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Abstract: The integrative and comprehensive analysis considering the spatial and temporal repre-
sentation of the hydrological process, such as the distribution of rainfall, land cover and land use,
is a challenge for the water resources management. In tropical areas, energy availability through-
out the year defines the rainfall distribution and evapotranspiration rate according to vegetation
heterogeneity. To quantify water balance in tropical areas including these heterogeneities in the
soil-vegetation-atmosphere relationship, we developed a fully distributed hydrological model called
the Rainfall Runoff Balance Enhanced Model (RUBEM). The model was developed under a physics-
based process structure, using remote sensing data to represent soil-water balance patterns, such
as evapotranspiration, interception, baseflow, lateral flow, recharge, and runoff. The calibration
procedure was based on nine global parameters. RUBEM could represent the spatio-temporal het-
erogeneities (soil, land use and land cover (LULC), topography, vegetation, and climate) in three
basins in a tropical area. The results showed good adherence between the processes governing the
soil-vegetation-atmosphere relationship according to the humidity indicator and the runoff coefficient.
Overall, RUBEM can be used to help improve the management and planning of integrated water
resources under climate, land use, and land cover changes in tropical regions.

Keywords: hydrological modelling; distributed model; land use and land cover; water balance;
remote sensing; PCRaster

1. Introduction

Understanding and quantifying hydrological patterns at the basin level under climate,
land use, and land cover changes is a complex challenge [1–3]. Hydrological models
play an important role in integrating water resource management (IWRM). These models
have been developed since the 1960s [4]. The effects of the scientific community have led
to the development of semi- and fully distributed hydrological models, such as VIC [5],
SWAT [6], WetSpass [7], MGB-IPH [8], WEAP [9], SPHY [10], PCR-GLOBWB [11,12], MIKE-
SHE [13–17], HIMS [18], IHDM [19], SLURP [20], the Xinanjiang Model [21], InHM [22],
and PIHM [23], among others. The number of existing hydrological models is probably
in the tens of thousands [24]. The US National Weather Service (NWS) has tested some of
these models in the Distributed Model Intercomparison Project (DMIP) [25,26]. The DMIP
showed that the performance of these models varies widely from good to very good and
allows the application of current data input, such as radar rainfall and remote sensing
data. In addition to the number of existing hydrological models, different conceptions and
structural models contribute to understanding hydrological similarities and reducing the
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main source of uncertainties caused by model structure and specific pattern representation
at the basin level [27–31].

The scale of application plays a vital role in determining flow patterns [32]. Heteroge-
neous small-scale features, such as vegetation, soil structure, preferential flow pathways
through the soil, rills, and microtopography, are known to affect surface flow [4]. However,
it is not guaranteed that the same equations will provide an excellent description of the
physical flow process. Furthermore, the model parameters may not be suitable for rep-
resenting basin mechanisms during the specified observation periods [33]. Hydrological
responses are governed by the combination of climate, topography, soil, vegetation, and
geology, which are the primary sources of heterogeneity in basins [34]. The accuracy of a
model in representing physical processes depends on its ability to describe heterogeneities
on an appropriate temporal and spatial scale [35].

In tropical areas, solar energy influences the hydrological cycle more directly than
in other regions of the planet [1,36]. Rainfall is the main factor that determines seasons;
therefore, the amount and time distribution of rainfall is an essential factor in distinguishing
sub-climate zones as wet (>1800 mm), wet-dry (700–1800 mm), and dry (<700 mm) [37].
Based on the amount of energy available, evapotranspiration plays an essential role in
determining water balance because of the link between the water and energy cycles on
heterogeneous surfaces [38,39]. Currently, methodologies based on remote sensing are
available to estimate evapotranspiration [40,41].

Along with climate change, other factors may also affect the hydrological cycle and
watershed flow, such as changes in land use and land cover (LULC), construction of
reservoirs, drainage systems, river morphology, agricultural practices, and significant
increases in irrigation water [42,43]. All these factors alter the stability of the hydrological
process at the basin level, thus affecting water resource management and planning.

Hydrological models capable of estimating basin hydrological pattern conditions
based on physical processes are valuable tools for managing water resources [31,44]. These
models are fundamentally crucial for watersheds that are deemed as critical owing to
water scarcity or serious water conflicts, for predicting the response of unmonitored water-
sheds, and for planning future use based on land-use changes or climate change scenarios.
Distributed hydrological models are usually parameterized by deriving the following
parameter estimates: (i) topography, (ii) physical properties of the soils, and (iii) LULC in
the basin [5,7,10,19].

Here, we present a distributed hydrological model called the Rainfall Runoff Balance
Enhanced Model (RUBEM), which can compute the patterns of soil-water balance on a
monthly time-step basis considering the observed rainfall and LULC changes throughout
the simulation period. The formulation of the proposed model takes into account the
monthly changes of LULC based on the remote sensing images to estimate the variable
of the evapotranspiration process. The RUBEM limitations identified in the model de-
velopment and the model application are: (i) fixed monthly time-step, (ii) depending on
the watershed characteristics and input data spatialization, the minimum and maximum
mean monthly discharge are underestimated, and (iii) knowledge of programing language
data set input preprocessing. However, RUBEM is under development and allows im-
provements. Data set input pre-processing automatic applications are under development.
Section 2 presents the methodologies applied for RUBEM development and the model
applications to tree basins. Section 3 presents the results of the water cycle patterns, and
Sections 4 and 5 present the discussion and conclusions, respectively.

2. Materials and Methods
2.1. Model Overview

Hydrological models based on physical process structures have similar descriptions
of formulation, scale, and solution technology. Physical processes rely on a set of variables
and parameters organized into equations to simulate the response of hydrological patterns.
These models are classified according to the level of detail in basin heterogeneity. The
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combined models do not consider spatial variability variables within the basin. Semi-
distributed models reflect the spatial variability variables in sub-areas. Fully distributed
models process spatial variability using grid cells [45].

In this paper, we present the RUBEM as a fully distributed hydrological model that
integrates classical rainfall runoff processes [46]. Water balance formulation was based
on [9,10,47]. Figure 1 shows the structure of the hydrological processes used in the model.
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Figure 1. Diagram showing the hydrological processes of the RUBEM model. (First layer indicates
the pre-processing of the input data).

In tropical regions, evapotranspiration is one of the most important factors affecting
the water balance physical process [36,48]. Evapotranspiration refers to the transfer of
water from the soil-plant system to the atmosphere. Actual evapotranspiration is calculated
based on the sum of evapotranspiration values for each land cover type using the concept of
potential evapotranspiration [47]. The potential evapotranspiration (ETp) of the vegetated
plot is calculated using the Penman-Montheith method [49]. To use the methodology
described in [49], the crop coefficient (kc) and soil moisture reduction coefficient (ks) are
calculated according to the NDVI (Normalized Difference Vegetation Index) and soil
moisture content (Equations (1)–(5)).

ETREAL = αV ETR,V + αSETR,S + αW ETR,W + αI ETR,I (1)

ETR,V = ETP · kc · ks (2)

kc = kcmin + (kcmax − kcmin) ·
(

NDVI − NDVImin
NDVImax − NDVImin

)
(3)

i f NDVI ≤ 1.1 · NDVImin then kc = kcmin (4)

ks =
ln(TUR − TUPM + 1)

ln(TUCC − TUPM + 1)
(5)

ETR,S = ETP · kcmin · ks (6)

i f TUR < TUPM then ks = 0 (7)

ETR,W =
ETP
kp

(8)
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kp = 0.482 + 0.024 · ln(B)− 0.000376U2 + 0.0045UR (9)

ETR,I = I (10)

where: ETREAL—real evapotranspiration (mm); αV—vegetated fraction of cell area (%);
αS—bare soil fraction of cell area (%); αW—water fraction of cell area (%); αI—impermeable
fraction of cell area (%); ETR,V—real evapotranspiration of the vegetated area (mm); ETR,S—
real evapotranspiration of the bare soil area (mm); ETR,W—real evapotranspiration of the
water area (mm); ETR,I—real evapotranspiration of the impermeable area (mm); ETP—
potential evapotranspiration (mm); kc—crop coefficient (-); kcmax and kcmin—maximum
and minimum possible values for crop coefficient; ks—soil moisture reduction coefficient (-);
NDVImax and NDVImin—maximum and minimum values of the standardized vegetation
index obtained based on the historical NDVI series for each cell; TUR—root zone moisture
content (mm); TUPM—wilting point moisture content in the root zone (mm); TUCC —field
capacity moisture content in the root zone (mm); kp—water evaporation coefficient (-);
B—Class A Tank Border Width [between from 20 to 30 m] (m); U2—average wind speed at
2 m above ground surface (m/s); UR—relative humidity (%); and I—Interception [from
1 to 3 mm].

The coverage fractions and cell roughness coefficient were defined according to the
coverage identification obtained from a previously classified raster image [50]. The value
of the cover fraction is empirical and does not change during the analysis period; how-
ever, it can be modified according to the experience perception of the modeler. In the
Supplementary Table S1 summarizes the values of cover fraction adopted in the model.

Crop water demand is a complex biological process that depends on soil moisture
and the evaporative demand of the atmosphere [51,52]. The crop coefficient (kc) depends
on the maximum and minimum values of vegetation and the NDVI under the following
conditions: if NDVI ≤ 1.1 NDVImin, kc = kcmin. The soil moisture reduction coefficient (ks)
depends on the moisture content. If the moisture content of the root area (TUR) is lower
than the moisture content of the soil at the wilting point (TUPM), the coefficient of moisture
reduction (ks) is zero. ETR,W depends on the water evaporation coefficient (Equation (8)),
ETR,S is calculated using kcmin. ETR,w is calculated using the evaporation coefficient kp
(Equation (9)), and ETR,I is based on the losses caused by interception (Equation (10)).
Incorporating the processes of evapotranspiration and soil moisture content in the water
balance process is important to represent heterogeneous sources, such as climate, rain,
terrain, soil, and vegetation cover [34,35].

The water balance of soil is calculated in the non-saturated (root zone) and saturated
zones (Equation (11)). The moisture content in the unsaturated zone depends on the previ-
ous moisture content, effective rainfall, and output (Equation (13)). Effective rainfall is the
difference between the rainfall and interception in each cell (Equation (12)). The moisture of
the saturated zone depends on the previous moisture, base flow, and groundwater recharge
(Equation (S3)). A cell fully occupied by water with moisture in the root zone is considered
saturated, that is, if αW = 1 then TUR = TUS.

In the root zone of the soil, surface runoff relies on soil moisture conditions based on
lateral flow, recharge, and evapotranspiration. The saturated zone of the soil affects the
calculation of base flow and recharge parameters. The water balance equation adopted in
the RUBEM allows calculation of the total superficial flow.

TUR = TUR,T−1 + PE − SR − LF − REC − ETREAL (11)

PE = Pm − I (12)

TUS = TUS,T−1 − BF + REC (13)

where TUR—root zone moisture content (mm); TUR,t−1—root zone moisture content at
the previous time step (mm); PE—effective precipitation (mm); SR—surface runoff (mm);
LF—lateral flow (mm); REC—groundwater recharge (mm); ETREAL—total real evapo-
transpiration (mm); Pm—total monthly precipitation (mm); I—total interception (mm);
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TUS—saturated zone moisture content (mm); TUS,t−1—saturated zone moisture content at
the previous time step (mm); and BF—base flow (mm).

2.2. Model Development

The model was written in Python using the PC Raster framework [53] to support
the spatial calculation of water balance at the grid cell level. RUBEM is a continuous
hydrological model with a formulation that represents the flow process between the
soil and atmosphere layers. The model (i) integrates the main hydrological processes;
(ii) has the flexibility to be applied for various applications, including climate and LULC
change impact, irrigation planning, and drought; (iii) can be used for different spatial
resolutions (pixel size options), applied to small and large watersheds, as well as at the
farm and country levels; (iv) allow adequate representation of changes in land cover and
related processes through monthly temporal resolutions; and (v) can be implemented
easily. The implementation is open source, and the input and output maps can be directly
used in Geographic Information System (GIS) environments; it uses remote sensing data,
has a reduced number of parameters, and uses a configuration file that allows changing
parameters and choosing the output. The RUBEM has six sets of data input: hydrological,
climate, soil, ground elevation, LULC, and NVDI. Table 1 summarizes the model input data
and their descriptions. Supplementary Figure S1 illustrates the water balance variables.

Table 1. Input data list with descriptions, types, and sources.

Data Description Type Source

Hydrological Historic rainfall and runoff, monthly
rainy days

Raster (.map or .tif) and
tabular (.txt)

National Water Agency
(ANA)–Hidroweb

Climate Historic evapotranspiration and Class
A Pan coefficient (kp) Raster (.map or .tif) National Water Agency

(ANA)–Hidroweb

Soil Soil types used for aquifer recharge
calculation Raster (.map or .tif) CPRM HYBRAS [54]

Ground Elevation
(DEM)

Digital Elevation Model used to
calculate Local Drain Direction (LDD) Raster (.map or .tif) NASADEM

LULC
Land Use and Land Cover Data, area
fractions and Manning’s Roughness
Coefficient

Raster (.map or .tif) and
tabular (.txt) MapBiomas

NDVI
Normalized Difference Vegetation
Index used in evapotranspiration’s
calculation

Raster (.map or .tif) MODIS

To assist the user in model application, we developed a plug-in for QGIS entitled
RUBEM Hydrological, which supports the loading of input data, configures parameters,
runs the model, and visualizes the results of the simulation. The plug-in does not have any
preprocessing tools. However, the documentation and scripts for this purpose are openly
available in the Supplementary Materials.

2.3. Model Aplication

The RUBEM was applied to three Brazilian basins, two of which are located in wet
regions (Piracicaba River Basin (PRB) and Upper Iguaçu River Basin (UIRB)) whereas
the third is located in the Brazilian semiarid region (Ipojuca River Basin (IRB)). The IRB
has two hydrological zones with half of the region having a dry climate and the other
half having a wet climate. The three basins present different characteristics of LULC,
soil, evaporation, and hydrological regions (see details in the Supplementary Materials).
Figure 2 shows the locations of the model application areas. The basins have different
demands for water use, with primary needs for public supplies, industry, and agriculture,
as shown in Table S6. The water abstraction and transposition system represents a challenge
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in the model calibration process under uncertainties from the observed gauge station and
the natural runoff calculated using the applied methodology.
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2.4. Calibration and Validation

A differential evolution algorithm [55] was used in the model calibration process. This
method executes three operations: mutation, crossing and selection. The objective function
was set to obtain a Nash –Sutcliffe efficiency (NSE) average value, for all station considered,
close to NSE = 1. Over 27,000 combinations of the nine parameters were evaluated. For
instance, the time required to choose solution in PRJ reached 120 h of processing. The
selection criteria of the stations included a series with flaws, location in the basin, LULC,
and rainfall regimes. The RUBEM calibration relies on nine global parameters, as listed
in Table 2. Their range values were considered to represent the physical features of the
watershed (soil, coverage, and rainfall). The values were based on [10,18,47], and verified
on validation test in a subbasin of PRB.

From the 27,000 evaluation for each basin were selected the better sets of param-
eters, which resulted in the best NSE [56] according to Equations (S37) and (S38) (see
Supplementary Materials), to verify the magnitudes of the water balance patterns. Thus,
we evaluated whether the parameters of evapotranspiration and recharge flows in the river
were consistent with the proportions reported in [10,47,57,58]. The set that results in the
best combination of NSE and water balance proportions consistency were select as final
calibrated parameters.

In addition to the calibration process assessment, we also evaluated the root mean
square error (RMSE) using Equation (S36) [44]; number of times the variability of the
observations was greater than the mean error—nt nd relative bias—RB using
Equation (S39) [59]; and the asynchronous regression method that determines the function
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F(Qs) = u · F(Qo) according to the percentiles of qo and qs of the distribution of F(Qo) and
F(Qs) at each probability level using equations from Equations (S40)–(S42) [60]. Table S4
presents the criteria used for evaluating the performance indicators as described in [56,61].

Table 2. Calibration parameters list, descriptions and restrictions.

Parameter Description Restriction

Interception Parameter (α) The interception parameter value. It represents the daily
interception threshold that depends on land use. 0.01 ≤ α ≤ 10

Parameter related to Soil Moisture (b) Exponent value that represents the effect of the condition of
moisture in the soil. 0.01 ≤ b ≤ 1

Land Use Factor Weight (w1) Weight of land-use factor. It measures the effect of the land use on
the potential runoff produced. w1+ w2+ w3 = 1

Moisture Soil Factor Weight (w2)
Weight of moisture soil factor in the permanent wilting point. It
measures the effect of the soil classes on the potential surface
runoff produced.

w1+w2+ w3 = 1

Slope Factor Weight (w3) Weight of slope factor. It measures the effect of the slope on the
potential runoff produced. w1+w2+ w3 = 1

Regional Consecutive Dryness Level
(RCD)

Regional Consecutive Dryness level incorporates the intensity of
rain and the number of consecutive days in runoff calculation. 1 ≤ RCD ≤ 10

Flow Direction Factor (f) It is used to partition the flow out of the root zone between
interflow and flow to the saturated zone. 0.01 ≤ f ≤ 1

Baseflow Recession Coefficient (αgw)
Decimal value refers to the recession coefficient of the baseflow. The
lower values show areas that react slowly to groundwater drainage,
while the higher values show areas that react rapidly.

0.01 ≤ αgw ≤ 1

Flow Recession Coefficient (x)

Flow recession coefficient value incorporates a flow delay in the
accumulated amount of water that flows out of the cell into its
neighboring downstream cell (0 means that during a month with
no rainfall, there will be no surface runoff).

0 ≤ x ≤ 1

3. Results
3.1. Calibration and Validation

The modeled results were evaluated for the calibration period (January 2000 to De-
cember 2009) and the validation period (January 2010 to December 2018). At least five
stream gauges were considered for each basin in the calibration process. Global parameters
obtained during the calibration process were applied during the validation period. Table 3
shows the values for each of these parameters in the three basins. Figure 3 shows the
hydrographs for the calibration and validation periods.

Table 3. Parameter values of the RUBEM model obtained during calibration and applied to validation
in the three basins studied.

Parameter IRB PRB UIRB

Interception parameter (α) 4.415 1.049 9.771
Parameter related to soil moisture (b) 0.078 0.152 0.181
Land use factor weight (w1) 0.51 0.47 0.46
Soil factor weight (w2) 0.12 0.35 0.43
Slope factor weight (w3) 0.37 0.18 0.11
Regional Consecutive Dryness level (RCD) 5.375 7.957 8.342
Flow direction factor (f) 0.581 0.767 0.831
Baseflow recession coefficient (αgw) 0.922 0.782 0.552
Flow recession coefficient (x) 0.307 0.219 0.107
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Table 4 lists the model efficiency indices (RMSE, NSE, and RB) for the three basins of
the model application. The RMSE was acceptable or good at most of the gauge stations
in the three basins during the two periods analyzed. Ref. [62] assumed that RMSE values
below half of the standard deviation (SD) for the observed flows can be considered low.
This criterion was met at all gauge stations during both analysis periods.

Table 4. Efficiency indices of the RUBEM model in drainage areas of gauge stations of the studied
basins during calibration and validation periods.

Basin Area (km2)
Calibration Period Validation Period

N SD RMSE NSE RB N SD RMSE NSE RB

IRB

672 58 3.357 3.078 0.159 0.315 80 0.194 1.528 −61.2 12.71
2000 100 6.517 4.225 0.58 0.781 104 3.316 1.123 0.885 2.041
2650 105 7.145 5.355 0.438 0.818 68 6.712 6.258 0.131 1.03
2960 117 11.285 6.847 0.632 0.01 104 9.328 5.057 0.706 0.342
3310 82 16.144 12.32 0.417 −0.397 105 9.070 5.355 0.652 0.007

PRB

358 120 2.409 1.494 0.615 −0.238 96 3.183 1.849 0.663 −0.01
431 120 3.539 1.846 0.728 0.056 96 4.090 2.341 0.672 0.104
928 82 10.073 6.552 0.577 −0.227 56 11.602 6.541 0.682 −0.18

1350 120 12.113 7.541 0.612 −0.205 96 13.906 9.601 0.523 0.22
1580 105 16.493 9.327 0.68 −0.134 40 15.834 9.575 0.634 −0.2
2490 85 13.245 9.923 0.439 0.41 60 22.769 9.874 0.812 0.23
3400 120 23.524 17.47 0.448 0.468 60 39.926 21.303 0.715 0.348

UIRB

231 120 2.468 1.423 0.667 −0.005 60 3.235 1.709 0.721 −0.09
272 120 3.913 2.928 0.44 −0.226 56 2.547 2.723 −0.142 −0.23
564 120 4.401 4.587 −0.09 0.48 62 5.683 3.395 0.643 0.177

1930 120 21.904 11.62 0.719 −0.078 25 22.625 8.411 0.862 −0.29
2330 120 26.250 13.37 0.741 −0.027 108 22.702 8.072 0.874 −0.14

Legend: black number = unsatisfactory; black underlined number = acceptable; bold number = good; bold
underlined number = very good; N—sample size; SD—standard deviation.

The number of times (nt) when the variability of the observations exceeds the average
error allows us to assess the representativeness of the range covered by the simulated
values [56]. Thus, the performance of the model does not change linearly with the NSE.
The NSE was unsatisfactory for the IRB during calibration in two gauge stations (15.7%
of the drainage area) at UIRB and in five gauge stations (80.91%) at the PRB. During the
validation period, the NSE was acceptable or good in three gauge stations (71.3% of the
area) at the IPR, five (72.2%) at the PRB, and three (84.3%) at the UIRB.

The RB measures the relationship between the average error and average flow ob-
served [59]. The RB was unsatisfactory in the IRB, resulting in higher calibration values. In
the PRB, bias was equal to or greater than acceptable at three gauge stations in calibration
and at four validation stations. In the UIRB, good or very good levels were observed in
both periods, and a slight negative bias prevailed (Table 4).

The hydrographs are presented at the most significant drainage areas for each of the
basins of the model application. The IRB (Figure 3a) shows that the model underestimated
the highest discharges and adjusted the lowest discharges during the calibration period,
resulting in RB = −0.397. The model was thus suitable for both high and low discharges
(RB = 0.007). In the PRB (Figure 3b), the model overestimated the low discharges and
adjusted them to high discharges in both periods, yielding RB = 0.468 (calibration) and
RB = 0.348 (validation). In the UIRB (Figure 3c), all index performances for both periods
were considered satisfactory.

Efficiency indices use simultaneous observations and simulations of flow data. Small
sample sizes limit the representativeness of efficiency indicators [56,59]. Ref. [60] proposed
a regression of one time-varying quantity against another without requiring simultaneous
knowledge of both. Asynchronous regression was performed with the observed and
simulated discharges related to the percentile of their accumulated distribution, as shown
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in Figure 4. The proximity of cumulative distribution indicated the model performance.
The model did not reproduce the highest discharge in the three basins. The asynchronous
regression results R2 > 0.89 for all basins, but the modified regression coefficient (rm)
considering the sum of squared deviations from the respective averages are low [63]. The
model tended to underestimate flows in the IRB (rm = 0.30) and UIRB (rm = 0.46) basins
and to underestimate in the PRB (rm = 0.49). The fitted line was effective for comparing the
1:1 ratio between the observed and simulated discharges. Fisher’s test of the two samples,
considering the indifference of the mean and variance between the samples, indicated
no significant difference (99% confidence) between the observed and simulated flows in
the three basins. Ref. [64] considered a satisfactory fit for R2 = 0.72 in simulations of the
Brazilian basin. Ref. [65] show the good correlation between modelled and observed base
flow index (R2 > 0.87).

The results showed a good fit for calculating the average monthly discharge for
all periods (from January 2000 to December 2018). RUBEM underestimated the median
discharges by 23.5% in the wet season and 9.3% in the dry season in the IRB. In the PRB, the
median discharge was overestimated by 33.7% and 51% during the wet and dry seasons,
respectively. In the UIRB, the model underestimated the median discharge by 8.1% during
the wet season and 4.3% during the dry season.

3.2. Soil and LULC Heterogeneities Analysis

The entire output parameter has spatial-temporal results as a raster file. Figure 5 shows
lower evapotranspiration in areas with low NDVI values, more significant moisture in the soil
texture of loam and clay, and higher impervious areas and surface runoff in urban land use.
All spatially calculated variables are shown in Figures S11–S13 (Supplementary Materials).

With a suitable performance of the model application results, water balance patterns
during the calibration and validation periods could be evaluated according to the observed
rainfall and LULC through spatial-temporal changes. Three cells were selected to evaluate
the LULC modifications throughout the simulation period (Figure 6). The evaluated
patterns were compared with the total rainfall to compute the ratio of each component in
the three cells. Cell 1 (−8.33 lat, −35.20 long) presents a pasture area that turns into a forest
area in the IRB. Cell 2 (−22.58 lat, −47.68 long) shows an area without LULC changes in
the PRB, and Cell 3 (−25.54 lat, −49.40 long) shows an area that began as a forest, changed
to a pasture, back to a forest, followed by cropland, and changed into an urban area in the
UIRB. The forest cover in the IRB and UIRB constitutes the Atlantic Forest ecosystem. The
NDVI (from 0.23 to 0.83) and kc (from 1.14 to 1.8) extensions were greater in UIRB than in
IRB (NDVI from 0.53 to 0.89 and kc from 1.46 to 1.8).

The area with no alterations in the LULC in the simulation period resulted in a com-
prehensive pattern of the soil-water balance as expected, regarding the antecedent soil
moisture conditions, meaning that the pattern had a standard pattern for each component.
However, altered LULC resulted in significant changes in the water cycle patterns. Figure 6
shows the water cycle patterns for the selected cell. For instance, in the IRB sample, inter-
ception of the coverage area with the forest was significantly higher and evapotranspiration
was slightly lower than that in the period in which the cell was cropped. In the PRB,
evapotranspiration was significantly higher, with 65% of the rainfall occurring in 2014. A
change in the LULC from the crops to urban areas in the last UIRB period resulted in an
increase in surface runoff from 40% to 77% of the rainfall, and evapotranspiration from 62%
with forest cover to 47% with crop cover and 7% with urban cover. The cell shows that the
difference in evapotranspiration corresponds to nearly 60% of precipitation in 2000 (forest
cover), approximately 10% between 2016 and 2018 (urban cover), and approximately 10%
from 2016 to 2018 (urban cover), while the runoff was 30% and 80%, respectively.
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(S. runoff—surface runoff, Rec—recharge, Lf—lateral flow, Etp—evapotranspiration, Bf—base flow).
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The correlation between the moisture index (P/ETp) and runoff coefficient (SR/P) was
verified for a set of cells with different coverages [66], randomly selected in the three basins
(IRB = 320; PRB = 1000 and UIRB = 250) in a month representing the wet (Figure 7a) and
dry seasons (Figure 7b). The correlation coefficients for the wet (r = 0.71) and dry (r = 0.66)
seasons indicate a satisfactory approach [65,67] for the spatial (500 m grid) and temporal
(monthly) scales to represent the relationship between water availability and runoff. The
correlations between P/ETp and SR/P in the cells sampled with equal coverage in the
basins showed a strong correlation in both seasons (Table 5).

Water 2022, 14, x FOR PEER REVIEW 16 of 25 
 

 

 

Figure 7. Correlation between moisture index (P/ETp) and runoff coefficient (SR/P) in cells with 

different coverage in the IRB, PRB, and UIRB basins under: (a) wet and (b) dry seasons. P-rainfall 

(mm), ETp-potential evapotranspiration (mm), SR-surface runoff (mm). 

4. Discussion 

4.1. Calibration and Validation 

We understand that changes in soil saturation significantly impact the patterns of 

base flow and runoff, supported by the minimum and maximum annual total rainfall. 

Higher specific rainfall events did not have a high impact on recharge, evapotranspira-

tion, or base flow, which were directly related to the soil-water balance layer. Generally, 

application of the model is considered acceptable. However, Figure 3 shows that RUBEM 

was unable to simulate the highest mean monthly runoff, possibly because the highest 

rainfall event could modify the mean monthly runoff but could not change the soil balance 

according to the temporal scale. Furthermore, the poorer quality flow record and anthro-

pogenic act amplify the differences between the series. However, the index performances 

show that the model were considered satisfactory, according to [64,65,67]. 

The interception parameter was significantly higher in the UIRB (α = 9.77), indicating 

greater interception of rainfall in this basin. The RCD and w2 values were higher in the 

UIRB (RCD = 8.34; w2 = 0.43) and PRB (RCD = 7.96; w2 = 0.35). These parameters contrib-

ute to increasing the potential runoff in permeable areas. In the IRB, the parameters RCD 
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(mm), ETp-potential evapotranspiration (mm), SR-surface runoff (mm).
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Table 5. Number of cells with coverage in each basin and correlation coefficients between wetness
index (P/ETp) and runoff coefficient (SR/P) in the wet and dry seasons.

Coverage Basin

Season

Wet Dry

N. Cells r N. Cells R

IRB 12 11
Forest PRB 245 0.77 251 0.72

UIRB 83 84

IRB 82 72
Savanna PRB 1 0.63 2 0.85

UIRB - -

IRB 166 168
Pasture PRB 358 0.76 144 0.90

UIRB 31 31

IRB 24 26
Crop PRB 167 0.55 181 0.74

UIRB 41 41

IRB 25 29
Agriculture and Pasture PRB 153 0.53 135 0.75

UIRB 28 29

IRB 7 10
Urban PRB 61 0.98 67 0.86

UIRB 59 56

4. Discussion
4.1. Calibration and Validation

We understand that changes in soil saturation significantly impact the patterns of base
flow and runoff, supported by the minimum and maximum annual total rainfall. Higher
specific rainfall events did not have a high impact on recharge, evapotranspiration, or base
flow, which were directly related to the soil-water balance layer. Generally, application of
the model is considered acceptable. However, Figure 3 shows that RUBEM was unable
to simulate the highest mean monthly runoff, possibly because the highest rainfall event
could modify the mean monthly runoff but could not change the soil balance according
to the temporal scale. Furthermore, the poorer quality flow record and anthropogenic act
amplify the differences between the series. However, the index performances show that
the model were considered satisfactory, according to [64,65,67].

The interception parameter was significantly higher in the UIRB (α = 9.77), indicating
greater interception of rainfall in this basin. The RCD and w2 values were higher in
the UIRB (RCD = 8.34; w2 = 0.43) and PRB (RCD = 7.96; w2 = 0.35). These parameters
contribute to increasing the potential runoff in permeable areas. In the IRB, the parameters
RCD = 5.38, w2 = 0.12, and low soil moisture factors (b = 0.08) reduced surface runoff. The
largest area of the IRB in the semiarid region explains this parameter value.

The highest value of the factor for the partition of flow directions in the PRB (f = 0.77)
and UIRB (f = 0.83) favored lateral flow and did not favor recharge in these basins. Recharge
plays a vital role in forming the basic flow, particularly during long dry months [10,47,61].
The higher value of the basic flow recession factor observed in the IRB (αgw = 0.92) disfavors
basic flow, a feature of arid regions. Higher values of the damping coefficient increased the
importance of the discharge generated in the previous month and reduced the discharge
generated in each cell in the current month. This coefficient was the highest in the IRB
(x = 0.31), resulting in a more significant damping of discharge into the basin.

The same set of parameters controlled all drainage processes during the analysis
period. This condition facilitates representation of soil, climate, cover heterogeneities, and
calibration of the best parameter sets. Manual calibration is also possible [10,47,58], but is
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very laborious. The differential evolutionary algorithm adopted in this study was proven
to be effective. However, high levels of heterogeneity may hinder parameter calibration. As
most IRBs are in dry regions and the other regions are wet, RUBEM performance was poor.

We considered the representative parameter sets to simulate the discharge in each
basin for calibration and validation. RMSE, NSE, RB, and asynchronous regression showed
acceptable results. Even though the NSE obtained in the calibration was unsatisfactory for
the IRB, it was acceptable or good in the largest basin area during the validation period.
The same behavior was observed for the UIRB and PRB. Considering the downstream
gauge station, simulation discharges were lower than those observed 60% of the time in the
IRB and UIRB and were higher than those observed 92% of the time in the PRB. However,
the regression coefficients between the observed and simulated discharges were satisfactory
for all three basins.

Asynchronous regressions between cumulative distributions of observed and simula-
tion discharges can be used to fill the missing data in observed datasets, hindcast studies,
as well as forecast discharges based on rainfall estimates from regional climate models for
ungauged areas [68–70].

The NSE was acceptable for UIRB and unsatisfactory for IRB and PRB during the
calibration period [71]. Some characteristics of the study areas were determinants of the
results obtained. The basins supply water to cities and have an important water demand
for different uses. The PRB and UIRB present reservoir systems for supply systems. In the
PRB, four of the seven-gauge stations used for calibration are affected by a considerable
transfer of water to a neighboring basin. The difference between the observed and natural
simulated discharges contributed to the reduction in NSE during the calibration. The
results of the gauges located in the upper basins with low anthropogenic interference
(Supplementary Figure S8) showed better NSE and index results (acceptable according to
Supplementary Table S4). According to [72], global calibration is limited to homogeneous
hydrological regimes and implies a diminution in performance, specifically in estimating
high flows in small catchments. The two opposite rainfall regimes at the IRB (semiarid
and wetland) suggest that it is necessary to consider two sets of different parameters for
calibration. During the validation period, NSE was acceptable or good in all three basins.
The RB was very good for the UIRB during calibration and for the IRB during validation.
Discharges were overestimated in the PRB and underestimated in the IRB and UIRB.

Asynchronous regression represents a linear regression between the observed and
simulated flow duration curves. The hydrograph of the observed and simulated monthly
discharge shows a good recession shape. The median, mean, maximum, and minimum
monthly discharges were also evaluated in the results and discussion.

RUBEM showed different results in the smaller drainage areas of the three basins.
The worst performance was found at a 672 km2 gauge station in the IRB basin. Wang
et al. 2018 achieved a moderate performance in basins smaller than 400 km2 because of the
solid nonlinear relationship between rainfall and flow. Ref. [47] found that the WetSpass
model failed in small basins because some processes involved had timescales shorter than
a month.

In the three basin simulations, the grid resolution was set at 500 m. RUBEM was
tested in a 55.6 km2 PRB sub-basin with a grid resolution of 30 m and showed satisfactory
performance. A greater spatial resolution provides more details on the variables influencing
runoff. However, this increases the number of variables, simulation computational burden,
and difficulty in calibrating the parameters. Therefore, the spatial scale is defined based on
the degree of variability and uncertainty to be represented. Refs. [4,35,62,73] pointed out
that the model does not represent the heterogeneity of microscale hydrological processes,
even at a large spatial resolution.

The physical characteristics of the soil in each basin also varied, resulting in uncertainty.
The values adopted for each basin represent the average conditions according to the
classification adopted in Brazil [54]. As in the VIC model [73], RUBEM also demonstrated
sensitivity in adjusting minimum flows under specific conditions of long-term dry periods.
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Under these conditions, better model adaptability can be achieved by improving the
physical and hydrological properties of soil.

RUBEM was developed to improve the management and planning of integrated
water resources under climate, land use, and land cover changes in tropical areas. The
time step to represent hydrological process according to the model formulation at a grid
basis level was selected according to the time-scale response of the soil recharge and
evapotranspiration processes [74], including the hydrometric gauge station quality in
Brazil [64,75]. Furthermore, we noted the successful application of the SWAT model (semi-
distributed) in Brazilian watersheds, with very good calibration results on a monthly
basis rather than on a daily basis [76]. However, RUBEM has been developed using a
physics-based process description structure [28,77,78] and remote sensing data [3,50] to
improve the soil-water balance (evapotranspiration, interception, baseflow, and recharge) in
tropical regions. Different conceptions and structural models contribute to understanding
hydrological similarity and reducing the main source of uncertainties introduced by the
model structure and specific pattern representation at the basin level [27–31]. Additionally,
it is important to note the uncertainties and accuracy of the input dataset, especially the
hydrometrical gauge stations, which have one of the most important roles in the calibration
and validation modelling assessment.

4.2. Soil and LULC Heterogeneities

The volume of moisture available in the root layer is influenced by depth, thickness,
bulk density, and moisture content. The depth of soil to be explored by the root system of
vegetation is defined by the physical properties of the soil class. This ensures that the water
capacity of the soil is not limited by the depth of the root system. Although the different
vegetation types present different root system characteristics, removal of water from the soil
by the plant is estimated by ETREAL, which depends on the type of physio-morphological
characteristics of the vegetation in each cell. The kc and ks define the removal of water
from soil. According to [49], the ET of a species can be obtained using empirical values of
kc, which should include all the differences in the physiological morphology of the crop
in its real state and the potential conditions (soil-water availability, leaf mass, and full
physiological activity).

In distributed hydrological models, different responses are expected at different tem-
poral and spatial scales. The correlation between the climatological and physical char-
acteristics of the basin helps understand the prevailing controls on the behavior of the
basin at a particular scale [66]. The correlation between the moisture index (P/ETp) and
runoff coefficient (SR/P) at specific spatial and temporal scales was found to assess the
representativeness of the analysis. Cell sampling during the dry season resulted in a very
low average P/ETp in the UIRB, indicating that the month sampled (July 2018) was very
dry, resulting in a low SR/P. Located in the same hydrological region, the PRB showed an
average P/ETp 11 times higher than that obtained in the UIRB in the sampled month (June
2013), resulting in an SR/P twice as high. The antecedent storage of water in the soil at the
UIRB may have been the cause of this disproportionation. The P/ETp anomaly during the
dry month of the UIRB contributed to a reduction in the correlation coefficient between the
indices. The IRB presented P/ETp in the wet season that was three times greater than that
in the dry season (February 2014), resulting in a proportional reduction of SR/P. This basin
is located at a higher latitude, with a high atmospheric evaporative demand in the season
and shallower soil. The correlations for crops, agriculture, and pasture were lower due
to differences in responses in the UIRB and PRB. At the UIRB, the species showed lower
water demand (kc = 0.66), and many species had a short development and production cycle
in the wet season, including temperate vegetable and fruit crops between sprouting and
harvesting, resulting in lower evapotranspiration. In the PRB, the species demanded more
water (kc = 0.69). The predominant species in this basin is sugarcane, which has a longer
development period and greater water consumption. Ref. [57] found P/ET = 2.27 in a



Water 2022, 14, 1958 18 of 25

sub-basin of the PRB in 35.5% of the forests and 31% of the pastures. Refs. [58,61] achieved
a ratio of 1.14 in Africa and 1.63 in a basin in western São Paulo, respectively.

RUBEM estimates ETREAL using the average ETp data, kc based on NDVI, and ks using
soil-water balance. Figures 4 and 5 show the consistency in estimating these variables. The
magnitudes of the hydrological components of the cycle were compared with the results
presented in literature. Thus, evapotranspiration and soil moisture values were estimated
to correspond to the results of multiple studies that used remote sensing in Brazil [79–81].

The linear regressions between kc and NDVI for the cells shown in Figure 8 showed
r > 0.99 for all vegetation cover. The higher NDVI for the forest was consistent with the kc
values in relation with other coverages. [82,83] observed a strong kc-NDVI correlation for
crops and pastures at different stages of development. [83] observed a lack of sensitivity
of NDVI at high Leaf Area Index (LAI) values. This means that both plant transpiration
and light absorption increase at roughly the same rate at low LAI and then saturate.
Consequently, kc adjusts better for high NDVI and underestimates for low NDVI.
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The highest kc for forests indicates greater consumption of water than that observed
for crops and pastures. Ref. [84] observed an LAI of 5.8 to 7.8 m2 m−2 for the Atlantic Forest
in Brazil. Although transpiration is positively correlated with LAI, radiation attenuation
from the top of the canopy to the lower parts brings the global conductance of several
forest species very close for LAI > 3 m2 m−2. However, an increase in LAI implies greater
interception and consequent evaporation of water accumulated in the canopy. During
periods of water scarcity and lower irradiance, absorption of water from the soil occurs
at greater depths. The root system of Atlantic Forest species can reach up to 5 m [84].
According to [49], stomatal resistance increases with plant growth and maturation, under
water stress conditions, and restriction of water availability in the soil, thus limiting the
ETREAL. Ref. [85] observed that water stress conditions increased stomatal resistance,
reaching triple its value in tropical forests.

The ETREAL formulation recognizes changes in vegetation over time through the
NDVI, but does not consider stomatal resistance, and does not distinguish physiological
differences between plant species. However, the formulation adopted for estimating the
LAI, kc, and moisture content in the root zone was considered satisfactory for calculating
the soil-water balance and ETREAL under different climatic conditions and vegetation cover.
The soil layer water balance is the most important representation of water cycle patterns to
understand the impact of LULC changes because of anthropic land use and planning.

Sensitivity analyses of input variables in the WetSpass model show that the critical
factors are precipitation, LAI, and potential evapotranspiration [47]. RUBEM satisfactorily
represented the changes in LULC. In two cells with and in one without coverage changes,
the model calculated the variables proportionally according to the changes over time.

The model source code was written in the Python programming language, and the
PCRaster library dynamic model framework was used to perform spatial calculations. The
LULC simulation used the NDVI time series to change over time. The root depth remained
constant throughout the simulation period, and there were no snow-melting equations.

5. Conclusions

RUBEM input data and formulation are intended to represent variables that impact the
physical processes of the hydrological cycle (on which RUBEM is based). Thus, NDVI from
remote sensing data tends to cover the characteristics of plant species, such as stomatal
resistance. The model also captures a constant pattern of recharge, evapotranspiration, and
runoff in a covered area without LULC changes, with respect to precipitation changes that
could affect the soil moisture conditions.

The RUBEM formulation has a specific physics-based structure to represent changes
in water balance patterns represented by spatio-temporal heterogeneity variables. Overall,
RUBEM can be used to help improve the management and planning of integrated water
resources under climate, land use, and land cover changes in tropical regions.
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