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Abstract: Mathematical predictive models are vital tools for understanding of pollutant uptake
during adsorptive water and wastewater treatment processes. In this study, applications of CoAl-
LDH and its bentonite-CoAl intercalated LDH (bentonite-CoAl-LDH) for uptake of Cr(VI) from water
were modeled using response surface methodology (RSM) and artificial neural network (ANN), and
their performance for predicting equilibrium, thermodynamics and kinetics of the Cr(VI) uptake
were assessed and compared based on coefficient of determination (R2) and root mean square error
(RMSE). The uptake of Cr(VI) fits well quartic RSM polynomial models and ANN models based on
Levenberg–Marquardt algorithms (ANN-LMA). Both models predicted a better fit for the Langmuir
model compared to the Freundlich model for the Cr(VI) uptake. The predicted non-linear Langmuir
model contestant (KL) values, for both the RSM and ANN-LMA models yielded better ∆G◦, ∆H
and ∆S predictions which supported the actual feasible, spontaneous and greater order of reaction
as well as exothermic nature of Cr(VI) uptake onto the tested adsorbents. Employing the linear
Langmuir model KL values dwindles the thermodynamic parameter predictions, especially for the
RSM models. The excellent kinetic parameter predictions for the ANN-LMA models further indicate
a mainly pseudo-second-order process, thus confirming the predominant chemisorption mechanism
as established by the Cr(VI) speciation and surface charges for the Cr(VI) uptake by both CoAl-LDH
and bentonite-CoAl-LDH. The ANN-LMA models showed consistent and insignificant decline in
their predictions under different mechanistic studies carried out compared to the RSM models. This
study demonstrates the high potential reliability of ANN-LMA models in capturing Cr(VI) adsorption
data for LDHs nanocomposite heavy metal uptake in water and wastewater treatment.

Keywords: computational intelligence; response surface methodology; adsorption modeling; adsorption
equilibrium; thermodynamics; and kinetics; LDH composites; chromium aqueous adsorption; water and
wastewater treatment; linear equilibrium and kinetic models; non-linear equilibrium and kinetic models

1. Introduction

In the last few decades, artificial neural network (ANN) has become an indispens-
able modeling tool employed for understanding environmental systems as well as in a
wide range of fields in various human endeavors [1–3]. This owes to the high potential
predictive power of ANN compared to other mathematical techniques considering its
unique generic structure and strong learning ability and retention of historical data [4,5].
This unique characteristic gives ANN unique capabilities and power for targeted response
universal predictions [5]. ANN as a soft computing technique is applicable for analyz-
ing processes through network manipulation in order to predict targeted responses of
interest [4]. Additionally, implementation of ANN predictive modeling does not require
specification of physico–chemical processes influencing the system. Conversely, response
surface methodology (RSM) is a popular predictive modeling technique that is widely
used for statistically evaluating the effects of experimental variables and their interaction
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on targeted responses [6]. RSM is also employable for determination of process optimal
conditions. Compared with other predictive techniques, one of the unique benefits of
RSM is its requirement for a fewer number of experimental data points for implementa-
tion [6]. Moreover, RSM enables the generation of visualizable response surface models
that includes curvature with capabilities of analysis of variance (ANOVA) while enabling
process optimization analysis possibilities. However, the potential supremacy of ANN as a
predictive modeling technique when compared to RSM has been practically demonstrated
by a number of studies, and particularly for adsorption studies [7–12]. In contrast to ANN,
which does not require a predetermined specified function, RSM utilizes a generalized
polynomial function for model fittings [12]. Moreover, the predictability and optimization
of RSM is inherently restricted within the boundary of operational conditions, rendering
expansion of process understanding outside such an unfeasible boundary [2].

Globalization and increased pace of industrialization has resulted in increased pro-
duction of effluent wastewater and contaminated underground water laden with heavy
metals [13,14]. Heavy metals are classes of chemicals that have great potential for harming
living organisms, particularly human beings due to their non-biodegradability as well
as carcinogenicity and mutagenicity potentials [13]. The need for decontamination of
industrial wastewater containing heavy metals below regulatory thresholds is thus a top
priority for maintaining a sustainable ecosystem [15]. Even though several deployable tech-
niques do exist, adsorption techniques have enjoyed significant acceptability and increased
popularity compared with other processes for the removal of heavy metals and other
forms of pollutants from wastewater. This is because adsorption processes have demon-
strated unique flexibility, simplicity and applicability for different classes of pollutants with
excellent performance [16,17].

Advances in nanomaterials synthesis have led to the emergence of a wide range and
types of layered double hydroxide (LDH) adsorbents that are characterized by high adsorp-
tive performances for effective water and wastewater treatment [15,16]. Represented by
a general formula [M2

1−x M3
x (OH)2. [An−

x/n·mH2O] within brucite-like layers having
M2 = divalent and M3 = trivalent metal-ions and an An− = interlayer anion, LDH are
becoming favorable adsorbents for pollutant removal from aqueous phases due to their
remarkable ion-exchange capabilities and recorded higher surface characteristics [18,19].
Besides, the flexibility for in-cooperating and intercalating the interlayers of LDHs layers
with many materials of choice provides an unlimited window of opportunities for im-
proving their adsorptive performance, thereby gaining further outstanding interest for
researchers in water pollution control disciplines [15,19].

A number of single and composite LDH-based adsorbents synthesized using vari-
ous methods have been employed for aqueous phase uptake of Cr(VI) in a number of
recent studies [20–24]. In this regard, the synthesis and application of intercalated cobalt
aluminum-based LDHs for removal of dye and heavy metal were reported in our ear-
lier studies [18,25]. However, reported works on predictive modeling of adsorption onto
LDHs are scarce, and the few studies that have been conducted are mainly focused on
RSM techniques with a rare number of studies extended towards the application of ANN
technique in predictive modeling of adsorption processes. Additionally, the majority of
existing studies are more focused on dyes and organic compounds with very few dedicated
to investigating heavy metal uptake onto LDHs [26]. Moreover, studies on comparative
assessment of ANN and RSM performance in the few earlier reported works on adsorp-
tion studies mainly utilized limited experimental design data that are employed for RSM
modeling [9].

In this study, ANN algorithms and RSM-based models were developed for predicting
faced centered central composite design (FC-CCD), kinetics, equilibrium and thermody-
namic adsorption data for CoAl-LDH and bentonite-CoAl intercalated layered double
hydroxide (bentonite-CoAl-LDH) uptake of Cr(VI) from water. The ANN algorithm and
RSM technique models were first compared for predicting capacity for Cr(VI) uptake by
CoAl-LDH and bentonite-CoAl-LDH from water based on FC-CCD data, which forms the
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basis of the RSM modeling. Traditionally, this has been the approach adopted in similar
reported adsorption studies for comparing the performance of ANN and RSM techniques.
In addition, this present work further uniquely provides a comparative assessment of the
performance of the developed ANN and RSM models for the mechanistic aspects of Cr(VI)
uptake behaviors onto the LDHs from water.

2. Materials and Methods
2.1. Materials, Synthesis, and Characterizations of LDHs

High purity aluminum (Al(NO3)3·9H2O, 98%) and cobalt nitrate (Co(NO3)2·6H2O,
97%) salts and bentonite (powdered commercial BDH, UK) 2.5 g/cm3 density were the main
reagents used for the CoAl-LDH and bentonite-CoAl-LDH syntheses. Sodium hydroxide
(NaOH, 99%) and nitric acid (HNO3, 99%) were purchased from Sigma–Aldrich Co.,
St. Louis, MO, USA. Similarly, all other high purity reagent chemicals used were acquired
from Sigma–Aldrich Co., USA. Deionized water (DI) produced from the laboratory with a
Millipore-Ultrapure water treatment device was used for preparation of 1000 mg/L stock
solution of Cr(VI), dilution as well as other purposes during the entire the study.

The bentonite-CoAl-LDH was synthesized via intercalation of bentonite particles into
the synthesized parent CoAl-LDH. For both adsorbents, the coprecipitation method was
employed for their synthesis as per our earlier works [18,25]. For the synthesis, 60 mL of
water containing mixture of 30 mmole Co(NO3)2·6H2O and 10 mmole Al(NO3)3·9H2O in
0.5 L round bottom flask was vigorously stirred for 15 min at 600 rpm and 60 ◦C. Afterwards,
1 M NaOH was introduced into the flask via dropwise addition to achieve pH of 10. The
next step involved stirring the mixture at 1000 rpm, temperature of 90 ◦C and refluxing of
the slurry for one day. Thereafter, centrifuging the resulting mixture was carried out and
two step prior final washing with ethanol produced a denser slurry that was subjected to
one day 90 ◦C vacuum oven drying to obtain the finished CoAl-LDH product. Meanwhile,
for the synthesis of the bentonite-CoAl-LDH composite, prior to the described Co-Al-LDH
salt-co-precipitation procedure above, bentonite (about 0.5 g) was added to the 60 mL DI
and subjected to ultrasonicated at 60 rpm for 30 min. Characterization of the produced
adsorbent was undertaken using Brunauer Emmett Teller (BET, Micromeritics, Tristar II
series, UK), scanning electron microscopy (SEM, SM-6460LV (Jeol, Tokyo, Japan)) and
transmission electron microscopy TEM (TEM, FEI Morgagni 268, Czech Republic).

2.2. Characterization and Analysis Methods

Analyses of the physico–chemical characteristics of the LDHs were achieved using the
following instruments: Nicolet 6700 Fourier transform-IR (FTIR, Thermo Fisher Scientific,
Waltham, MA, USA) with resolution 4 cm−1; D8 advanced X-ray instrument for X-ray
diffraction (XRD) at 2θ = 70◦ to 2◦ and 0.1542 nm wavelength and Brunauer Emmett Teller
analysis (BET, Micromeritics, Tristar II, Norcross, GA, USA) and SM-6460LV (Jeol, Japan)
scanning electron microscopy (SEM)

2.3. Cr(VI) Adsorption onto CoAl-LDH and Bentonite-CoAl from Aqueous Phase Tests
2.3.1. FC-CCD Study

The RSM modeling was implemented based on the FC-CCD experimental design.
The FC-CCD consists of 3 k, 2 k and k, respectively, representing factorial runs, axial runs
and replicated central runs, with schematic design space represented in Figure 1b (where
k = number of independent variable) [6]. The merits of adopting the FC-CCD over other
forms of the CCD include (i) the central position with star points at each factorial space
(i.e., α = ±1); (ii) it requires fewer levels of each factor (3 against 5 for other designs) and
(iii) it can incorporate resolution V or full factorial design with appropriate star points [27].
In this study, a 33 FC-CCD was adopted which involves three independent variables: A
(temperature), B (initial Cr(VI) concentration) and C (initial pH). These are presented in
Table 1 with ranges and values, and a fixed contact time of 180 min for all experiments was
chosen according to preliminary experiments and our previously published work [18]. The
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initial Cr(VI) solution pH value was adjusted to the required value for each experiment
using 0.1 M NaOH and 0.1 M HNO3 and solutions. Accordingly, seventeen (17) randomized
duplicated tests with three central run replicates (to estimate error and the response surface
curvature) [6,27] were undertaken (Table 2). At the end of each test, the sample was first
filtered using 0.45 µm cellulose acetate filters followed by centrifugation for 5 min at
4000 rpm for 5 min and the residual Cr(VI) concentration was analyzed using ICP-OES
(Horiba, Irvine, CA, USA). The two targeted responses (dependent variables) in this study
are the CoAl-LDH (Qe1) and bentonite-CoAl-LDH (Qe2) uptake capacity for Cr(V) uptake
from water which were estimated using Equations (1).

Qe1 or Qe2 =
Co − Ce

W
∗ V (1)
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Figure 1. Schematic representation of (a) ANN and (b) 3-factor 3-level RSM-FC-CCD.

Table 1. Cr(V) uptake for FC-CCD experimental design space.

Experimental Variables Levels

High-Lower (+1) Mid-Level (0) Lower Level (−1)

A Temperature (◦C) 45 35 25

B Initial Cr(IV) conc.
(mg/L) 127 76.5 26

C Initial pH 6 4 2
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Table 2. FC-CCD experimental variables and results for CoAl-LDH (Qe1) and bentonite-CoAl-LDH (Qe2).

Standard Order Run Order
A:

Temperature
◦C

B:
Inital Cr(VI) Conc.

mg/L

C:
Initial pH

Qe1,
mg/g

Qe2
mg/g

16 1 35 76.5 4 38.10 51.36
4 2 45 127 2 58.32 63.92
3 3 25 127 2 77.44 101.36
2 4 45 26 2 18.80 20.4
14 5 35 76.5 6 43.20 43.44
7 6 25 127 6 43.60 55.76
17 7 35 76.5 4 36.99 53.212
8 8 45 127 6 36.40 45.76
15 9 35 76.5 4 37.44 52.48
11 10 35 26 4 19.60 25.84
13 11 35 76.5 2 45.44 58.4
12 12 35 127 4 44.48 75.12
1 13 25 26 2 35.92 34.8
5 14 25 26 6 19.12 19.84
10 15 45 76.5 4 76.88 30.64
9 16 25 76.5 4 63.04 71.44
6 17 45 26 6 19.68 15.52

2.3.2. Kinetics and Thermodynamics Study

Using similar experimental procedure as for the FC-CCD tests explained above, a
complete thermodynamics study was undertaken at different operating conditions. Ther-
modynamics experiments were conducted at temperature (25, 35 and 45 ◦C); initial pH (2,
4 and 6) and initial Cr(VI) concentration (49.58, 76.5 and 107.69) mg/L. Meanwhile, the
kinetics experiments were conducted at fixed temperature 25 ◦C; initial pH 2 and initial
Cr(VI) concentration (20, 60 and 100 mg/L). Additionally, an adsorbent dosage of 5 mg in
40 mL samples was used.

2.4. Math Techniques and Performance Evaluation
2.4.1. RSM Experiments and Modeling

RSM modeling: The RSM generalized second order polynomial function given in
Equation (2) was used for RSM models fitting for Qe1 and Qe2 using Design Expert 8.0
statistical program.

Qe1 or Qe2 = β0 +
k

∑
i=1

βixi +
k

∑
i=1

βix2
i +

k−1

∑
i=1

k

∑
j=2

βijxixj + ε (2)

where, Co = initial and Ce = equilibrium Cr(VI) concentration in mg/L, Qe1 or Qe2 predicted
uptake capacity for Cr(V) uptake from water for the tested LDH in mg/g, βii, βij, βi, β0, are
the developed qe model’s coefficients; xi and xj, = operational conditions.

2.4.2. Artificial Neural Network (ANN) Models Development

The ANN modeling for the Qe1 (CoAl-LDH) and Qe2 (bentonite-CoAl-LDH) data
was undertaken using MatLabTM (R2017a) ANN framework for data fitting with general
architectural structure presented in Figure 1a. The steps involve splitting each of the input
data (Qe1 or Qe2) into training (70%), validation (15%) and test (15%) data; selection of
hidden layer followed by selection of ANN based algorithms prior to running the model.
The ANN algorithms employed to obtain the best data representation included scaled
conjugate gradient (SCG), Bayesian Regularization (BRA) and the Leverberg–Marquartz
algorithm (LMA) as per earlier reported works [2,12].
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2.4.3. Developed Models’ Performance Evaluation

The Qe1 and Qe2 prediction quality of the developed ANN and RSM-FC-CCD models
were assessed and compared as per coefficient of determination R2 and RMSE (lower values
desired)-based Equations (3) and (4), respectively.

R2 = 1 − (yi − ýi)
2

(yi − y)2 = 1 − SSR
SST

(3)

RMSE =
1
n ∑n

i=1(yi − ýi)
2 =

1
n ∑n

i=1 SST (4)

where yi = actual value, y = mean value, ýi = predicted value, SSR = residuals sum of
squares and SST = total sum of squares

3. Results and Discussion
3.1. Adsorbent Characterization Analysis

The SEM images of the raw bentonite, CoAl-LDH, as well as their resulting intercalated
composites are presented in Figure 2. Figure 2b,c shows that the particles of CoAl-LDH and
bentonite-CoAl-LDH adsorbents are homogeneous and rough with the latter being more
uniform and porous in nature [25]. This slight disparity could be attributed to the presence
of the intercalated particles of bentonite in the bentonite-CoAl-LDH which suggests a
successful incorporation of the bentonite particles in the original LDH. The SEM image in
Figure 2c also shows that there is uniform dispersion of bentonite-CoAl-LDH within the
bentonite interlayers [18].

Figure 3b shows the FTIR spectra of bentonite-CoAl-LDH adsorbent. When compared
to the spectra of CoAl-LDH in Figure 1a, it can be seen that there is a clear stretching vibra-
tion at 1000 cm−1 which can be assigned to the bond involving Si-O-Al bond resulting from
the incorporation of bentonite in the bentonite-CoAl-LDH adsorbent [28]. Interestingly,
the characteristic patterns of CoAl-LDH and raw bentonite are manifested in the B-CoAl
composite, indicating strong integration of bentonite into the parent CoAl-LDH. This is
further confirmed by the EDS elemental analysis given in Table 3. For both adsorbents,
the clear peaks located at 3000 and 3500 cm−1 are assigned to the interlayer molecules of
stretching vibrations O-H and C-H groups [29]. Moreover, the carbonyl group bending
vibration are observable at 1750 cm−1 for both adsorbents while the nitrate ion interlayer
symmetric stretching appears at 1358 cm−1. The peak between 1001 cm−1 and 1217 cm−1

can be attributed to the C-O-C and C-O group [30]. Meanwhile, the stretching vibrations
observed below 1000 cm−1 can be are ascribed to the presence of oxygen–metal–oxygen,
metal-o-metal, brucite-type, Al-O and Co-O [28]. Moreover, the slight variability in the
peaks between the two adsorbents was attributed to the relative quantity of the bentonite
used in the production of the composite samples. The XRD results presented in Figure 4
indicates peaks at the 113, 110, 018, 012 planes which are ascribed to 61.1◦, 59.8◦, 44.9◦ and
36.9◦, respectively, [18]. Meanwhile, the basal spacing of d006 and d003 are located at the
23.0◦ and 11.4◦, respectively. The bentonite-CoAl-LDH XRD result (Figure 4c) reaffirmed
the characteristics of the parent CoAl-LDH (Figure 4b) with minimal reduction in the basal
spacing. After the incorporation of bentonite into the LDH, the bentonite-CoAl-LDH main-
tains the reflections of CoAl-LDH but with slight reduction in the d006 and d003 diffraction
peaks. Meanwhile both the parent and resulting bentonite intercalated composite shows
improved diffraction intensity suggesting a crystallinity of good quality [31].
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before Cr(VI) uptake (c); CoAl-LDH after Cr(VI) uptake (d) and bentonite-CoAl-LDH after Cr(VI)
uptake (e) under optimal adsorption conditions of temperature = 25 ◦C, pH 2 and 126 mg/L initial
Cr(VI) concentration.
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Figure 3. FTIR of CoAl-LDH before Cr(VI) uptake (a); bentonite-CoAl-LDH before Cr(VI) uptake
(b); CoAl-LDH after Cr(VI) uptake (c); bentonite-CoAl-LDH after Cr(VI) uptake (d) under optimal
conditions of temperature = 25 ◦C, pH 2 and 126 mg/L initial Cr(VI) concentration.

Table 3. EDS elemental analysis for raw bentonite and the adsorbents.

Raw Bentonite CoAl-LDH Bentonite-CoAl-LDH

Element Weight % Element Weight % Element Weight %

C 13.87 O 24.69 C 8.68
O 51.83 Al 5.72 O 39.12
Na 1.16 Co 69.59 Al 6.54
Mg 1.33 - - Si 2.64
Al 7.47 Co 40.36
Si 18.22 - - Cu 2.66
Cl 1.06 - -
Ca 0.56 - -
Fe 2.66 - -
Cu 1.85 - -

Totals 100.00 - 100 - 100

After the Cr(VI) adsorption process, the FTIR characteristic peak patterns for CoAl-
LDH (Figure 3c) and bentonite-CoAl-LDH (Figure 3d) completely changed, indicating
successful uptake of the Cr(VI) molecules [18]. SEM images in Figure 2d,e which represent
the morphology of the adsorbents after the uptake of Cr(VI) show a visible change in
morphology of the adsorbents when compared to the images before Cr(VI) uptake. This
suggests successful integration of the Cr(VI) onto the active binding sites of the adsor-
bents. This further supports the observations in the FTIR peaks in Figure 3c,d that shows
conspicuous alteration after the Cr(VI) uptake. For example, there is a clear reduction in
C-O associated groups located at 1001 cm−1 aftermath of the Cr(VI) uptake. Other peaks,
especially those that were observed prior to the Cr(VI) uptake, were nearly eliminated.
This included the sharp peaks at 3446 cm−1 (related to OH), 1650–1780 cm−1 (related to
C=O) and 1340–1360 cm−1(related to −COO) (Figure 3a), corroborating the SEM results. In
general, these observations suggest a successful attraction of the Cr(VI) onto the adsorbents
binding sites via electrostatic, covalent and hydrogen bonding between various observed
surface functional groups and the molecules of the metal ions.
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Figure 4. XRD for (a) raw bentonite (b) CoAl-LDH and (c) bentonite-CoAl-LDH.

The thermal stability of the bentonite-CoAl-LDH adsorbent was investigated using
TGA analysis between temperature range of 20–800 ◦C as presented elsewhere [9]. The
result indicates adsorbent weight loss of around 20–23% between 20 to 200 ◦C. This observa-
tion can be attributed to the initial loss of bounded water molecules. When the temperature
was increased to 300 ◦C, observed weight losses were around 54%, suggesting a good
thermal stability under higher temperature beyond the operational temperatures of the
adsorption tests.

Under a nitrogen atmosphere, the adsorption–desorption isotherm was employed to
obtained pore characteristics, which suggests a H3-type hysteresis loop as recognizable as
at type IV isotherm at 1.0-0.05P/P0 [18]. The diameter of the bentonite-CoAl-LDH pores
(1.95 nm) indicates their mesoporous nature and also suggests the presence of micropores
on its surface. Meanwhile, the BET areas for CoAl-LDH and bentonite-CoAl-LDH were
obtained as 44 m2/g, 119 m2/g, respectively. The significant increase in surface BET
area of the bentonite-CoAl-LDH composite further establishes the efficacy of bentonite
intercalation using the co-precipitation method. In conclusion, these results reaffirm success
in production of the composite material via the adopted bentonite procedure and the high
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potential of the two LDHs materials as good adsorbents for heavy metal remediation in
contaminated water

3.2. Cr(VI) RSM Sorption Model Development and Evaluation
3.2.1. Cr(VI) Sorption RSM Model Development

Table 2 presents the obtained data from the batch adsorption test. Each uptake capacity
Qe is the average value for the two duplicated adsorption data obtained. The values for
the uptake capacity of Cr(VI) for CoAl-LDH and its bentonite modified version ranged
between 18.80 to 77.44 mg/g and 15.52 to 101.36 mg/g, respectively. This implies a
significant increase in the uptake capacity as result of interaction of the raw bentonite with
the parent LDH [25]. Design Expert® aided regression analyses were employed for fitting
the data in Table 2 into Equation (2) for the development of RSM models. As per the high
models’ term significance having no alias (Table 4) [6], the best RSM models were found
to be quartic functions given in Equations (5) and (6). Only the reduced models (Table 4
ANOVA significant terms on respective response i.e., p-values < 0.05) are included [6].
However, some terms were insignificant in the bentonite-CoAl-LDH model, but when
interacted with other terms, they generated higher terms that became significant. Therefore,
the lower terms were left in the model to satisfy hierarchical effects as required by RSM [6].
Table 4 shows that all the single terms A, B and C (the single effects), BC, AB, AC (2-way
interaction effects), squared terms A2, B2 and C2, cubic term ABC, A2B, A2C and AB2 as
well as quartic term A2B2 are significant model terms.

Qe1 (Uptake capacity for CoAl-LDH) = 37.51 + 6.92A + 12.44B − 1.12C −
1.22AB + 3.70AC − 4.98BC + 32.45A2 − 5.47B2 + 6.81C2 − 0.7200ABC + 2.84A2B

− 7.84A2C − 12.28AB2 − 32.64A2B2
(5)

Qe2 (Uptake capacity for Bentonite-CoAl-LDH) = 52.35 − 20.40A + 24.64B −
9.86C − 3.59AB + 4.69AC − 5.49BC − 1.31A2 − 1.87B2 − 1.43C2 − 2.61A2B +

12.13AB2 − 3.07A2B2
(6)

Table 4. ANOVA for CoAl-LDH and bentonite-CoAl-LDH RSM models.

Qe1 Qe2

Source F-Value p-Value Source F-Value p-Value

Model 1236.10 0.0008 Model 50.82 0.0009
A 307.26 0.0032 A 62.20 0.0014
B 992.97 0.0010 B 90.74 0.0007
C 8.05 0.1050 C 72.60 0.0010

AB 38.20 0.0252 AB 7.71 0.0500
AC 351.36 0.0028 AC 13.15 0.0222
BC 636.52 0.0016 BC 18.02 0.0132
A2 4053.91 0.0002 A2 0.1541 0.7147
B2 115.19 0.0086 B2 0.3138 0.6052
C2 178.54 0.0056 C2 0.1836 0.6904

ABC 13.31 0.0676 A2B 0.8145 0.4178
A2B 41.40 0.0233 AB2 17.59 0.0138
A2C 315.51 0.0032 A2B2 0.2379 0.6513
AB2 774.07 0.0013
A2B2 1155.36 0.0009

3.2.2. Cr(VI) Adsorption Pareto Charts

The main effects and the two-way interaction proportional contributions (hierarchical
influence) assessment on the sorption capacity in the form of Pareto charts are represented
in Figure 5a,b for the tested adsorbents. Accordingly, the Pareto’s plot height proportionally
indicates the relative importance of the parameters on the Qe1 and Qe2 responses; the high
bar reflects higher significant influence and the low bar reflects otherwise [9]. Consequently,
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factors B and C mainly controlled the uptake capacity of Cr(VI) onto CoAl-LDH adsorbents
(Figure 5a). However, Figure 5b shows that factors B, A and C mainly controlled the uptake
capacity of Cr(VI) onto bentonite-CoAl-LDH.
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Figure 5. Pareto diagrams (a,b) and probability normal plots (c,d) the influence of independent
variables on Qe1 and Qe2 for Cr(VI) removal from water, respectively.

3.2.3. Cr(VI) Adsorption RSM Model Validation

The coefficients of determination (R2), of the developed and tested LDHs sorption
models are 0.9999, 0.9935 for Qe1 and Qe2, respectively. Moreover, both the R2 adjusted
and predicted are close to the main R2, indicating the high quality of the models and
their capability for prediction of the test data as demonstrated by the lower residuals
(mostly zero) in Table 5. The plots of normal probability presented in Figure 5c,d are linear,
indicating normally distributed experimental data [6].
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Table 5. RSM models predictions for FC-CCD tests data for Cr(VI) uptake capacity Qe1 and Qe2.

CoAl-LDH (Qe1) Bentonite-CoAl-LDH (Qe2)

Run Order Actual Value Predicted Value Residual Actual Value Predicted Value Residual

1 38.10 37.51 0.5900 51.36 52.35 −0.9907
2 58.32 58.32 0.0000 63.92 65.50 −1.58
3 77.44 77.44 0.0000 101.36 98.60 2.76
4 18.80 18.80 0.0000 20.40 17.64 2.76
5 43.20 43.20 0.0000 43.44 41.06 2.38
6 43.60 43.60 0.0000 55.76 58.52 −2.76
7 36.99 37.51 −0.5200 53.21 52.35 0.8613
8 36.40 36.40 0.0000 45.76 44.18 1.58
9 37.44 37.51 −0.0700 52.48 52.35 0.1293

10 19.60 19.60 0.0000 25.84 25.84 0.0000
11 45.44 45.44 0.0000 58.40 60.78 −2.38
12 44.48 44.48 0.0000 75.12 75.12 0.0000
13 35.92 35.92 0.0000 34.80 36.38 −1.58
14 19.12 19.12 0.0000 19.84 18.26 1.58
15 76.88 76.88 0.0000 30.64 30.64 0.0000
16 63.04 63.04 0.0000 71.44 71.44 0.0000
17 19.68 19.68 0.0000 15.52 18.28 −2.76

3.3. Cr(VI) Uptake Capacity Operational Parameter Influence and Optimization

Figures 6 and 7 present the 3D and contour representation of effects of operational
variables on the CoAl-LDH and bentonite-CoAl-LDH adsorption capacities for Cr(VI)
removal from water, respectively. Figures 6a,b and 7a,b reveal that the Cr(VI) uptake
capacity increased when initial concentration was increased, and pH was decreased for
both adsorbents. The uptake capacity for both adsorbents was found to predominantly
improve with a decrease in temperature (Figures 6b,c and
reffig:water-1708317-f007b,c), signifying a sorption process that is exothermic in nature
(confirmed by thermodynamics data under Section 3.5.2, which is in conformity with results
from other reported studies [18,32,33]. For the bentonite-CoAl-LDH, the highest uptake
capacity for Cr(VI) was improved by a factor of 6.5 and 4.1 to 77.44 and 101.36 mg/g when
the Cr(VI) concentration was increased from 26–127 mg/L. At a given adsorbent dosage,
the observed positive influence of increase in the initial concentration on the enhancement
of the uptake capacity of the adsorbents was attributed to an increase in potentials of better
relations between the increased Cr(VI) ions with the abundant active sorption sites [34,35].

At fixed initial concentration of 127 mg/L and temperature of 25 ◦C (Table 2), the up-
take capacity of Cr(VI) significantly reduced from 77.44 to 43.6 mg/g and from 101.36 mg/g
to 55.76 mg/g for CoAl-LDH and bentonite-CoAl-LDH, respectively, when the initial pH
was raised from 2 to 6. This is similar for other operational conditions which clearly
suggest a decline in the uptake capacity of the tested adsorbents with increases in pH
(Figures 6 and 7), which can be attributed to the changes in the adsorbent surface charge
characteristics resulting from the pH variability. Within the acidic pH range of 2–6, Cr(VI)
ions is in its anionic forms Cr2O7

2−, Cr2O4
2− and HCrO4− in the aqueous phase [36,37].

The point of zero charge (pHpzc) found from the drift method for CoAl-LDH and
bentonite-CoAl-LDH was found to be 4.84 and 5.15 [18], respectively. This indicates that
achieving a higher state of surface protonation for both adsorbents was expected to have
occurred when the pH was lower (i.e., pH 2), thereby causing stronger adsorbent–adsorbate
electrostatic attraction, and thus explaining the observed high uptake capacity for Cr(VI)
ions at such pH. Thus, by raising the pH from the lowest to the highest level, it means that
additional HO− ions were introduced that were susceptible to deprotonate the adsorbent
surfaces while competing with the predominantly existing anionic forms of Cr(VI), thereby
exhibiting the decline in the uptake capacity with increasing pH for both adsorbents. The
observed improved performance for the bentonite-CoAl-LDH composite is attributed to its
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improved physico–chemical characteristics compared to the parent LDH as discussed in
Section 3.1.
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The numerical solutions of optimal operation conditions for the best Cr(VI) removal
were studied based on desirability functions. The results showing the interactive influences
of operational parameters are presented in Table S1 and visually depicted in Figure 8 as
desirability of conditions in maximizing uptake capacity for Cr(VI) for finding optimal
solutions. The trends indicate that Cr (VI) uptake capacity improved with increasing
Cr(VI) initial concentration and initial pH, while increasing the operational temperature
was susceptible to decrease the adsorption capacity. The most durable optimal operating
parameters provides initial pH = 2, temperature = 25 ◦C and initial Cr(VI) concentration of
126 mg/L as the best conditions.
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3.4. Cr(VI) ANN Uptake Modeling and Optimization Strategy

The experimental data provided in Table 2, Tables S1 and S2 for RSM-FC-CCD, equilib-
rium and kinetics studies were used to develop the ANN models using SCG, BRA and LMA
algorithms within the MatLabTM (R2017a) neural network fitting framework. For each
experiment scenario, the ANN predictive Cr(VI) uptake model for CoAl-LDH bentonite-
CoAl-LDH (designated as Qe1 and Qe2, respectively) were developed. Accordingly, the
ANN-based algorithms (SCG, BRA and LMA) were employed for developing the best ANN
models by varying the number of neurons from which the optimal number of neurons that
yielded the best performances were arrived at after several comparative trials. Preliminary
evaluations indicated the suitability of the LMA algorithm for both Qe1 and Qe2 based on
its consistent excellent predictive performance. Thus, the LMA was adopted for the final
training as well as optimizing all the ANN models. The ANN-LMA models’ optimization
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was also experimented by changing the neuron numbers for further increasing R2 to achieve
values close to unity while ensuring that RMSE values were significantly reduced for the
training, validation and the overall data sets.

For each of the ANN-LMA cases, the best tested epoch and number of neurons
were adjusted until the optimal solutions for Qe1 and Qe2 were achieved as depicted in
Figure 9. The ANN-LMA model optimization strategy for FC-CCD, thermodynamics and
kinetics for Cr(V) capacity, Qe1 and Qe2 are provided in Figure 9a–e, respectively. The
parameters (training, testing, validation and overall R2 and RMSE, neuron numbers are
epoch) developed from the ANN-LMA model performance for predicting the various
Cr(VI) uptake onto the tested adsorbents are presented in Table 6. Interestingly, the
predominance of lower RMSE for Qe1 (3.092, 4.089 and 17.32) and Qe2 (2.982, 4.99 and
6.75) and corresponding higher values of overall R2 for training (0.995–0.999), validation
(0.905–0.999), testing (0.903–0.995) and overall (0.993–0.999) show high predictive ability of
the developed ANN-LMA models.

3.5. ANN vs. RSM Cr(VI) Adsorption Models’ Comparative Performance

ANN and RSM modeling techniques have become increasingly desirable mathematical
techniques that are adopted for understanding environmental processes such as remedia-
tion of water and wastewater using adsorption [1,2,26]. Recently, researchers have been
devoting significant efforts to understating the best of the two approaches via comparing
the ability of these two approaches in providing dependencies of target responses on oper-
ational parameters of various adsorption processes [9,38,39]. However, reported works on
predictive modeling of adsorption onto LDHs have mainly focused on RSM techniques
with rare studies reported on the applicability of ANN models for heavy metals removal
from water [26]. Recently, Zhu et al. [26] reported the ANN predictive performance of
Cr(VI) ions’ uptake onto LDH nanocomposite of organic framework from which excellent
predictions were obtained. However, such studies have been short of investigating the
potentials of predicting adsorption kinetic and thermodynamic behaviors. In the present
study, ANN-LMA and RSM-based adsorptive models were firstly compared for predicting
capacity for Cr(VI) uptake by CoAl-LDH and bentonite-CoAl-LDH from water based on
FC-CCD experimental results. As explained earlier, these sets of experimental data were
mainly employed to develop the RSM models based on fitting data in Table 2 using Equa-
tion 2. Traditionally, this has been the approach adopted in earlier reported adsorption
studies for comparing the performance of ANN and RSM techniques [9,40,41]. However,
as an improvement on this approach, the present study further investigated the ANN-LMA
and RSM-based models for predicting thermodynamic and kinetic behaviors taking into
account additional experiments that are completely different from the FC-CCD, though
within the FC-CCD experimental design space. This is necessary, owing to the fact the RSM
model predictions are restricted to operate within such limited bound. The results obtained
are assessed, compared, and discussed in the respective subsections below.

3.5.1. ANN and RSM Prediction of FC-CCD Data for LDHs Cr(VI) Uptake

The developed ANN-LMA and RSM model predictive fitting parameters for the FC-
CCD Cr(VI) uptake onto CoAl-LDH and bentonite-CoAl-LDH from water (designated
as Qe1 and Qe2, respectively) are given in Table 6 while predicted vs. experimental data
are presented in Figure 10. The R2 for the RSM models of 0.999 and 0.998 are slightly
higher, yet quite comparable to those of the ANN-LMA (0.995 and 0.997). However, lower
RMSE values for RSM (0.195 and 1.774) suggest a higher predictive performance of the
RSM models over the ANN-LMA (3.092 and 2.982). Although the better RSM performance
cannot be fully justified considering that ANN-LMA models were more restrictive as they
were developed via data splitting (70% training and 15% for validation and 15% for testing),
this was not the case for the RSM model. Moreover, the FC-CCD study data used in this
case was directly related to the developed RSM models. Thus, to further provide deeper
insight into the predictive performance of these two models, their potential for predicting
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equilibrium and kinetic behaviors from different experiments were studied and results are
presented in the sections below.
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Table 6. ANN-LMA and RSM fitted model parameters for FC-CCD, equilibrium and kinetic studies.

Model Parameter Qe1 Qe2

FC-CCD
study

RSM
R2 0.999 0.997

RMSE 0.195 1.774

ANN-LMA

No. of neurons 5 10
Epoch 6 5

Training R2 0.999 0.999
Validation R2 0.998 0.999

Testing R2 0.903 0.999
Overall R2 0.995 0.997

RMSE 3.092 2.982

Cr(VI) uptake
Equilibrium

study

RSM
R2 0.8715 0.9793

RMSE 20.50 8.00

ANN-LMA

No. of neurons 7 10
Epoch 10 4

Training R2 0.998 0.999
Validation R2 0.905 0.966

Testing R2 0.995 0.982
Overall R2 0.993 0.992

RMSE 4.089 4.99

Cr(VI) uptake
Kinetics study ANN-LMA

No. of neurons 10 10
Epoch 4 17

Training R2 0.996 0.999
Validation R2 0.999 0.998

Testing R2 0.995 0.995
Overall R2 0.999 0.998

RMSE 17.32 6.75

3.5.2. ANN and RSM Prediction of Equilibrium and Thermodynamics of Cr(VI) Uptake

Adsorption equilibrium and thermodynamics studies are traditionally indispensable
for elucidating the mechanisms for removal of pollutants from water and wastewater [42].
This owes to the fact that they help to explain the rate of distribution and interactions be-
tween adsorbent surface and adsorbate in aqueous phase as described by various isotherm
models (such as Langmuir, Freundlich and Elovic) which are vital for the design of reac-
tor volumes for an effective adsorptive remediation process. Thus, excellent prediction
of equilibrium and thermodynamic behaviors of adsorbate via modeling technique is of
paramount importance in adsorption studies. Table 7 provides a recent review on the
utilization of various LDH-based adsorbents for aqueous phase Cr(VI) uptake reported
by a number of researchers [20–24]. Evidently, from this review, the most widely fitted
equilibrium models that predominantly describe Cr(VI) aqueous uptake are Langmuir
and Freundlich models. Similarly, as per the best fittings of the experimental data in
this study and earlier related work [18], these two (2) models were adopted for under-
standing the predictive performances of the developed ANN-LMA and RSM models for
kinetic and thermodynamic parameters for Cr(VI) adsorption onto the CoAl-LDH and
bentonite-CoAl-LDH.

The ANN-LMA and RSM models’ prediction abilities for the equilibrium and thermo-
dynamic parameters were based on a separate equilibrium study (different from FC-CCD
study as provided in Supplementary Material, Table S21). Their respective performances
are presented in Table 6 and Figure 11a,b for Qe1 and Qe2, respectively.



Water 2022, 14, 1644 19 of 27Water 2022, 14, x FOR PEER REVIEW 19 of 28 
 

 

 
Figure 10. Predicted vs Experimental vs. plots for Qe1 and Qe2 for RSM FCC-CD (a,b) and ANN-
LMA models (c,d). 

3.5.2. ANN and RSM Prediction of Equilibrium and Thermodynamics of Cr(VI) Uptake 
Adsorption equilibrium and thermodynamics studies are traditionally indispensable 

for elucidating the mechanisms for removal of pollutants from water and wastewater [42]. 
This owes to the fact that they help to explain the rate of distribution and interactions 
between adsorbent surface and adsorbate in aqueous phase as described by various iso-
therm models (such as Langmuir, Freundlich and Elovic) which are vital for the design of 
reactor volumes for an effective adsorptive remediation process. Thus, excellent predic-
tion of equilibrium and thermodynamic behaviors of adsorbate via modeling technique is 
of paramount importance in adsorption studies. Table 7 provides a recent review on the 
utilization of various LDH-based adsorbents for aqueous phase Cr(VI) uptake reported 
by a number of researchers [20–24]. Evidently, from this review, the most widely fitted 
equilibrium models that predominantly describe Cr(VI) aqueous uptake are Langmuir 
and Freundlich models. Similarly, as per the best fittings of the experimental data in this 
study and earlier related work [18], these two (2) models were adopted for understanding 
the predictive performances of the developed ANN-LMA and RSM models for kinetic and 

(a) (b) 

  

(c) (d) 

  

Qe1 RSM (FC-CCD)

Experimental capacity, mg/g

10 20 30 40 50 60 70 80

Pr
ed

ci
te

d 
ca

pa
ci

ty
, m

g/
g

10

20

30

40

50

60

70

80
Qe2 RSM (FC-CCD)

Experimental capacity, mg/g

20 40 60 80

Pr
ed

ci
te

d 
ca

pa
ci

ty
, m

g/
g

20

40

60

80

Qe1 ANN-LMA (FC-CCD)

Experimental capacity, mg/g

10 20 30 40 50 60 70 80

Pr
ed

ic
te

d 
ca

pa
ci

ty
, m

g/
g

10

20

30

40

50

60

70

80
Qe2 ANN-LMA (FC-CCD)

Experimental capacity, mg/g

20 40 60 80

Pr
ec

ite
d 

ca
pa

ci
ty

, m
g/

g

20

40

60

80

Figure 10. Predicted vs Experimental vs. plots for Qe1 and Qe2 for RSM FCC-CD (a,b) and ANN-
LMA models (c,d).

It is obvious from the results that the fittings for the RSM models of the equilibrium
data were lower compared with the FC-CCD data prediction as the R2 declined to 0.872
and 0.979 (from 0.999 and 0.998) while the RMSE depreciated to 20.5 and 8.0 (from 0.195
and 1.774), respectively. Meanwhile, the ANN-LMA model R2 of 0.993 and 0.992 (from
0.995 and 0.997) for the equilibrium data set indicate a consistent and insignificant decline
in its prediction’s potentials when compared with the FC-CCD data predictions. This is
further confirmed by considering the corresponding RMSE of 4.089 and 4.99 (from 3.092
and 2.982). This is clearly manifested in Y = X line (Figure 11) depicting the two models’
prediction potentials which indicates better performances for the ANN-LMA. Figure 11a
and 11b for the RSM show much wider dispersions of the experimental vs. predicted
data compared to ANN-LMA in Figure 11c,d for Qe1 and Qe2. The ANN-LMA model
parameters further validate the outstanding performance of the ANN-LMA models in
predicting Cr(VI) equilibrium Qe1 and Qe2 data, in spite of the FC-CCD data set approach
limitations of fewer test data which could have undermined the predictive ability of ANN-
LMA performance as the case was with the RSM model.
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Table 7. Comparison of CoAl-LDH and its bentonite-CoAl-LDH uptake capacities with other LDH-
based adsorbents for Cr(VI) uptake.

# LDH
qmax

(mg/g)
Model’s Fittings Reference

Isotherm Kinetics

1 CoAl-LDH 121.1 Langmuir Pseudo-second-order This study
2 Bentonite-CoAl-LDH 205.2 Langmuir Pseudo-second-order This study
3 CuFeCr-LDH 22.24 Langmuir Pseudo-second-order [20]
4 F-U-MgAl-LDH 7.26 Freundlich Pseudo-second-order [43]
5 Co2Fe1-CO3-LDH 5.44 Langmuir and Freundlich Pseudo-second-order [21]

FeS modified FeAl-LDH 147.7 Langmuir [32]
7 Co-Al-LDH@Fe2O3/3DPCNF 400.40 Sips [33]

8 MnFe-LDH/MnFe2O3@3DNF 564.88 Langmuir, Freundlich and
Sips Pseudo-second-order [44]

9 Fe3O4@SiO2@MgAl-borate LDH 86.73 Langmuir Pseudo-second-order [22]
10 ZnNiCr-LDH 28.2 Langmuir Pseudo-second-order [23]
11 PANI@ZNd-ZnAl-LDH 219 Langmuir Pseudo-second-order [45]
12 Mo3S13-MgAl-LDH 90.6 [46]
13 Al-Li/Th-LDH@CNT 172.4 [24]
14 Zn-Al-Fe-LDH 52.63 Langmuir Pseudo-second-order [47]

Water 2022, 14, x FOR PEER REVIEW 21 of 28 
 

 

 
Figure 11. Experimental vs. predicted plots RSM FCC-CD (a,b) and ANN-LMA models (c,d) for 
thermodynamics of Cr(VI) uptake by CoAl-LDH and bentonite-CoAl-LDH. 

The ANN-LMA and RSM models predicted Langmuir constants KL in L/mg (Table 9) 
is converted to L/mmol as Kd, from which the thermodynamics parameters (Gibbs free 
ΔG°, energy enthalpy ΔH and entropy change ΔS) were further estimated and compared 
with those obtained from the experiment data (i.e., actual values). At temperatures of 25, 
35 and 45 °C, the values ΔG° were calculated using Equation (7) from which ∆S and ∆H, 
as listed in Table 9, were estimated using slope and intercepts from the linear plot between 
Ln (Kd) and 1/T in Equation (8). 

ln dG RT KΔ = −  (7)

ln d
S HK
R RT

Δ Δ= −  (8)

(a) (b) 

  

(c) (d) 

  

Qe1 RSM (Thermodynamnics)

Experimental capacity, mg/g

20 30 40 50 60 70 80

Pr
ed

ic
te

d 
ca

pa
ci

ty
, m

g/
g

20

30

40

50

60

70

80
Qe2 RSM (Thermodynamnics)

Experimental capacity, mg/g

20 40 60 80 100

Pr
ed

ic
te

d 
ca

pa
ci

ty
, m

g/
g

20

40

60

80

100

Qe1 ANN-LMA (Thermodynamnics)

Experimental capacity, mg/g

20 30 40 50 60 70 80

Pr
ed

ic
te

d 
ca

pa
ci

ty
, m

g/
g

20

30

40

50

60

70

80
Qe2 ANN-LMA (Thermodynamnics)

Experimental capacity, mg/g

20 40 60 80 100

Pr
ed

ic
te

d 
ca

pa
ci

ty
, m

g/
g

20

40

60

80

100

Figure 11. Experimental vs. predicted plots RSM FCC-CD (a,b) and ANN-LMA models (c,d) for
thermodynamics of Cr(VI) uptake by CoAl-LDH and bentonite-CoAl-LDH.
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Meanwhile, for the equilibrium study operating at different temperatures of 25, 35 and
45 ◦C, the predictive performances of ANN-LMA and RSM models for Cr(VI) uptake equi-
librium and thermodynamic model parameters were studied. Moreover, under each model
scenario (RSM and ANN-LMA), parameter predictions were carried out by employing the
non-linearized and linearized forms of the investigated equilibrium and thermodynamic
models, and the results are compared with the actual data (from experiment) based on
R2 and RMSE. The estimated Freundlich and Langmuir models parameters (qmax, KL KF
and 1/n) presented in Table 8 for the non-linear forms of the models also reveal better
performances for the ANN-LMA models’ prediction compared with the RSM models. On
the other hand, employing the linearized models resulted in lower predictability of both
ANN-LMA and RSM models (Table S3).

Table 8. Non-linear equilibrium model fitting parameters CoAl-LDH and bentonite-CoAl-LDH for
Cr(VI) uptake.

Parameter

CoAl-LDH Bentonite-CoAl-LDH

Model Mathematical
Representation Temp Exp ANN RSM Exp ANN RSM

Langmuir qe = qmaxKLCe
1+KLCe

25 ◦C

R2 0.9540 0.9915 0.9937 0.9665 0.9608 0.9937
RMSE 6.9909 2.1665 2.9127 7.6944 8.5455 2.9127

qmax, mg/g 121.1374 107.1379 173.0420 197.1809 199.2454 173.0420
KL, L/mg 0.0215 0.0228 0.0127 0.0104 0.0099 0.0127

Freundlich qe = KFCe
1/n

R2 0.9164 0.9940 0.9770 0.9498 0.9407 0.9770
RMSE 9.2974 2.4131 5.3478 9.4950 10.4106 5.3478

KF 9.1121 8.9650 5.9300 4.9316 4.7647 5.9300
1/n 0.4777 0.4611 0.6073 0.6558 0.6601 0.6073

Langmuir qe = qmaxKLCe
1+KLCe

35 ◦C

R2 0.9975 0.9879 0.9988 0.9556 0.9785 0.9882
RMSE 1.3884 1.7969 0.5705 8.5942 3.6328 2.7187

qmax, mg/g 99.2234 103.1155 91.4632 168.8715 183.0309 172.9810
KL, L/mg 0.0117 0.0107 0.0137 0.0074 0.0067 0.0082

Freundlich qe = KFCe
1/n

R2 0.9945 0.9914 0.9978 0.9464 0.9781 0.9981
RMSE 1.3988 1.8627 1.0008 8.2754 4.3301 1.1371

KF 3.2380 3.0059 3.7754 2.7190 2.6078 3.3154
1/n 0.6093 0.6247 0.5737 0.7118 0.7243 0.6860

Langmuir qe = qmaxKLCe
1+KLCe

45 ◦C

R2 0.9732 0.9864 0.5030 0.8683 0.9366 0.9110
RMSE 3.3437 1.6923 22.3500 9.4967 6.3515 4.7371

qmax, mg/g 149.7940 123.1122 157.0474 205.1537 172.3274 229.0193
KL, L/mg 0.0058 0.0071 0.0074 0.0039 0.0056 0.0028

Freundlich qe = KFCe
1/n

R2 0.9773 0.9913 0.4356 0.8870 0.9519 0.9329
RMSE 3.5550 1.6221 24.1229 9.6128 6.1043 4.7517

KF 1.7519 1.9420 2.2258 1.5687 1.9947 1.1804
1/n 0.7467 0.7089 0.7360 0.7812 0.7441 0.8084

The ANN-LMA and RSM models predicted Langmuir constants KL in L/mg (Table 9)
is converted to L/mmol as Kd, from which the thermodynamics parameters (Gibbs free
∆G◦, energy enthalpy ∆H and entropy change ∆S) were further estimated and compared
with those obtained from the experiment data (i.e., actual values). At temperatures of 25,
35 and 45 ◦C, the values ∆G◦ were calculated using Equation (7) from which ∆S and ∆H,
as listed in Table 9, were estimated using slope and intercepts from the linear plot between
Ln (Kd) and 1/T in Equation (8).

∆G = −RT ln Kd (7)

ln Kd =
∆S
R

− ∆H
RT

(8)
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Table 9. CoAl-LDH and bentonite-CoAl-LDH for Cr(VI) uptake thermodynamic parameter
model fittings.

Adsorbent Temp
∆G (kJ/mol) Kd (L/mmol) ∆H (kJ/mol) ∆S (kJ/mol K)

Actual ANN RSM Actual ANN RSM Actual ANN RSM Actual ANN RSM

CoAl-LDH
25 ◦C −17.386 −17.541 −16.082 0.0215 0.0228 0.0127

−51.815 −46.421 −21.073 −0.115 −0.097 −0.01635 ◦C −16.410 −16.196 −16.827 0.0117 0.0107 0.0137
45 ◦C −15.071 −15.611 −15.726 0.0058 0.0071 0.0074

Bentonite-
CoAl-LDH

25 ◦C −15.584 −15.480 −16.082 0.0104 0.0099 0.0127
−38.041 −22.988 −59.576 −0.075 −0.025 −0.14535 ◦C −15.254 −14.982 −15.500 0.0074 0.0067 0.0082

45 ◦C −14.067 −14.982 −13.143 0.0039 0.0056 0.0028

The results presented in Table 8 and Table S3 further establish the superiority of
the ANN-LMA over the RSM predictions and the non-linearized forms of the Langmuir
models in predicting the thermodynamics parameters. The parameters predicted using the
non-linear models predicted −∆G◦, −∆H and −∆S for both ANN-LMA and RSM models
which supported the feasibility, spontaneous nature and greater order of reaction during
the Cr(VI) uptake onto the CoAl-LDH and bentonite-CoAl-LDH as obtained from the actual
experiments. Moreover, they all supported the exothermic nature of the process confirming
the RSM-FC-CCD modeling results (Section 3.2.3). However, using the linear Langmuir
model KL values resulted in obtaining some +∆H and +∆S conflicting with the expected
negative actual values. Additionally, the linear models were also characterized with poor
predictions, which was mainly observed with the RMS models.

3.5.3. ANN Prediction of Kinetic of Cr(VI) Uptake

In addition to equilibrium and thermodynamic behaviors, kinetic behaviors are usually
needed to help further comprehend the mechanisms for removal of pollutants from aqueous
solutions in addition to designing the reactor volume necessary for an effective adsorptive
remediation process. Consequently, predictive models capable of capturing the kinetic
behaviors are also vital in adsorption studies. Thus, based on the different Cr(VI) initial
concentrations (20, 60 and 100 mg/L) that were studied, the kinetics of Cr(VI) onto the two
LDH-based adsorbents were investigated. The ANN-LMA prediction abilities of the Cr(VI)
kinetic parameters were also based on a separate study (different from FC-CCD study),
and as a consequence of lack of time variable in the FC-CCD, the developed RSM-FCC-CD
model cannot be employed for predicting the kinetic parameters in this study. Thus, the
predictive performances of the ANN-LMA for Cr(VI) uptake onto the CO-Al-LDH and
bentonite-CoAl-LDH nanocomposites are provided in Table 6 and depicted in Figure 12a,b
for Qe1 and Qe2, respectively (experimental data in Supplementary Material Table S3).

The ANN-LMA model effectively captured the kinetic data and provided similar R2 of
0.999 and 0.998 with corresponding 17.32 and 6.75 for Qe1 and Qe2 which is demonstrated
by in line Y = X (Figure 12). Additionally, the ANN-LMA models’ predictive performances
of Cr(VI) uptake kinetic model parameters for pseudo-first and pseudo-second-order were
investigated. Moreover, under each model scenario (pseudo-first or pseudo-second-order),
parameter predictions were undertaken via employing the non-linearized and linearized
forms of the kinetic models and the results are compared with the actual experimental data.
The predicted kinetic parameters (qe, k1 and k2) presented in Table 10 for the non-linear
forms of the models indicate excellent performances for the ANN-LMA models. More-
over, employing the non-linearized kinetic models consistently revealed better predictive
capacities as in the case of the equilibrium and thermodynamics (Table S3). Interestingly,
all the ANN-LMA model predictions conform with the actual experimental data, which
establishes that CoAl-LDH and bentonite-CoAl-LDH Cr(VI) uptake was mainly described
by pseudo-second-order kinetics compared to pseudo-first-order as presented in Table 8.
This corroborates with earlier studies on Cr(VI) adsorption onto different types of LDHs
that reported the predominate second order model fitting (Table 7) [20–24]. Thus, taking
into account these related works and many other published classical works under this
subject, chemisorption was the main mechanism that significantly controlled the Cr(VI)
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uptake by both CoAl-LDH and bentonite-CoAl-LDH, which are well established by the
ANN-LMA model predictions.
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Figure 12. ANN-LMA model predictive performance for Cr(VI) uptake kinetics for CoAl-LDH
(a) and bentonite-CoAl-LDH (b).

Table 10. Non-linear kinetic model fitting parameters for CoAl-LDH and bentonite-CoAl-LDH for
Cr(VI) uptake.

Model Mathematical
Representation

Initial
Concentration

CoAl-LDH Bentonite-CoAl-LDH

Parameter Exp ANN-LMA Exp ANN-LMA

Pseudo-first-
order

qt = qe(1 + e−k1t)

20

R2 0.915 0.946 0.968 0.997
RMSE 2.260 2.383 3.079 0.858

qe 19.741 20.130 34.273 20.191
k1 0.112 0.089 0.060 2.541

60

R2 0.909 0.797 0.830 0.995
RMSE 3.020 3.714 5.404 15.266

qe 54.290 52.530 75.312 62.394
k1 0.0131 0.0143 0.0229 1.7765

100

R2 0.996 0.997 0.959 0.944
RMSE 1.636 1.722 10.479 10.748

qe 78.458 80.353 89.023 104.268
k1 0.080 0.079 0.139 0.094

Pseudo-
second-order

qt =
qek2

2 t
1+qek2 t

20

i2 0.966 0.985 0.997 0.997
RMSE 1.368 1.519 1.936 0.860

qe 21.596 21.992 38.333 20.187
k2 0.008 0.006 0.002 149.352

60

R2 0.936 0.841 0.885 0.995
RMSE 2.947 3.598 4.109 15.268

qe 74.174 68.898 92.254 62.398
k2 0.0001 0.0002 0.0002 29.6852

100

R2 0.987 0.606 0.987 0.887
RMSE 9.734 19.190 24.534 12.479

qe 85.389 473.750 95.008 0.001
k2 0.001 64.717 0.003 110.570
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The forgone results analysis shows the potential and prowess of the ANN-LMA
models in yielding excellent prediction results compared to the RSM models. Thus, the
superiority and credibility of the ANN-LMA is further established in this study, considering
the uniqueness of its approach to data splitting, which completely contrasted the RSM
technique. Moreover, despite the few numbers of experimental runs for the FC-CCD, the
ANN-LMA model performances were still quite comparative to the RSM models. These
further demonstrate the higher data quality credibility in ANN-LMA models.

Although, the RSM provide avenues for producing a distinct mathematical relationship
between input and output variables as well as visual display of these relationships, yet it
requires a specific experimental design such as FC-CCD adopted in this study. In contrast,
ANN does not need prior experimental design to be adopted and it is neither bound nor
restricted by mathematical relationship. This suggests that the ANN-LMA models are more
reliable in capturing Cr(VI) adsorption data for the CoAl-LDH and bentonite-CoAl-LDH
composites, corroborating earlier studies [48–50]. However, it is important to note that
both the RSM and ANN-LMA models presented pose inherent limitations considering
that further influence of independent variable analysis and sensitivity analysis on their
equilibrium, kinetic and thermodynamic predictability are needed to further establish their
potentials [12].

4. Conclusions

In this study, the adsorptive performances of CoAl-LDH and its intercalated bentonite-
CoAl (bentonite-CoAl-LDH) for removal of Cr(VI) from water were modeled using artificial
neural network (ANN)-based algorithms and response surface methodology (RSM) and
compared based on coefficient of determination (R2) and root mean square error (RMSE).
Based on the results obtained, the following conclusions were reached:

1. The Cr(VI) uptake capacity data obtained for the adsorbents effectively fits the quartic
RSM polynomial models (R2 = 0.997) with insignificant lack of fit (p-value < 0.05).

2. The Cr (VI) uptake capacity improved with increasing Cr(VI) initial concentration
and initial pH, while increasing the operational temperature with optimal conditions
obtained at temperature 25 ◦C, pH = 2 and 126 mg/L initial Cr(VI) concentration.

3. Levenberg-Marquardt ANN algorithms (ANN-LMA) converged faster and better
compared to other tested ANN-based algorithms.

4. Both the RSM and ANN-LMA models performed well and based on the non-linear
Langmuir model KL values, they predicted −∆G◦, −∆H and −∆S which supported
the actual feasibility, spontaneity and greater order of reaction as well as the exother-
mic nature of Cr(VI) uptake onto the tested adsorbents.

5. The ANN-LMA models’ accurate kinetic parameter predictions further indicated a
mainly pseudo-second-order process conforming the predominant chemisorption
mechanism, which are well established by the Cr(VI) speciation and surface charges
for the Cr(VI) uptake by both CoAl-LDH and bentonite-CoAl-LDH.

6. The ANN-LMA models’ predictions were better compared to the RSM predictions,
and the non-linearized forms of the kinetics and equilibrium models provided better
parameters compared to the linearized forms.

7. The ANN-LMA models indicated a consistent and insignificant decline in their pre-
diction potentials under the different mechanistic studies undertaken.

8. This study demonstrates the high potential reliability of RSM and ANN-LMA models
in capturing Cr(VI) adsorption data for LDHs nanocomposites heavy metal uptake in
water and wastewater treatment.

9. It is recommended to undertake further studies on the influence of independent vari-
able analysis and sensitivity analysis for the RSM and ANN-LMA models on equilib-
rium, kinetic, and thermodynamic predictability to further establish their potentials.
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mental variables and results; Table S4: Linear equilibrium models fittings parameters CoAl-LDH and
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