0.5, 1,
1.5, 3, 6, 12, 23.5, 47, and 94 mg/L was regarded. Data are reported as mean ± standard deviation
two-way ANOVA by Tukey’s test (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

However, only FLT showed toxic effects already after 24 h of exposure (Figure 2C).
An increase of the percentage of dead (about 60%) with respect to control was already
recorded from 9.91, 20.4, 45.6, and 91.6 mg/L. The data reported at these concentrations
were statistically significant compared to the four lowest (0, 0.29, 0.81, and 2.14 mg/L;
p < 0.0001; Supplementary Table S3) and the two highest (179 and 325 mg/L; p < 0.0001;
Supplementary Table S3) concentrations. At 179 and 325 mg/L, significant increase of toxi-
city (about 95% and 100%, respectively) with respect to all other concentrations (p < 0.0001;
Supplementary Table S3) was shown. After 48 h, at 0.29 and 0.81 mg/L, a significant
increase of toxicity (about 45%) was displayed with respect to 0 (p < 0.0001). However, toxi-
city increases of about 66% (2.14 and 4.41 mg/L) were shown. These data were statistically
significant compared to the three lowest (0, 0.29 and 0.81 mg/L; p < 0.0001) and the highest
(20.4, 45.6, 91.6, 179, and 325 mg/L; p < 0.05; Supplementary Table S3), where a percentage
of about 100% was registered.

After 48 h, NAP caused a statistically significant mortality starting from 1.45 mg/L
(30%), with a maximum effect of 60% at 10.1 mg/L (Figure 2A).

As shown in Figure 2B, PHE induced an increase of the percentage of dead (about
26.6%) with respect to control already from 0.71 mg/L. The data reported at this concentra-
tion were statistically significant compared to the two lowest (0 and 0.21 mg/L; p < 0.001)
and other concentrations (p < 0.0001; Supplementary Table S3). At 1.15, 2.26, 3.45, 4.23, and
7.48 mg/L, significant increase of toxicity (about 30%, 30%, 30%, 33%, and 45%, respec-
tively) with respect to lower (0, 0.21, and 0.71 mg/L; p < 0.0001) and higher (48.7, 98.6, and
223.4 mg/L; p < 0.0001; see also Supplementary Table S3) tested concentrations was shown.
At 48.7 and 98.6 mg/L, the toxicity (about 66%) was statistically significant compared to
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other used concentrations (p < 0.0001). At 223.4 mg/L, 100% of mortality was registered
(p < 0.0001; Supplementary Table S3).

When we considered BkF toxicity (Figure 2D) after 24 h, no effect was recorded. Only
after 48 h, at 2.4, 5.3, 10.4, and 19.5 mg/L, a significant increase in toxicity (about 25%) was
shown with respect to the three lowest concentrations (0, 0.016, 0.41 mg/L; p < 0.01) and the
highest concentration (84.6 mg/L; p < 0.01; Supplementary Table S3), where a percentage
of about 50% was registered.

3.4. Lethal Concentrations after 24 and 48 h of Exposure

Considering nauplii exposure, the NAP solution has a LC50 value of 1.73 mg/L
(1.52–46.28 mg/L) and 0.60 mg/L (0.21–90.38 mg/L) after 24 h and 48 h, respectively; PHE
solution has a LC50 value of 4.44 (3.66–56.76 mg/L) and 3.07 mg/L (1.32–81.01 mg/L) af-
ter 24 h and 48 h, respectively; FLT solution has a LC50 value of 1.30 (0.45–107.5 mg/L)
and 0.09 mg/L (0.01–99.1 mg/L) after 24 h and 48 h, respectively (Supplementary Table S4).
When considering adults, the NAP solution has a LC50 value of 0.11 mg/L (0.02–12.06 mg/L)
and 44.31 mg/L (5.81–268.12 mg/L) after 24 h and 48 h, respectively; PHE solution has a
LC50 value of 1.68 mg/L (1.35–234.09 mg/L) after 48 h; FLT solution has a LC50 value of
32.03 mg/L (0.10–120.08 mg/L) and 0.77 mg/L (0.10–103.67 mg/L) after 24 h and 48 h, re-
spectively; and BkF solution has a LC50 value of 28.67 mg/L (0.5–36.67 mg/L) and 6.12 mg/L
(0.05–48.72 mg/L) after 24 h and 48 h, respectively (see also Supplementary Table S4).

3.5. Gene Response to NAP, PHE, FLT, and BkF Exposure

Five genes were analyzed for adults, and all were targeted by four PAHs with the excep-
tion of hsp70, COXI, and COXIII (Figure 3; see also Supplementary Table S5 for the values).
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Figure 3. Histograms show the differences in expression levels of five genes involved in stress
response. A. franciscana adults were exposed to naphthalene, phenanthrene, fluoranthene, and
benzo(k)fluoranthene at 1.45 mg/L, 1.15 mg/L, 0.81 mg/L, and 84.6 mg/L, respectively. Fold
differences greater than ±1.5 (see red dotted horizontal guidelines at values of +1.5 and −1.5) were
considered significant (see Supplementary Table S2 for the values). Real-time qPCR reactions were
carried out in triplicate. Statistical differences were evaluated by nonparametric Mann–Whitney test.
p-Values < 0.05 were considered significant.
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In fact, hsp70 was targeted only by PHE and FLT, whereas COXI and COXIII were
not targeted only by FLT. NAP, PHE, and BkF, increased the expression levels of three
genes (hsp60, COXI, and COXIII). Moreover, treatment with NAP also down-regulated
hsp26; the exposure to PHE up-regulated hsp26 and hsp70; FLT is able to up-regulate hsp26
and hsp60, and down-regulate hsp70, whereas the exposure to BkF up-regulated hsp26 and
down-regulated hsp70 (see also Supplementary Table S5).

As shown in Figure 4, among the nine genes analyzed, only one gene (hsp70) was not
targeted by NAP, PHE, and FLT. In fact, hsp70 was target only of BkF. Common molecular
targets for four contaminants were HAD-like, tcp, UCP2, and CDC48, of which only UCP2
was up-regulated by all treatment, whereas tcp and CDC48 were up-regulated by NAP,
PHE, and BkF and down-regulated by FLT; and HAD-like was up-regulated by PHE, FLT,
and BkF and down-regulated by NAP.
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Figure 4. Histograms show the differences in expression levels of five genes involved in stress
response. A. franciscana nauplii were exposed to naphthalene, phenanthrene, fluoranthene, and
benzo(k)fluoranthene at 0.26 mg/L, 1.15 mg/L, 0.81 mg/L, and 84.6 mg/L, respectively. Fold
differences greater than ±1.5 (see red dotted horizontal guidelines at values of +1.5 and −1.5) were
considered significant (see Supplementary Table S3 for the values). Real-time qPCR reactions were
carried out in triplicate. Statistical differences were evaluated by nonparametric Mann–Whitney test.
p-Values < 0.05 were considered significant.
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Moreover, hsp60 was up-regulated by all PAHs with exception of NAP; hsp26 re-
sulted up-regulated and down-regulated only after PHE and NAP treatment, respectively;
and COXI and COXIII were down-regulated by PHE and up-regulated by BkF (see also
Supplementary Table S6 for the values).

4. Discussion

Acute toxicity tests of PAHs showed similar negative impact of single four pollutants
(NAP, PHE, FLT, and BkF) on both adults and nauplii. The NAP, PHE, and FLT were able
to induce an increase of nauplii death already after 24 h of exposure, whereas the survival
of A. franciscana was unaffected by exposure to BkF both after 24 h and 48 h. On the basis
of lethal concentrations, the FLT (1.30 mg/L) and NAP (1.73 mg/L) appeared to be more
toxic than PHE (4.44 mg/L) at 24 h. As shown in Table 2, Bellas et al. [16] showed similar
results in both C. intestinalis and P. lividus embryos. In fact, exposing these two crustaceans
to five PAHs for 24 h, they revealed that FLT and NAP were two and six times more toxic
than NAP for C. intestinalis and P. lividus, respectively.

Table 2. Lethal concentration 50% (LC50) values (mg/L) of PAHs.

PAHs
References

NAP PHE FLT BkF

D. magna 7.924 (24 h) 0.458 (24 h); 0.8
(48 h) [17]

M. galloprovincialis 0.009 (24 h) 0.0002 (24 h) 0.036 (24 h) [16]
P. lividus 0.012 (24 h) 0.069 (24 h) 0.036 (24 h) [16]
C. intestinalis 0.001 (24 h) 0.069 (24 h) 0.036 (24 h) [16]
C. elegans 4.7 (48 h) [17]
E. fetidas 0.1 (48 h) [17]
C. tentans 2.81 (48 h) 0.49 (48 h) [2]
S. capricornutum 2.96 (48 h) 0.94 (48 h) [2]
N. palea 2.82 (48 h) 0.87 (48 h) [2]
P. gyrina 5.02 (48 h) [2]
G. minus 3.93 (48 h) 0.46 (48 h) [2]
P. promelas 1.99 (48 h) [2]
S. gairdneri 0.12 (48 h) 0.03 (48 h) [2]
M. salmonid 0.68 (48 h) 0.25 (48 h) [2]

A. franciscana 1.73 (24 h);
0.40 (48 h)

4.44 (24 h); 3.07
(48 h)

1.30 (24 h);
0.09 (48 h) This study

Instead, after 48 h of exposure, the NAP (0.40 mg/L) and FLT (0.09 mg/L) showed
a toxicity 7- and 34-times higher than that established for PHE (3.07 mg/L). In com-
parison with PHE results from this study, the 48 h LC50 was similar to that of C. elegans
(4.7 mg/L) but lower than those of D. magna (0.8 mg/L), Chironomus tentans (0.4 mg/L), and
Eisenia fetida (0.1 mg/L) reported in a previous study (see also Table 2) [17]. When consider-
ing adults exposure, after 48 h, the FLT and PHE showed higher toxicity than these of NAP
and BkF. Our results suggest that there is a direct relationship between toxicity and aromatic
ring number of the tested compounds. Millemann et al. [2] showed the same relationship
for the number of aromatic rings and their toxicity. In fact, they revealed that the PAHs with
three or four aromatic rings was always more toxic than those with two aromatic rings for
each of the nine exposed species (Selenastrum capricornutum, Nitzschia palea, Physa gyrina,
D. magna, Chironomus tentans, Gaintaurus minus, Pimephales promelas, Salmo gairdneri, and
Micropterus salmonid; see Table 2).

Our study also provides new information on the large-scale genotoxicity information
of PAHs on A. franciscana adults and embryos. Firstly, when considering the genotoxicity
on adults, all five genes were molecular targets of four pollutants, with only the exceptions
of hsp70, COXI, and COXIII (Figure 3). When considering the real-time qPCR experiments
on nauplii, all nine genes were molecular targets of four pollutants, with the only exception
of hsp26, hsp60, hsp70, COXI, and COXIII (Figure 4). These data suggest that the nauplii
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treated with NAP, PHE, FLT, and BkF were very similar, as also shown in the heatmap
reported in Figure 5.
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Figure 5. Heatmaps showing the expression profiles and hierarchical clustering of nine genes
analyzed through real-time qPCR in nauplii treated with naphthalene (NAP), phenanthrene (PHE),
fluoranthene (FLT), and benzo(k)fluoranthene (BkF). Color code: red, up-regulated genes with respect
to the control; green, down-regulated genes with respect to the control; black, genes for which there
was no variation in expression with respect to the control.

All together, these molecular results revealed that the majority of affected genes in
A. franciscana were involved in the development processes. In fact, all genes belonging
to these classes were affected by the four toxicants. HAD-like, tcp, UCP2, and CDC48
in A. franciscana are involved into molecular mechanisms underlying post-diapause, a
common event in diverse taxa from plants to animals [49,52–54]. These data could indicate
that PAHs affect some common molecular pathways by changing the normal biological
mechanisms, which, in turn, generate death in nauplii and adults. Interestingly, several
genes followed by RT-qPCR in the present study were previously found to be functionally
interconnected [35,49,52]. In particular, Varó et al. [35] showed that nanoparticles (PS NPs)
altered the expression of all genes belonging to the network except for tcp, whose relative
expression was not significant (Supplementary Figure S1). It is important to underline how
the evaluation of the changes in gene expression induced by these toxicants has given the
opportunity to uncover some key results that are not easily noticed through observations
(i.e., mortality). In fact, the BkF was not able to impact the survival of both nauplii and
adults but contemporarily altered the expression level of all tested genes.

It has been widely demonstrated that PAHs are mutagenic, carcinogenic, and terato-
genic compounds with long-term effect, especially on human health [55,56]. For these
reasons, embryos and larvae of marine invertebrates can be considered as suitable indi-
cators in understanding the toxicological response induced by organic compounds since
they are also capable to accumulate high levels of them in their tissues [9,16,19]. Moreover,
invertebrate species have a key trophic position in benthic food web, playing the role of
intermediate consumers [57]. As a result, the toxicological risk is addressed not only to
marine species but also to human beings, which could be exposed to such contamination
through the food chain [58,59]. Thus, there is the need to develop early warning systems
on consolidated biological models supporting sensitive sub-lethal endpoints. An increase
of knowledge on changes of A. franciscana genes expression can provide great added values
in toxicity assessment. In fact, despite its widespread past use, few studies have been
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conducted on the change of gene expression of A. franciscana in response to environmental
contamination. The identification of molecular pathways in which the targeted genes were
involved represents a key step in understanding how crustacean A. franciscana protects
itself from the stress caused by toxic substances.

In conclusion, genotoxicity may be considered as a possible new biomarker to detect
the presence and effects of key environmental pollutants impacting the survival of marine
invertebrates. The great simplicity of handling A. franciscana in laboratory conditions
together with the high sensitiveness of the molecular endpoints could support future
applications of this model organism.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/w14101594/s1, Figure S1: Gene network; Table S1: Solu-
bility of PAHs [60–62]; Table S2: Tukey’s test on nauplii survival data after 24 h and 48 h of PAHs
exposure; Table S3: Tukey’s test on adults survival data after 24 h and 48 h of PAHs exposure; Table S4:
LC50 and 95% confidence intervals calculated after 24 h and 48 h of PAHs exposure; Table S5: Data of
gene expression levels in adults; Table S6: Data of gene expression levels in nauplii.
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