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Abstract: The variation in moisture content between subsequent irrigations determines the use of
infiltration equations that contain representative physical parameters of the soil when irrigation
begins. This study analyzes the reliability of the hydrodynamic model to simulate the advanced
phase in border irrigation. For the solution of the hydrodynamic model, a Lagrangian scheme in
implicit finite differences is used, while for infiltration, the Kostiakov equation and the Green and
Ampt equation are used and compared. The latter was solved using the Newton–Raphson method
due to its implicit nature. The models were validated, and unknown parameters were optimized
using experimental data available in the literature and the Levenberg–Marquardt method. The results
show that it is necessary to use infiltration equations based on soil parameters, because in subsequent
irrigations, the initial conditions change, modifying the advance curve in border irrigation. From the
coupling of both equations, it is shown that the empirical Kostiakov equation is only representative
for a specific irrigation event, while with the Green and Ampt equations, the subsequent irrigations
can be modeled, and the advance/infiltration process can be observed in detail.

Keywords: infiltration process; modeling water flow; water use efficiency; water deficit

1. Introduction

More than 90% of the irrigated area worldwide uses the surface irrigation method,
with the main disadvantage being low yield due to poor design and operation [1,2].

In surface irrigation, the water is distributed throughout the soil profile, making it
necessary to study and develop methodologies to model the water infiltration and redistri-
bution processes [3]. The infiltration process varies over time, and with the characteristics
of the plot, it affects the surface’s flow by making it unstable and spatially variable [4].

There are three distinguishable phases that occur during the surface irrigation event,
the advanced phase, the storage phase, and the recession phase, which together are studied
with a variety of models to understand the phenomenon [5].

According to the Saint-Venant equations, formed by the continuity equation and the
momentum equation, the mathematical models for simulating surface irrigation are mainly
classified into four groups [6]: the volume balance model, the kinematic wave model, the
zero-inertia model, and the hydrodynamic model.

Using the volume balance model and a hybrid metaheuristic solution algorithm, sur-
face irrigation can be designed and evaluated by coupling the Kostiakov–Lewis infiltration
equation and a potential function in the advance phase [1]. Another solution method is
based on solving the Lewis–Milne integral for the advance phase [7].

In combination with the kinematic wave model, the Kostiakov–Lewis equation is
generally used to describe the soil’s water flow [8]. However, with this model, it is not
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possible to incorporate downstream boundary conditions that alter the upstream flow,
such as a furrow or a closed border at the end. This disadvantage was eliminated with
a simplified method to distribute the water in the final part of the furrow or border, and
it was also improved by using the infiltration equation of Green and Ampt based on the
physical parameters of the soil [9].

The border irrigation modeling can be carried out by the zero-inertia model that is
based on a Lagrangian scheme in finite differences for surface flow, while for the description
of the flow of water in the soil, it uses the Kostiakov equation [10] and is adapted for furrow
irrigation [11]. The WinSRFR software uses the zero-inertia model coupled with infiltration
equations such as those of Richards, Green and Ampt, Kostiakov, and Kostiakov–Lewis [12].
However, with this model, it is not possible to describe the irrigation with furrow or border
lengths greater than 300 m, because the model does not introduce inertial errors and the
output data do not fit the experimental data correctly.

The hydrodynamic model has been used less frequently. Software such as SIR-
MOD [13] and SISCO [14] has been developed through a finite difference scheme of
rectangular cells and, for the subsurface flow of water, they use the Kostiakov–Lewis
equation, while other models use the Kostiakov equation and a solution method based on
an explicit algorithm with a MacCormack scheme [15]. Other models use infiltration equa-
tions that are based on physically based parameters, such as that of Green and Ampt [3,16],
where the moisture profile is assumed to be constant, and the models that incorporate an
analytical solution for the infiltration in a soil with a shallow water table for the advance
phase of border irrigation [17].

The main differences between the models are the number of parameters in the equa-
tions, the solution methods, and the coupled infiltration equations. It is important to
mention that most of the solutions presented mainly use the Kostiakov and Kostiakov–
Lewis equations. However, these functions do not include the use of physical parameters
that are representative of the soil in their variables and that can be adapted to vary them
temporarily without having to perform so many irrigation tests.

In this article, we describe the comparison of two of the most-used infiltration equa-
tions to model surface irrigation, presenting a solution based on the complete hydrody-
namic model of the Saint-Venant equations using a finite difference Lagrangian scheme for
the solution of the advance phase.

2. Model Development

In this work, the complete hydrodynamic model was used for the surface flow, and
for the subsurface flow a comparison between two infiltration equations was made. The
continuity equation for a border irrigation was expressed as follows:

∂h
∂t

+
∂q
∂x

+
∂I
∂t

= 0 (1)

while the momentum equation was written in the following recommended form for border
irrigation [17]:

h2 ∂q
∂t

+ 2hq
∂q
∂x

+
(

gh3 − q2
)∂h

∂x
+ gh3(J− Jo) + βqh

∂I
∂t

= 0 (2)

where h is the water depth, q(x,t) = U(x,t)h(x,t) is the discharge per unit width of the border
or the unitary discharge, x is the spatial coordinate in the main direction of the water
movement in the border, t is the time, U is the mean velocity, β = UIX/U is a dimensionless
parameter where UIX is the projection in the direction of the output velocity of the water
mass due to the infiltration, VI = ∂I(x,t)/∂t is the infiltration flow, that is, the water volume
infiltrated per unit width per unit length of the border, I is the infiltrated depth, g is
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gravitational acceleration, Jo is the topographic slope, and J is the friction slope that can be
determined by the fractal law of hydraulic resistance [3]:

q = kν

(
h3Jg
ν2

)d

(3)

where ν is the coefficient of kinematic viscosity, k is a dimensionless factor that includes
the effects of the roughness of the soil surface, and exponent d is an exponent such that
1/2 ≤ d ≤ 1 in a manner that d = 1/2 corresponds to the Chézy turbulent regime and d = 1
to the Poiseuille regime.

The two methods for calculating the cumulative infiltration are the empiric Kostiakov
equation and the Green and Ampt equation. The Kostiakov equation is described as
follows [18]:

I = κτα (4)

where τ is the opportunity time, and κ and α are the empirical infiltration parameters.
The Green and Ampt equation [19] is established from the continuity equation and

Darcy’s law based on the following hypotheses: (a) the initial moisture profile in a soil
column is uniform θ = θo; (b) water pressure at the soil surface is hydrostatic, ψ ≥ 0, where
h is the water depth; (c) there is a well-defined wetting front characterized by negative
pressure: ψ = −hf < 0, where hf is the suction at the wetting front; (d) the region between
the soil surface and the wetting front is completely saturated (plug flow), θ = θs and
K = Ks, where Ks is the hydraulic conductivity at saturation, that is, the value of the
hydraulic conductivity of Darcy’s law corresponding to the volumetric saturation content
of water:

I = Kst + λ ln
(

1 +
I
λ

)
, λ = (h + hf)(θs − θo) (5)

where t is the time, θs is the soil moisture at saturation, and θo is the initial moisture.
For the discretization of Equations (1) and (2), a finite-difference Lagrangian scheme

was used for its solution [3,17]. Figure 1 shows the flows and depths of water on the surface
as infiltrates at times ti and ti+1 with the subscripts J, M, L, and R to identify the time step
and the boundary conditions in a specific cell.
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2.1. Discretization of the Saint-Venant Equation

Average weighting factors in time and space, denoted byω and ϕ, respectively, were
used due to the non-linearity of the upper and lower limits [20]. The common limits of
these weighting factors are 0 ≤ ω ≤ 1 and 0 ≤ ϕ ≤ 1.

The discrete form of the continuity equation from the schematic in Figure 1 is as follows.[
ω(qL − qR) + (1−ω)

(
qJ − qM

)]
δt

−[ω(hL + IL) + (1−ω)(hJ + IJ)](xL − xJ)
+[ω(hR + IR) + (1−ω)(hM + IM)](xR − xM)
+[ϕ(hJ + IJ) + (1−ϕ)(hM + IM)](xM − xJ)

−[ϕ(hL + IL) + (1−ϕ)(hR + IR)](xR − xL) = Rc

(6)

The discretization of the momentum equation is governed by the following hypothe-
ses [3,21]: (a) A Eulerian discretization (rectangular cells) is considered for the time deriva-
tives and (b) an average friction slope is taken into account from the average flow and
water-depth coefficients. With the above, the discrete form of Equation (2) is written
as follows:

h
2
{
[ϕqL + (1−ϕ)qR](xR − xL)−

[
ϕqJ + (1−ϕ)qM

]
(xM − xJ)

}
+2hq

[
ω(qR − qL) + (1−ω)

(
qM − qJ

)]
δt

+
(

gh
3 − q2

)
[ω(hR − hL) + (1−ω)(hM − hJ)]δt

+gh
3(

J− Jo
)
[ω(xR − xL) + (1−ω)(xM − xJ)]δt

+βqh{[ϕIL + (1−ϕ)IR](xR − xL)− [ϕIJ + (1−ϕ)IM](xM − xJ)} = Rm

(7)

where the coefficients h = ω[(1 − ϕ)hR + ϕhL] + (1 − ω)[(1 − ϕ)hM + ϕhJ] and
q = ω[(1 − ϕ)qR + ϕqL] + (1 − ω)[(1 − ϕ)qM + ϕqJ] consider the values at the border of
each calculation cell in a time step. With these coefficients, the average friction slope is
J = ν2(q/k ν)1/d/gh

3
. Rc and Rm are the residuals of the continuity and momentum

equations, respectively.

2.2. Solution Procedure

In order to solve the equations, the Newton–Raphson method was used, which re-
quires the calculation of the function derivatives with respect to the unknown values hL,
qL, hR, and qR, resulting in the equation system shown in Equation (8).



−S1 1
∂Rc1
∂hL

∂Rc1
∂qL

∂Rc1
∂hR

∂Rc1
∂qR

∂Rm1
∂hL

∂Rm1
∂qL

∂Rm1
∂hR

∂Rm1
∂qR

∂Rc2
∂hL

∂Rc2
∂qL

∂Rc2
∂hR

∂Rc2
∂qR

∂Rm2
∂hL

∂Rm2
∂qL

∂Rm2
∂hR

∂Rm2
∂qR

· · · ·
· · · ·

· · · ·
· · · ·

∂RcN−1
∂hL

∂RcN−1
∂qL

∂RcN−1
∂hR

∂RcN−1
∂qR

∂RmN−1
∂hL

∂RmN−1
∂qL

∂RmN−1
∂hR

∂RmN−1
∂qR

∂RcN
∂hL

∂RcN
∂qL

∂RcN
∂hR

∂RcN
∂xN

∂RmN
∂hL

∂RmN
∂qL

∂RmN
∂hR

∂RmN
∂xN

−SN+1 1





δh0
δq0
δh1
δq1
δh2
δq2
·
·

δhN−2
δqN−2
δhN−1
δqN−1
δhN
δδ



=



T1
Rc1
Rm1
Rc2
Rm2
·
·
·
·

RcN−1
RmN−1

RcN
RmN
TN+1



(8)

With the boundary conditions in the first and last line of the equation system, the
coefficients S and T were calculated, which satisfied the following linear relationship
between the variation of the water depth, δh, and the discharge, δq, in a time step. Finally,
the system was solved using a double-sweep algorithm [22].

δqi = Si+1δhi + Ti+1 (9)
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When the solution was obtained, it was observed that, for the last cell, the calculation of
the wave-front distance was necessary. This was carried out by substituting the coefficient
δqN in the last cell with δδ, which represents the incremental advance distance for each
time step. The calculations of the coefficients δh and δq were repeated until the absolute
value of Rc and Rm was less than an error criterion, which in this case was 1 × 10−5.

The derivatives of the discretized equations for the solution were written as follows.

∂Rc
∂hL

= −ω(xL − xJ)−ϕ(xR − xL) (10)

∂Rc
∂qL

= ωδt (11)

∂Rc
∂hR

= ω(xR − xM)− (1−ϕ)(xR − xL) (12)

∂Rc
∂qR

= −ωδt (13)

∂Rc
∂xN

= −ϕ(hL + IL) (14)

∂Rm
∂hL

= 2ωϕqδt
[
ω(qR − qL) + (1−ω)

(
qM − qJ

)]
−
(

gh
3 − q2

)
ωδt

+3ωϕgδth
2
[ω(hR − hL) + (1−ω)(hM − hJ)]

+2ωϕh
{
[(1−ϕ)qR +ϕqL](xR − xL)−

[
(1−ϕ)qM +ϕqJ

]
(xM − xJ)

}
−3ωϕδtgJ0h

2
[ω(xR − xL) + (1−ω)(xM − xJ)]

+βωϕq{[ϕIL + (1−ϕ)IR](xR − xL)− [ϕIJ + (1−ϕ)IM](xM − xJ)}

(15)

∂Rm
∂qL

= −2ωδtqh + 2ωϕh
[
ω(qR − qL) + (1−ω)

(
qM − qJ

)]
δt

−2ωϕδtq[ω(hR − hL) + (1−ω)(hM − hJ)]

+ϕh
2
(xR − xL) +ωϕδt J

qd gh
3
[ω(xR − xL) + (1−ω)(xM − xJ)]

+βωϕh{[ϕIL + (1−ϕ)IR](xR − xL)− [ϕIJ + (1−ϕ)IM](xM − xJ)}

(16)

∂Rm
∂hR

= 2ω(1−ϕ)q
[
ω(qR − qL) + (1−ω)

(
qM − qJ

)]
δt +

(
gh

3 − q2
)
ωδt

+3ω(1−ϕ)gδth2
[ω(hR − hL) + (1−ω)(hM − hJ)]

+2ω(1−ϕ)h
{
[ϕqL + (1−ϕ)qR](xR − xL)−

[
ϕqJ + (1−ϕ)qM

]
(xM − xJ)

}
−3ω(1−ϕ)δtgJ0h

2
[ω(xR − xL) + (1−ω)(xM − xJ)]

+βω(1−ϕ)q{[ϕIL + (1−ϕ)IR](xR − xL)− [ϕIJ + (1−ϕ)IM](xM − xJ)}

(17)

∂Rm
∂qR

= 2ωδthq + 2ω(1−ϕ)h
[
ω(qR − qL) + (1−ω)

(
qM − qJ

)]
δt

−2ω(1−ϕ)δtq[ω(hR − hL) + (1−ω)(hM − hJ)]

+(1−ϕ)h2
(xR − xL) +ω(1−ϕ)δt J

qd gh
3
[ω(xR − xL) + (1−ω)(xM − xJ)]

+βω(1−ϕ)h{[ϕIL + (1−ϕ)IR](xR − xL)− [ϕIJ + (1−ϕ)IM](xM − xJ)}

(18)

∂Rm
∂xN

= ϕh
2
qL +ωδtgh

3(
J− J0

)
+ϕβqhIL (19)

The weight factors we used in time and space were ω = 0.6 [23,24] and ϕ = 1
2

for interior cells [11,23], respectively, and for the last cell and first time level, we used
ϕ = π/4 [3,17].

2.3. Initial and Boundary Conditions

In the first time step, the variables with J, M, and R subscripts in the Equations (6) and
(7) are equal to zero.

q(x, 0) = 0, h(x, 0) = 0 (20)
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In the case of closed borders, the boundary conditions were established as follows:

q(0, t) = q0, q(xf, t) = 0, h(xf, t) = 0 (21)

where the wave front is a function of time, xf (t).

2.4. Analytical Representation of the Optimal Flow

The analytical representation of the optimal irrigation flow is a function of the border
length, the hydrodynamic properties, and soil moisture constants with high values of the
coefficient of uniformity [25]:

qopt = αuKsL, αu =
`n

`n − S2

2Ks
ln
(

1 + 2Ks
S2 `n

) (22)

whereby it can be shown that the unitary flow of minimal irrigation by which the water
arrives at the end of the channel is provided by qm = KsL. S is the sorptivity of the porous
media expressed by S2 = 2Kshf (θs − θo), and `n is the net irrigation depth.

3. Results

In this section, a study case is presented showing the measurements for an irrigation
test, the characteristics of the border, and the comparison between the two infiltration
equations used in this work.

3.1. Experimental Data

Experimental data were taken from the advance phase of an irrigation test in a
closed border with loam soil [17]. In this test, the length of the border was L = 100 m,
the discharge during irrigation was q0 = 0.0032 m3/s/m, the topographic slope was
J0 = 0.002 m/m, the dimensionless parameter was β = 0, d = 1 of the hydraulic resis-
tance law, and the initial and saturation moisture contents were θo = 0.2749 cm3/cm3 and
θs = 0.4865 cm3/cm3, respectively. The values for the empirical parameters of the Kostiakov
equation κ = 0.0008 m/sα and α = 0.5271 were obtained with the Levenberg–Marquardt
algorithm [26], while for the Green and Ampt equation, the parameters obtained were
Ks = 1.54 cm/h and hf = 38.00 cm.

Figure 2 shows the advance curve obtained: (a) with the measurement data in the
field, (b) with the Kostiakov infiltration equation, by optimizing the parameters, and (c) by
applying the Green and Ampt equation. The R2 coefficients for each model were 0.998
and 0.9978, respectively. The RMSE value is a statistical estimator that serves to verify the
accuracy of the model presented [4]. For the Kostiakov equation, RMSE = 1.94 m in the
advance phase, while for the Green and Ampt equation, RMSE = 1.52 m.

3.2. Second Irrigation

There is a process of redistribution of moisture content due to the processes of evapo-
ration and transpiration of the crop that depends on the phenological stage in which it is
found, as well as the climate factors that prevail in the area. With the latter, it is possible to
calculate the net irrigation depth necessary for optimal crop development [27]. In order
to verify the coupling of the infiltration equations used, a second irrigation simulation
was carried out, taking into account that the initial moisture content is different due to the
redistribution, evaporation, and transpiration processes that occur from the first irrigation.
Therefore, it is necessary to calculate the net irrigation depth needed to satisfy the needs of
the crop in a particular phenological stage, and it is necessary to modify the input discharge
in the plot to obtain an efficient distribution of the required irrigation depth along the
border or furrow.
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In order to optimize the missing parameters in the infiltration functions and to retain
similarity in the infiltration functions, a normal depth of ho = 2 cm was considered in
both cases.

These calculations were made with an initial moisture content of θo = 0.1285 cm3/cm3

and, according to Equation (22), the determination of `n = 12 cm requires the optimal
irrigation flow in the border entry of qopt = 0.001511 m3/s/m. Figure 3 shows the differences
between the advanced curves observed for the two infiltration functions used for this test.
This discrepancy is due to the fact that the Kostiakov equation is not a function of physical
parameters from soil as initial moisture content, contrary to the Green and Ampt equation,
which take this into account for the first irrigation.
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Figure 4 shows the water-depth profiles and infiltrations at different times along
the border for both infiltration functions. The water-depth profile shows that, for both
infiltration equations, a normal depth value of ho = 2 cm is obtained, which show us a
similarity between the two models. In addition, we obtained a faster wave front when
the Kostiakov equation was used. This causes a moisture content deficit in the soil profile
because the faster wave front is reduced when the water’s contact with the soil is lessened.
Instead, the Green and Ampt equation is referred to as a two-parameter model because it
includes two important hydraulic parameters. Sorptivity is the first of these two hydraulic
parameters, using the initial and soil moisture at saturation, as well as the water’s depth.
Hydraulic conductivity at saturation is the other parameter [28,29]. With this equation, the
advance process is slower and favors a better redistribution of the moisture content in the
soil profile.
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When the wave front of both functions reaches the final part of the border, the infil-
tration profiles are completely different (Figure 5) due to the physical parameters of the
soil that changed with respect to the first irrigation. It is also observed that the wave fronts
reach the end of the border at different times, caused by soil moisture that modifies the
speed of the wave-front profile, which generates a longer contact time of the water with
the soil, and it obtains higher infiltration. Carrying out an analysis of the input discharge
and the irrigation time, the average infiltrated depths in the soil profile were 6.75 cm for
Kostiakov, and 9.88 cm for Green and Ampt. This result leads to a moisture deficit for the
established crop of 3.13 cm, which is equivalent to 31.65% in relation to the crop water
required if the Kostiakov equation is used to apply the second irrigation.

3.3. Infiltrated Water Depth with Variable Discharge

One option for using the Kostiakov equation for gravity irrigation design is to fit this
function to the simulation obtained with the Green and Ampt equation. For comparison,
Table 1 shows the average values of the Green and Ampt equation parameters for a silty
loam soil [16]. Knowing these values, which are a function of soil texture, allows for the
calculation of the optimal discharge for a specific soil texture, which is directly related to
the crop water required by the crop and the length of the border.
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Table 1. Mean parameters of the Green and Ampt equation for a loam soil used for surface irrigation
design.

Soil θo (cm3/cm3) θs (cm3/cm3) hf (cm) Ks (cm/h)

Silty loam 0.17 0.55 30.00 1.00

Considering L = 100 m, J0 = 0.002 m/m, β = 0, and d = 1, from Equation (2), the
optimal irrigation flow is qopt = 0.001146 m3/s/m for `n = 8 cm. In Figure 6, the advanced
curve fitting is shown for the two models—the Green model, and the Ampt and Kostiakov
model—which results in κ = 0.00067 m/sα and α = 0.544 using the Levenberg–Marquardt
optimization algorithm.
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Figure 7 presents a variation of±0.0001 m3/s/m from the optimal irrigation flow using
the Kostiakov infiltration equation with the optimized parameters, where the infiltrated
water depth and the irrigation time were modified. The value of infiltrated average depth
in the soil profile using q = 0.001046 m3/s/m was 5.96 cm, with a qopt of 7.56 cm, which
produced a moisture deficit of 1.60 cm (31.65 %). On the other hand, if q = 0.001246 m3/s/m,
the infiltrated average depth was 9.68 cm, which produced a moisture excess of 2.12 cm
(28%) for crops. These results show that it is possible to use this equation for a first
design [15,30]. However, if the Green and Ampt model was already calculated, it is better
to use it, because the minimal variations in the input parameters generate a broad value in
the results that is derived in water excesses or moisture deficits [3,16].
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4. Discussion

With the study of the advance phase of an irrigation test, it is possible to estimate the
parameters of the Kostiakov equation and the Green and Ampt equation. The empirical
Kostiakov equation is theoretically influenced by the physical characteristics of the soil,
moisture contents, and the measurement techniques of the irrigation test. In addition, the
Kostiakov model should be used for times t < tmax where tmax = (kb/ks)1/(1−b), where kb
is the basic infiltration and b is a shape parameter [15]. However, this only occurs for
a specific irrigation event, since the parameters are adjusted to an initial irrigation test
that does not represent the subsequent irrigations due to the change, mainly, of the initial
moisture. On the other hand, the parameters of the Green and Ampt equation are based
on the physical characteristics of the soil. Therefore, it is possible to adequately represent
the subsequent irrigations to determine what really happens in the advance/infiltration
process of the gravity irrigation.

It is important to determine the crop water requirements and the appropriate mo-
ments of their application to cover the irrigation sheet needs of the crops established in
the plots, because the variation of the moisture content in the soil is a factor that limits
the development and yield of the crops in agriculture [31]. The initial moisture content
determines the irrigation time, optimal irrigation flow, and irrigation sheet that should be
supplied in the plot to bring the soil to field capacity [25]. The CROPWAT software [32]
can be used as an alternative to calculate the crops’ needs from climatic data of the area
and the crop phenological stage [33], if the latter cannot be provided by weather stations
near the study area.
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The input discharge applied in surface irrigation considerably modifies the infiltrated
depth and the irrigation time, regardless of the infiltration function used. In this work,
an analysis of the inflows in the plot considering the Kostiakov infiltration equation was
performed. This same process occurs with the Green and Ampt equation, since by in-
creasing the optimal irrigation flow, a higher speed of the advancing wave is obtained,
which causes a shorter contact time of the water with the soil and generates a decrease in
the infiltrated depth [3]. However, in clay soils where Ks is very low, the irrigation time
increases, and consequently, the input discharge must be lower [25], and the interpretations
of the parameters required for the Kostiakov equation are empirical and do not represent
what happens in an irrigation event in a particular soil.

The coupling of the hydrodynamic wave model shown here demonstrates that, by
using the Green and Ampt equation, it becomes a robust and efficient model for designing
subsequent irrigations. However, by using the Kostiakov equation, it becomes a representa-
tive model of an empirical irrigation test. Software such as WinSRFR [12], SIRMOD [13],
and SISCO [14], which in addition to the Kostiakov equation, use the empirical Kostiakov–
Lewis equation, is, therefore, deficient for the design of surface irrigation in an optimal
and opportune manner. There is a need for prior-irrigation measurements, calculations, or
estimations of the important hydraulic parameters of the soil involved in the infiltration
process [34].

5. Conclusions

Using the numerical coupling of the Saint-Venant equations with the empirical Kosti-
akov equation, it was shown that this only represents a specific irrigation event, precisely
the irrigation test with which the optimization of the function parameters is carried out.
However, by coupling the Green and Ampt equation with the optimization of the param-
eters of Ks and hf from the same irrigation test, it is possible to model the subsequent
irrigations, because the latter infiltration function makes use of the physical parameters of
the soil in order to observe the infiltration process in the surface irrigation in detail.

In addition, it was shown that by varying the inflows in the plot, the infiltrated water
depths are modified, causing deficits or excesses of water required by the crop established
in the border, without taking into account the infiltration equation used. As a result, it is
considered important to efficiently calculate the optimal irrigation flow, which depends
on the border length, the net irrigation depth to be applied, the moisture content, and the
parameters of the infiltration equation to be used. These results allow us to recommend
the Green and Ampt equation as the best equation for the design and modeling of surface
irrigation. The Green and Ampt equation is based on the physical parameters of the soil,
and if in some cases all the information required by the model is not available, specialized
bibliography can be consulted, in which average values for efficient design that are based
on soil texture are recommended [16].

Author Contributions: The authors S.F., C.C., F.B.-P., and J.T.-A. contributed equally to this work.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The first author is grateful to CONACYT for the scholarship grant, scholarship
number 957179. In addition, we would like to thank the editor and the expert reviewers for their
detailed comments and suggestions for the manuscript. These were very helpful in improving the
quality of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Water 2022, 14, 2111 12 of 13

References
1. Akbari, M.; Gheysari, M.; Mostafazadeh-Fard, B.; Shayannejad, M. Surface Irrigation Simulation-Optimization Model Based on

Meta-Heuristic Algorithms. Agric. Water Manag. 2018, 201, 46–57. [CrossRef]
2. Khasraghi, M.M.; Sefidkouhi, M.A.G.; Valipour, M. Simulation of Open- and Closed-End Border Irrigation Systems Using

SIRMOD. Arch. Agron. Soil Sci. 2015, 61, 929–941. [CrossRef]
3. Fuentes, S.; Fuentes, C.; Saucedo, H.; Chávez, C. Border Irrigation Modeling with the Barré de Saint-Venant and Green and Ampt

Equations. Mathematics 2022, 10, 1039. [CrossRef]
4. Golestani Kermani, S.; Sayari, S.; Kisi, O.; Zounemat-Kermani, M. Comparing Data Driven Models versus Numerical Models in

Simulation of Waterfront Advance in Furrow Irrigation. Irrig. Sci. 2019, 37, 547–560. [CrossRef]
5. Chávez, C.; Fuentes, C. Design and Evaluation of Surface Irrigation Systems Applying an Analytical Formula in the Irrigation

District 085, La Begoña, Mexico. Agric. Water Manag. 2019, 221, 279–285. [CrossRef]
6. Ebrahimian, H.; Liaghat, A. Field Evaluation of Various Mathematical Models for Furrow and Border Irrigation Systems. Soil

Water Res. 2011, 6, 91–101. [CrossRef]
7. Adamala, S.; Raghuwanshi, N.S.; Mishra, A. Development of Surface Irrigation Systems Design and Evaluation Software (SIDES).

Comput. Electron. Agric. 2014, 100, 100–109. [CrossRef]
8. Walker, W.R.; Humpherys, A.S. Kinematic-Wave Furrow Irrigation Model. J. Irrig. Drain. Eng. 1983, 109, 377–392. [CrossRef]
9. Gonzalez, C.J.M.; Muñoz, H.B.; Acosta, H.R.; Mailhol, J.C. Kinematic Wave Model Adapted to Irrigation with Closed-End

Furrows. Agrociencia 2006, 40, 731–740.
10. Strelkoff, T.; Katopodes, N.D. Border-Irrigation Hydraulics with Zero Inertia. J. Irrig. Drain. Div. 1977, 103, 325–342. [CrossRef]
11. Elliott, R.L.; Walker, W.R.; Skogerboe, G.V. Zero-Inertia Modeling of Furrow Irrigation Advance. J. Irrig. Drain. Div. 1982, 108,

179–195. [CrossRef]
12. Bautista, E.; Schlegel, J.L.; Clemmens, A.J. The SRFR 5 Modeling System for Surface Irrigation. J. Irrig. Drain. Eng. 2016,

142, 04015038. [CrossRef]
13. Walker, W.R. SIRMOD III: Surface Irrigation Simulation, Evaluation and Design-Guide and Technical Documentation; Utah State

University: Logan, UT, USA, 2003.
14. Gillies, M.H.; Smith, R.J. SISCO: Surface Irrigation Simulation, Calibration and Optimisation. Irrig. Sci. 2015, 33, 339–355.

[CrossRef]
15. Singh, V.; Bhallamudi, S.M. Complete Hydrodynamic Border-Strip Irrigation Model. J. Irrig. Drain. Eng. 1996, 122, 189–197.

[CrossRef]
16. Saucedo, H.; Zavala, M.; Fuentes, C. Border irrigation design with the Saint-Venant and Green & Ampt equations. Water Technol.

Sci. 2015, 6, 103–112.
17. Saucedo, H.; Fuentes, C.; Zavala, M. The Saint-Venant and Richards Equation System in Surface Irrigation: (2) Numerical

Coupling for the Advance Phase in Border Irrigation. Ing. Hidraul. Mex. 2005, 20, 109–119.
18. Kostiakov, A.N. On the Dynamics of the Coefficient of Water Percolation in Soils and the Necessity of Studying It from the

Dynamic Point of View for the Purposes of Amelioration. Trans. Sixth Comm. Int. Soc. Soil Sci. 1932, 1, 7–21.
19. Green, W.H.; Ampt, G.A. Studies on Soil Physics, I: The Flow of Air and Water through Soils. J. Agric. Sci. 1911, 4, 1–24.
20. Walker, W.R.; Skogerboe, G.V. Surface Irrigation. Theory and Practice; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1987.
21. Fuentes, S.; Chávez, C. Modeling of Border Irrigation in Soils with the Presence of a Shallow Water Table. I: The Advance Phase.

Agriculture 2022, 12, 426. [CrossRef]
22. Strelkoff, T. EQSWP: Extended Unsteady-Flow Double-Sweep Equation Solver. J. Hydraul. Eng. 1992, 118, 735–742. [CrossRef]
23. Liu, K.; Xiong, Y.; Xu, X.; Huang, Q.; Huo, Z.; Huang, G. Modified Model for Simulating Water Flow in Furrow Irrigation. J. Irrig.

Drain. Eng. 2020, 146, 06020002. [CrossRef]
24. Tabuada, M.A.; Rego, Z.J.C.; Vachaud, G.; Pereira, L.S. Modelling of Furrow Irrigation. Advance with Two-Dimensional

Infiltration. Agric. Water Manag. 1995, 28, 201–221. [CrossRef]
25. Fuentes, C.; Chávez, C. Analytic Representation of the Optimal Flow for Gravity Irrigation. Water 2020, 12, 2710. [CrossRef]
26. Moré, J.J. The Levenberg-Marquardt Algorithm: Implementation and Theory. In Numerical Analysis; Watson, G.A., Ed.; Springer:

Berlin/Heidelberg, Germany, 1978; pp. 105–116.
27. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO

Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109.
28. Angelaki, A.; Sihag, P.; Sakellariou-Makrantonaki, M.; Tzimopoulos, C. The Effect of Sorptivity on Cumulative Infiltration. Water

Supply 2021, 21, 606–614. [CrossRef]
29. Stewart, R.D.; Rupp, D.E.; Najm, M.R.A.; Selker, J.S. Modeling Effect of Initial Soil Moisture on Sorptivity and Infiltration: Effect

of Initial Soil Moisture on Sorptivity & Infiltration. Water Resour. Res. 2013, 49, 7037–7047. [CrossRef]
30. Shayannejad, M.; Ghobadi, M.; Ostad-Ali-Askari, K. Modeling of Surface Flow and Infiltration During Surface Irrigation Advance

Based on Numerical Solution of Saint–Venant Equations Using Preissmann’s Scheme. Pure Appl. Geophys. 2022, 179, 1103–1113.
[CrossRef]

31. Du, K.; Qiao, Y.; Zhang, Q.; Li, F.; Li, Q.; Liu, S.; Tian, C. Modeling Soil Water Content and Crop-Growth Metrics in a Wheat Field
in the North China Plain Using RZWQM2. Agronomy 2021, 11, 1245. [CrossRef]

http://doi.org/10.1016/j.agwat.2018.01.015
http://doi.org/10.1080/03650340.2014.981163
http://doi.org/10.3390/math10071039
http://doi.org/10.1007/s00271-019-00635-5
http://doi.org/10.1016/j.agwat.2019.04.027
http://doi.org/10.17221/34/2010-SWR
http://doi.org/10.1016/j.compag.2013.11.004
http://doi.org/10.1061/(ASCE)0733-9437(1983)109:4(377)
http://doi.org/10.1061/JRCEA4.0001157
http://doi.org/10.1061/JRCEA4.0001387
http://doi.org/10.1061/(ASCE)IR.1943-4774.0000938
http://doi.org/10.1007/s00271-015-0470-8
http://doi.org/10.1061/(ASCE)0733-9437(1996)122:4(189)
http://doi.org/10.3390/agriculture12030426
http://doi.org/10.1061/(ASCE)0733-9429(1992)118:5(735)
http://doi.org/10.1061/(ASCE)IR.1943-4774.0001470
http://doi.org/10.1016/0378-3774(95)01177-K
http://doi.org/10.3390/w12102710
http://doi.org/10.2166/ws.2020.297
http://doi.org/10.1002/wrcr.20508
http://doi.org/10.1007/s00024-022-02962-9
http://doi.org/10.3390/agronomy11061245


Water 2022, 14, 2111 13 of 13

32. Spiliotopoulos; Loukas Hybrid Methodology for the Estimation of Crop Coefficients Based on Satellite Imagery and Ground-Based
Measurements. Water 2019, 11, 1364. [CrossRef]

33. Muñoz, G.; Grieser, J. Climwat 2.0 for CROPWAT; Water Resources, Development and Management Service: Rome, Italy, 2006;
pp. 1–5.

34. Yusuf, K.O.; Ejieji, C.J.; Baiyeri, M.R. Determination of Sorptivity, Infiltration Rate and Hydraulic Conductivity of Soil Using a
Tension Infiltrometer. Wildl. Environ. 2018, 10, 99–108.

http://doi.org/10.3390/w11071364

	Introduction 
	Model Development 
	Discretization of the Saint-Venant Equation 
	Solution Procedure 
	Initial and Boundary Conditions 
	Analytical Representation of the Optimal Flow 

	Results 
	Experimental Data 
	Second Irrigation 
	Infiltrated Water Depth with Variable Discharge 

	Discussion 
	Conclusions 
	References

