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Abstract: The specificity of the water treatment field, associated with water transmission, distribution
and accounting, as well as the need to use automation and intelligent tools for various information
solutions and security tools, have resulted in the development of integrated approaches and practical
solutions regarding various aspects of the functioning of such systems. The research problem lies
in the insecurity of water treatment systems and their susceptibility to malicious influences from
the side of potential intruders trying to compromise the functioning. To obtain initial data needed for
assessing the states of a water treatment system, the authors have developed a case study presenting
a combination of a physical model and a software simulator. The methodology proposed in the article
includes combining methods of machine learning and visual data analysis to improve the detection
of attacks and anomalies in water treatment systems. The selection of the methods and tuning of their
modes and parameters made it possible to build a mechanism for efficient detection of attacks in data
from sensors with accuracy values above 0.95 for each class of attack and mixed data. In addition,
Change_Measure metric parameters were selected to ensure the detection of attacks and anomalies
by using visual data analysis. The combined method allows identifying points when the functioning
of the system changes, which could be used as a trigger to start resource-intensive procedures of
manual and/or machine-assisted checking of the system state on the basis of the available machine
learning models that involve processing big data arrays.

Keywords: anomaly detection; machine learning; water treatment; visual analytics

1. Introduction

Today, industrial Internet of Things systems and wireless sensor networks are becom-
ing more widespread. Such systems are used to monitor people, environments, technical
devices and other physical objects. The major threat for such monitoring systems is
functioning in an unreliable environment, assuming the presence of malicious attacking
activity. These threats could lead to a compromise of the system as a whole, its devices
and services [1]. The system compromise may result in catastrophic consequences, such as
disruption of the system functioning, distortion of the collected data or significant delays
in their transmission. These impacts can disrupt the processes of notifying the system
operator about failures and security incidents, which can lead to hazardous effects. In the
context of water treatment systems, the impacts on water level sensors can cause flooding
of the reservoir or its shallowing, resulting in violations of the water supply processes
involving end consumers. Therefore, there is a need to develop effective models and
techniques to identify malicious actions on sensors and the system as a whole. Rapid
detection of security incidents will allow an operator to respond to them in a timely manner
and avoid or at least minimize negative consequences.
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Generally, the work presents an approach for attack and anomaly detection that uti-
lizes both machine learning and visualization techniques. Along with the classical machine
learning analysis models, it is proposed to use a metric that characterizes the changes
in the system for visual exploration of system parameters. This solution also supports
validation of the constructed machine learning classifiers by means of the visual analysis
and exploration of the system parameters as well as the system state to check the effec-
tiveness of these analysis models. Such ongoing validation allows signaling the need to
reconfigure the functioning classifiers due to the possible and expected natural evolution
of the target system. The proposed detection mechanisms could be used in real-time
and near-real-time modes, thus allowing the generation of alerts of security incidents with
acceptable detection quality for a given time period.

Thus, the novelty of the proposed approach consists of the combination of the machine
learning and visualization techniques that are used in conjunction to monitor both the system
state and efficiency of the analysis models. The developed visualization serves as an express
assessment of the system state. It could be made to obtain more detailed manual and/or
machine-assisted assessments of the system. In addition, the applied visualization contributes
to the reconfiguration and improvement of the machine learning classifiers, allowing one to
take into account even relatively small changes in the behavior of the target system.

Due to the limitations of the available equipment, a specific test bed for the water treat-
ment system was developed. It was built on the principles of the full-scale and simulation
modeling of the analyzed industrial process. The full-scale model was developed using
Arduino microcontrollers, physical sensors and actuators, including sensors of water level,
pressure and water flow, as well as electric valves and a water pump. It is enriched by a set
of simulation rules that generate vectors of sensor readings and the state of actuators based
on some numerical features of the implemented full-scale model. Combining the full-scale
and simulation models made it possible to generate data sets that characterize the normal
behavior of the system and several classes of attacks on its sensors. In addition, one should
note that, on the physical implementation, we calculated a few important parameters of
the modeled processes (including measurements of the time of emptying/filling of tanks
and the rate of change of sensor readings). Then, we used the values of these parameters
straightforwardly within the software simulator, which more fully describes the analyzed
water treatment processes. This explains why both the full-scale model and the software
simulator were really needed. Note that the developed machine learning and visualization
models were built using the data collected from the developed test bed.

Thus, the contributions of the paper consist of

• An approach combining machine learning and visualization models to monitor
the state of a water treatment system;

• An application of the metric that characterizes the measure of system change to
monitor and analyze the state of the system visually;

• A water treatment test bed that is developed on the principles of the full-scale and
simulation modeling of the technological process.

The rest of the article is organized as follows. Section 2 represents the state-of-the-
art. Section 3 discusses the whole visualization-assisted approach to anomaly and attack
detection, while Section 3 details the visualization-driven explanation and analysis compo-
nent. Section 4 presents a case study and the developed test bed. Section 5 contains the
experimental study and discussion, while Section 6 concludes the article.

2. Related Works

Currently, the security of the Internet of Things systems and wireless sensor networks
has been the subject of a series of works. Some of them deal with aspects related to attacks
on the routing protocol. For example, Rehman et al. suggested several ways to detect Sink-
hole attacks, i.e., sophisticated routing effects [2]. In contrast to existing ones, the specificity
of this article is that it concerns elements of attack detection by identifying correlations
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between sensor readings without considering direct malicious actions on the network
protocol level and/or other physical and software parts.

The issues of ensuring and assessing the security of Internet of Things systems, robotic
complexes and wireless sensor networks, including studies of the impact on device sensors,
are becoming increasingly relevant [1]. By influencing the system by exploiting one or
a few sensors, as the point of the application, the attacker is able to compromise a sensor
and devices integrated with it or located near it. In addition, the attacker can interfere with
the data transmitted, processed and stored on the network devices and the information
services provided. An attack on a sensor can be an element of a complex influence that
can lead to various short-term or fatal disruptions in the functioning of the entire system
and cause its inoperability. One of the ways to increase the security of such systems is the
timely detection of malicious influences and obtaining additional information on them,
including the class and source of the attack.

In most of the analyzed literature sources, the detection of attacks and anomalies
in Internet of Things systems is performed using various intelligent data analysis meth-
ods [1,3,4]. At the same time, the extraction of specific features, the construction of feature
spaces, and the appointment of certain learning models, for the most part, are determined
by the specific formulation of the problem and its limitations. In particular, the availability
or absence of satellite communications in the network determine the short-term loss of con-
nection accompanying this type of connection, especially due to the continuous movement
of satellites in the orbit and the possible movement of ground devices of the network [5].
Depending on the structure and composition of the system, such losses should be separated
from targeted actions of the attacker, for example, ones aimed at noising the GPS channel.

Wang et al. [3] proposed a way to detect attacks on sensors in a wireless sensor network
by introducing a virtual sensor and using a sensor’s fault model to establish inconsistencies
between the readings of this sensor and other ones to be considered as attacks. Shin et al.
analyzed data from sensors of intelligent vehicle models to detect anomalies by using deep
learning methods [1]. It is based on quantitative measurements of the readings of eight
physical sensors of the car model, and the difference in the values of the sensor readings
from the expected values is estimated. In the study, six particular classes of attacks and
normal data are used. Each of them represents an attack on one or two of the available
sensors. The conducted experiments made it possible to compute the indicators of accuracy
and correctness, as well as to determines the training methods that grant the best outcome.

In [5], by using the example of unmanned ground vehicles, some attacks on sensors
are detected in conditions of possible transient faults. To distinguish between attacks
and transient faults, a static model of the faults (faulty model) is built for each sensor,
including the interval of its allowable values and the maximum allowable frequency of its
faults. The attacks are detected on the basis of these models by pairwise comparisons of
the readings of various sensors. In the process of machine learning, the most appropriate
fault model is selected from the available models.

Currently, a fairly large number of studies are being conducted on digital water
metering and related directions, including issues of water consumption, long medium
and short-term prediction of such consumption, resource planning, explanation of user
behavior, characteristics of water consumption and detection of leaks by using machine
learning and data analysis methods [6].

Racity et al. proposed a mechanism for monitoring water quality, including checking
for contamination and other characteristics of water [7]. At the same time, a particular
requirement is established to achieve a high quality of detection in conditions of possible
inaccuracies and the absence of some feature’s values. Based on the application of water
clustering methods, Raciti et al. built a mechanism for detecting pollution with certain
values of the detection quality.
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In [8], the correlation between the properties of pollution of terrestrial natural water
bodies and geographic characteristics of the location, such as latitude, longitude and
height, is considered. In that work, a number of polluting factors (contaminating factors,
e.g., water temperature, turbidity, acidity, the presence of oxygen in water, chlorides, etc.)
are identified, and they are used to predict specific pollution based on physical parameters.
The data analysis is performed using machine learning methods, namely four regression
models. A peculiarity of this work is the manual collection and physical and chemical
analysis of water to obtain a set of data on the pollution characteristics in various areas of
the region under consideration, followed by the use of particular methods of data mining.

Artificial intelligence methods are also used to determine the quality of water. In par-
ticular, Naloufi et al. proposed a method for predicting the concentration of Escherichia
coli bacteria in water bodies without involving complex specific laboratory procedures,
which are time-consuming and technically complex and would require higher financial
costs [9]. Specifically, Naloufi et al. were able to build a machine learning model that, based
on 10 simple physical, chemical and weather characteristics that can be easily measured,
generates concentration predictions for a given bacterial species by using basic machine
learning methods such as SVM, KNN, DT and others. In addition, the authors note the pos-
sibility of automating monitoring and elucidating water pollution using wireless sensor
networks, such as LPWAN, which allow nodes to operate autonomously for a long time
without replenishing energy resources.

An anomaly detection process may significantly benefit from the application of the vi-
sualization techniques as they allow presenting data in clear and easily perceived form.
Numerous research papers are devoted to the design of the visualization techniques ap-
plicable to the anomaly detection problem [10,11]. For example, Shi et al. [12] reviewed
150 papers and outlined four main application domains for visualization-driven detec-
tion of abnormal entity behavior: network communication, social interactions, financial
transactions, and travel data. In [13], the authors studied different visualization techniques
designed specifically for revealing anomalous activity in the network traffic. However,
there are only a few works in the field of visualization-assisted anomaly detection in data
from physical sensors. This fact could be explained by the fact that all technological pro-
cesses are formalized, and any deviation from the predefined process could be detected
on the basis of a set of established rules, and the exception is constituted by the problem of
equipment failure forecasting, where different machine learning and visualization-driven
approaches have been proposed [14].

Commercial SCADA systems [15,16] and commercial solutions for anomaly detection
in industrial IoT systems [17] mostly utilize standard visualization techniques such as
timelines, gauges or mnemonic object diagrams for graphical representation and analysis of
system parameters. The problem arises when analyzing and monitoring the system behav-
ior where an analyst or operator needs to review tens of parameters, and the application of
advanced visualization techniques could increase the efficiency of their work. Only a few
visual analytics solutions aimed to assist in the monitoring of complex object behavior and
anomaly detection are suggested.

Janetzko et al. [18] explored the capabilities of pixel based techniques with different
layouts and line charts to detect patterns and anomalies in energy consumption. In [19], the
authors adopted matrix-based and RadViz visualizations to analyze anomalies in heating,
ventilation and conditioning data.

In [20], the authors applied another multidimensional data projection technique,
namely multidimensional scaling, to analyze streaming data from multiple sensors. To be
able to apply it, the authors evaluated the pairwise similarity in data streams from sensors
and used it to map sensors on the plane. Such projection allowed the authors to represent
sensors’ functioning as a trajectory of points on the plane, and anomalies in their behavior
could be detected as anomalies in their trajectories.
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In [21], the authors proposed an interactive visual analytics system for equipment line
monitoring that supports not only smart parameter monitoring but also machine learning
model inspection and updates. The latter is achieved by evaluating the characteristics of the
training set and current data. To visualize streams of sensor data, the authors use either line
charts with the time axis or pixel-based visualization to cope with large volumes of data.

Let us note the main peculiarities that distinguish this work from the analyzed existing
results in the field:

• Focus on the subject area of water treatment. In particular, when defining the classes
of attacks, the authors considered the nature of the viscosity and fluidity of water,
which determines some inertia and often a gradual change in the accumulation and
transfer of water, and as a result, sensor readings in the generated time sequences.

• Building and configuring a set of classifiers as attack and anomaly detection tools
based on machine learning methods specific to the problem being solved and the list
of critical attacks generated.

• Application of the visual models as means of visual exploration of the system pa-
rameters, and monitoring of the system state. The peculiarity of this component lies
in the computation and visualization of the metric that characterizes the changes
in the system at some given moment of time.

• Combination of the proposed visual analysis and machine learning methods, and pre-
sentation of the visual-based express evaluation of the system to make decisions on
more detailed manual and/or machine-assisted checking of the system state, firstly,
and visual validation of the constructed machine learning classifiers by means of
visual analysis and exploration of the system parameters as well as the system state to
check the effectiveness of these classifiers, secondly.

3. Visualization-Assisted Approach to Anomaly and Attack Detection

The suggested approach to anomaly and attack detection in the water treatment system
consists of the two key connected components:

• Attack detection component based on supervised machine learning;
• Sensor data visualization component.

The scheme of the proposed approach is presented in Figure 1.

Figure 1. The scheme of the proposed visualization assisted anomaly and attack detection approach.
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The attack detection component consists of n binary classifiers that are trained to detect
n different classes of the attacks, and one generalized multi-class classifier targeted to detect
one of the n specific attacks. The current implementation of the component detects five
different classes of the attacks but could be extended to detect novel ones. The following
seven supervised machine learning methods were selected as possible candidates for
detecting each class of attack and serving as basis for a generalized multi-class classifier:
AdaBoostClassifier, RandomForestClassifier, Bayesian classifier, LogisticRegression, Linear
SVM classifier, Decision Trees, and RidgeClassifier. A series of experiments on the test data
sets made it possible to determine the most effective machine learning model as well as its
parameters. The efficiency assessment was conducted using two quality metrics: accuracy
and f1-score. Section 5 discusses the experiment settings as well their results in detail.

The visualization component supports the visual exploration of the system parameters
and monitoring of the system state. The distinctive feature of this component is the calcula-
tion and visualization of the metric that characterizes the number of changes in the system
at the given moment of time. This metric was firstly introduced in [10] and considers
a set of selected attributes that are used to evaluate how the system state changes over
time. The calculation of the integral metric is presented in Section 3 in detail. To visualize
the values of this metric, the line plot with time axis is used. The selected visualization
model is simple but intuitively clear to the operator. It provides a natural perception of
the situation and allows unambiguous identification of changes in the system that could
correspond to the anomalies or attacks in the system behavior.

Visualization-Driven Explanation and Analysis Component

When designing the visualization of data streams from sensors, the authors kept
in mind following challenges identified in [22]

• Necessity to combine streaming data from diverse sources to support analysis;
• Support for understanding changes that could be expressed in many forms, starting

from changes in parameters’ values between previous and current ones and finishing
with deviations in system behavior as a whole;

• Dynamic nature of data, which are constantly changing and evolving in time.

In [19], the authors suggested representing a state of the system that is defined by
a set of sensors as a point in a multidimensional space, and then the functioning of this
system could be considered as a trajectory in this space. Such representation allows
addressing the first challenge relating to the necessity to combine streaming data from
multiple sources. Moreover, in [19], it was shown that mapping a system’s trajectory
in multidimensional space to the plane enables revealing system behavior patterns as well
as anomalies. Different states of the system are characterized by different graphical patterns
that vary in point density and scatter. In [23], the authors evaluated different metrics that
could be used to assess the similarity of the points distribution on the plane in order to
detect structural similarity, and they showed that Delaunay triangulation could be used to
detect typical patterns as well as outliers when evaluating projections produced by data
reduction techniques. Anomalous bursts in the system’s parameters result in larger values
of the total square of the triangles obtained by Delaunay triangulation, while smaller values
of the total triangles’ square correspond to smoother changes in the system’s behavior.
The latter enabled the authors to define a novel Change_Measure metric that characterizes
the amount of system change and use it as an integral metric to monitor the state of
the system [10].
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The integral Change_Measure metric is a core metric of the developed visualization
system, and its usage addresses the second challenge identified in [22], enabling an anal-
ysis of changes in the whole system as well as changes between previous and current
parameters’ values. The metric is calculated for some given moment of time t and con-
siders n subsequent data points in multidimensional space. The algorithm for calculation
Change_Measure(t, n) metric is given in Algorithm 1.

Algorithm 1 Integral Change_Measure(t, n) metric calculation
Input: n—size of sliding window for sampling a sequence of points,
t—moment of time
S—a set of m-dimensional data points ordered in time and equipped with timestamps
Output: Change_Measure(t, n)
1: apply data reduction technique PCA to the normalized set S
2: form a subset S′(t, n) by selecting n sequential points from the S set that precedes

a point with timestamp t
3: construct a Delaunay triangulation DP(S′(t, n)) for a set S′(t, n).
4: calculate Change_Measure(t, n) as a total area of obtained triangles of DP(S′(t, n)).
5: return Change_Measure(t, n)

Currently, to reduce the data dimension, PCA is chosen as it allows revealing the devi-
ations in a systems’ behavior more clearly than other techniques [23]. The size of sliding
window n is a customizable parameter and could be changed to enable better anomaly
detection. Varying the window size, it is possible to control the impact of previous values
on the current one.

The values of the Change_Measure(t, n) form a one-dimensional time series, and
for this reason, it is natural to use the timeline to visualize it. To correlate system behavior
with the results of the ML-based attack detection component and to highlight the periods
when the system is under attack, the authors use a background color for the plot. The
white background corresponds to the normal mode of system functioning, while the color
background indicates that the ML-based attack detection component has detected an attack.

In order to enhance the detection of visual signs of an anomaly in the system op-
eration, the authors also propose performing post-processing of the obtained values of
the Change_Measure(t, n) metric. It is possible to apply sliding mean and median filters
with a specified width of the filtering window.

It should also be noted that the suggested visualization provides an overview of
the system functioning, which is why it has to be supplemented by a set of timelines show-
ing each parameter separately. Figure 2 shows the graphical interface of the visualization
component, which consists of two main views: view A is used to represent values of the sys-
tem parameters, and view B is used to visualize the integral metric Change_Measure(t, n).
These two views are synchronized, and the operator may select different time intervals to
analyze and explore data. They could also choose different parameters to visualize and
adjust the graphical properties of the plots. Similarly, the operator could adjust the calcu-
lation of the integral score metric by manipulating the sliding window size and applying
different filters to smooth the values of Change_Measure(t, n).
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Figure 2. The GUI of the visualization component: (A)—a view for displaying system parameters that
are selected by an operator; (B)—a plot of the integral metric Change_Measure(t, n), the background
color shows the periods when the system was under the attack.

4. Water Treatment Case Study

A case study modeling water treatment with the use of some available physical
and electronic components was constructed. In addition, we developed a software tool
expanding its business logic and simulating the system processes. This combined scheme
allowed us to measure sensor readings directly and multiply and scale them by means of
the simulator [24].

The scheme of the case study used in the work is exposed in Figure 3. The system
contains two tanks. One tank is higher than the other (the top one is labeled as the first
one and the bottom one as the second tank). Due to the influence of gravity, the water
starts flowing from the first tank into the second one. The gate of the water treatment
system imitates a controlled tap (electric crane) installed between the tanks. The tap closes
when the second tank is full, and then the pump turns on and pumps the water back
into the first tank. It simulates the process of lowering the water level on one side of
the crane and rising on the other. To measure the water level in the tanks, water level
sensors are installed. Each tank has three water level sensors and one sensor measuring
the fullness degree. To measure the amount of water pumped between the tanks, in addition
to the tap, a water flow sensor is installed. The hardware of the prototype is expressed
by an Arduino UNO controller designed to read sensor readings and Raspberry PI for
processing them and organizing functions to monitor the system’s status. The software part
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includes a Web server built using the Python programming language, Django framework
and ngnix libraries. This server is used to monitor the readings of sensors and states of
the system actuators by a human operator.

Figure 3. The scheme of the case study.

It should be noted that the developed prototype is a physically closed system. This is
intended to facilitate its continued automatic operation in laboratory conditions and model
target water treatment and dam systems closer to their reality. The tanks model water
bodies on either side of the gate (shutter). When the gate is opened, the water level
decreases on one side and increases on the other (water flow from tank 1 to tank 2). When
the valve is closed, the water level decreases on one side (water goes further downstream),
and on the other side, it increases (pumping from tank 2 back to 1). The pump was
introduced in the model mainly to provide long enough working scenarios of the system.

The developed simulator allowed us to generate a large number of possible states,
which made it possible to speed up the modeling and testing of a variety of attacks, i.e., it is
able to simulate attacks of several classes and form sets of various particular system states.
For example, if it is necessary to generate a data set containing several hours of system
operation, it is necessary to run the system model for the required time and constantly
simulate attacks, and when simulating, this process is automated and takes less time.

The constructed simulator works as follows: the initial state of the sensors and actua-
tors of the system is set, then the actions occurring in the system are simulated by changing
the readings of some sensors over a certain time (for example, half a second), and the
related readings of other ones are adjusted. The simulator based on a short recording of
sensor readings makes it possible to introduce small deviations into it, concatenating and
mixing with other data, to generate longer logs at the output that simulate the operation of
the system, thereby increasing the amount of data suitable for experiments.

The formation of mixed data, including data of normal behavior and data about
an attack of a certain class, is performed by modeling attack data and superimposing it on
records of the normal functioning of the system. After that, these data are written to the out-
put file and meta-information about it is formed. The specific values of the parameters,
the time it takes for the tanks to be empty and the readings of specific sensors to change
were obtained empirically using a full-scale model. Thus, using the simulation model,
it became possible to set any initial state of the system, simulate one of the possible attacks
and obtain the required set of system state records within a certain time interval.

The simulation algorithm is shown in Figure 4 as an activity diagram. The data set is
in the form of *.csv file, which contains records of sensor readings and states of actuators at
certain points in time. Each time moment of the system operation corresponds to a row of
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value records separated by a syntactic separator. Here, the time interval between records is
fixed and is equal to half a second.

Figure 4. Scheme of the simulation algorithm.

During the simulation, seven data sets both with and without attacks were recorded.
The constructed data sets include: data containing only normal states of the system; five
sets containing normal states together with attack situations of each class, respectively; a set
containing all classes of attacks at once and the normal state of the system. The duration of
each data set is 1 h (7200 samples). The number of attacks in each file fills 25 min in total,
divided into two attacking blocks (i.e., 12.5 min of attacks in each of the two blocks). That
is, after an hour of the system’s operation, the attack was modeled on it twice for 12.5 min
each. In the data set containing all five attack classes, the time of each attack is the same
and is 10 min.

Table 1 presents the fields of the generated data sets. For example, in the generated
data sets, a tuple <1; 1; 1; 1; 99.817; 0.6; 0.534; 0; 0; 0; 0.183; 0; 0.0; 0.5; 0; 0> defines
the record of the normal state of the system, wherein the first tank is almost completely full,
which is indicated by the water level sensors and the fullness sensor from the first tank.
The controlled valve is open to degree 0.6. The water flow rate is 0.534, which corresponds
to the percentage of the crane opening. The second tank is almost empty, and the time since
the start of the system is half a second. The field that reflects an attack is zero, as well as
the classAttack field.
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Table 1. Fields of the generated data sets.

No Data Field Name (Features) Description

1 id_record_inc
- unique record identifier. It represents a field of Integer

data type and is incremented by 1 when a new line is
written to the output file. It is greater than zero always

2 watLevel_R1_3_bool

- readings of the upper water level sensor from the first
tank. It represents a Boolean type variable. If this variable

equals 0, the sensor does not work (the water level is
below the sensor). If it is 1, the sensor works

3 watLevel_R1_2_bool - readings of the middle water level sensor from the first
tank. It represents a Boolean type variable

4 watLevel_R1_1_bool - readings of the lower water level sensor from
the first tank.

5 Fullness_R1_perc
- percentage of the first tank filling. It represents a field of

data type Double. The readings correlate with Boolean
water level sensors

6 Crane_state_perc

- status of the controlled crane. It is a Double type field
and reflects the degree of tap opening from 0 (closed) to 1

(fully open) with a gradation of 0.1. For example, 0.5
indicates the tap is half open

7 Flow_state_perc

- measure of water flow between the tanks. It represents
the Double data type and reflects the amount of water

flowing through the sensor. It equals 0 if there is no water
flow, and 1 when the tap is fully open and the maximum

water flow between the tanks. It has a delta of one
thousandth (0.001)

8 watLevel_R2_3_bool - readings of the upper water level sensor from the second
tank. It works similarly to the one from the first tank

9 watLevel_R2_2_bool - readings of the middle water level sensor from
the second tank (similarly to the one from the first tank)

10 watLevel_R2_1_bool - readings of the lower water level sensor from the second
tank (similarly to the one from the first tank)

11 Fullness_R2_perc - status of the controlled crane (similarly to the one from
the first tank)

12 Pump_state_bool - indicates the pump’s status. It is Boolean and equals 0
if the pump is not running and 1 otherwise

13 PumpFlow_state_perc
- flow rate of water transferred through the pump

between two tanks. It is Double and presents readings
similarly to the first water flow sensor between the tanks

14 Time_sec - time in seconds from the start of the system. It is the
Float data type. With each new entry it increases by 0.5 s

15 isAttack - indicates the presence of an attack (for each sample). It is
Boolean type. If there is an attack, it is 1; otherwise, it is 0

16 classAttack
- exposes the specific class of attack, if any. The data type
is Integer. It can take values from 0 to a specific number of

attack classes. In the absence of an attack, it is 0

The recorded data sets include data on five attacks on this system. Their names, attack
class number and description of malicious actions are presented in Table 2.

Table 2. Attack classes and their description.

Attack Class Attack Name Description

1 Attack on water level
sensors

- the attack consists in modifying the readings of
binary water level sensors. That is, during the

attack, their readings do not match the readings of
the tank fullness sensors. The attack is relevant for

two tanks, and within the data set, this attack is
marked by the classAttack label equal to 1
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Table 2. Cont.

Attack Class Attack Name Description

2
Attack aimed at

falsification of the total
size of water in the tanks

- the attack consists of an inconsistency between
the indicators of the water level of one tank and

the other. Since the system is closed, the total
amount of water is unchanged, and this attack is

also potentially realizable. By manipulating sensor
readings, an attacker changes data on the total size

of water, including physically withdrawing it.
For example, in a normal state, if the first tank is

70% full, the second one is 30% full. In the event of
an attack, the first and second ones can be equally

filled by 30%. Within the data set, this attack is
marked by the classAttack label equal to 2

3 Attack on water flow
sensors between tanks

- the attack consists in replacing the sensor
readings when the water level in the tanks does

not change, and the controlled crane is closed (or
the pump is turned off and the water flow sensor

detects its overflow). The attack is relevant for
both the flow sensor between tanks and the water
flow sensor attached to the pump. Within the data
set, this attack is marked by the classAttack label

equal to 3

4 Attack on water flow
sensors (second class)

- the attack is similar to the previous class, but in
this case, the readings are changed when the pump

is turned on or the crane is open. The sensor
shows the absence of water flow while, in fact, it is
flowing. Within the data set, this attack is marked

by the classAttack label equal to 4

5 Mixture of attack classes
3 and 4

- the attack consists in replacing the indicator of
water flow between the tanks relative to the degree
of opening of the controlled crane. If the crane is

fully open and the water flow is weak (even
if the tank is full, or vice versa), the valve is almost

closed and the water flow is maximum. It is
labeled by 5 in the classAttack field of the data set

In addition, one more class can be introduced, the absence of any attack. This class is
marked by label 0.

5. Experiments and Discussion
5.1. Machine Learning Based Detection

To detect attacks, machine learning modules contained in the Scikit-learn library
and the Python programming language are used. When performing experiments on
attack detection with data sets presenting states of the water treatment system, we used
the following machine learning modules taken from the Scikit-learn library:

• AdaBoost classifier (AdaBoostClassifier class);
• Random Forest classifier (RandomForestClassifier class);
• Bayesian classifier (MultinomialNB class);
• LogisticRegression classifier (LogisticRegression class);
• Linear classifier SVM (SGDClassifier class);
• DecisionTree (DecisionTreeClassifier class);
• Ridge Classifier (RidgeClassifier class).

The data sets present records of the state of the water treatment system at a definite
point in time, i.e., records of the states of the system’s sensors and its actuators. Each of
the samples may contain at least one attack, as described above. The following files were
taken as input:
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• 0_1.csv (total – 7200 records; normal – 4200; attack – 3000; attack class 1)
• 0_2.csv (total – 7200 records; normal – 4200; attack – 3000; attack class – 2)
• 0_3.csv (total – 7200 records; normal – 4765; attack – 2435; attack class – 3)
• 0_4.csv (total – 7200 records; normal – 4200; attack – 3000; attack class – 4)
• 0_5.csv (total – 7200 records; normal – 6649; attack – 551; attack class – 5)
• 0_1_2_3_4_5.csv (total – 7200 records; normal – 2413; attack – 4787; attack classes– 1, 2,

3, 4, 5)

The architecture of the used experimental framework for the classification of attacks is
shown in Figure 5. All the samples of the data sets were divided into training and testing
sets at ratios of 70% to 30%, respectively. The testing of the trained models was performed
using a testing set, and the calculation of classification quality was fulfilled by accuracy
and f1-score indicators.

Figure 5. Architecture of the used experimental framework for the classification.

For the training phase, the columns containing record identifiers attack classes and attack
indicators were excluded in order to avoid overfitting. The time feature was also eliminated be-
cause its strong correlation with the resulting variable was revealed. Therefore, the following
features were selected: watLevel_R1_3_bool, watLevel_R1_2_bool, watLevel_R1_1_bool, Full-
ness_R1_perc, Crane_state_perc, Flow_state_perc, watLevel _R2_3_bool, watLevel_R2_2_bool,
watLevel_R2_1_bool, Fullness_R2_perc, Pump _state_bool, PumpFlow_state_perc.

During the experiments, the selection of the best hyper-parameters for each of the meth-
ods was performed using the GridSearchCV library function. As an input, one needs to
set a list of parameters for a specific classifier. After that, according to given indicators,
namely accuracy and f1-score, the best combination of parameters for a higher indicator is
formed. Table 3 presents a list of parameters of the machine learning methods that were
fed to the input of the GridSearchCV function.

Table 3. Machine learning methods and list of their parameters.

Name of Method List of Parameters Values

AdaBoostClassifier - algorithm: SAMME; SAMME.R learning_rate: 1; 0.7; 0.5
n_estimators: 50; 100

RandomForestClassifier
(RF)

- criterion: entropy; gini max_depth: None; 8; 13 min_samples_leaf: 1;
10; 50 n_estimators: 50; 120; 240

MultinomialNB - alpha: 0; 1.0
LogisticRegression (LR) - max_iter: 1000; 2000 solver: saga; liblinear; newton-cg
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Table 3. Cont.

Name of Method List of Parameters Values

SVM - alpha: 0.0001; 0.00001 loss: hinge; squared_hinge penalty: elasticnet;
l2

DecisionTreeClassifier - criterion: gini; entropy min_samples_leaf: 1; 10; 20; 50 splitter: best;
random

RidgeClassifier - alpha: 1.0; 2.0 solver: auto; svd; lsqr; sag

Tables 4 and 5 show appropriate parameters for each method with reference to the in-
put data set.

Table 4. Appropriate parameters of machine learning methods depending on the input dataset.

Name of Method Parameters 0_1.csv 0_2.csv 0_3.csv

AdaBoost Classifier
algorithm SAMME.R SAMME.R SAMME

learning_rate 0.5 1 1
n_estimators 50 50 50

RF
criterion entropy entropy entropy

max_depth None None None
min_samples_leaf 1 1 1

n_estimators 50 50 50

MultinomialNB alpha 0 0 0

LR
max_iter 1000 1000 1000

solver liblinear liblinear liblinear

SVM
alpha 0.00001 0.0001 0.0001
loss hinge hinge squared_hinge

penalty l2 elasticnet l2

DecisionTree Classifier
criterion gini gini gini

min_samples_leaf 1 1 1
splitter best random best

Ridge Classifier
alpha 1.0 1.0 1.0
solver sag auto auto

Table 5. Appropriate parameters of machine learning methods depending on the input dataset.

Name of Method Parameters 0_4.csv 0_5.csv 0_1_2_3_4_5.csv

AdaBoost Classifier
algorithm SAMME.R SAMME.R SAMME.R

learning_rate 1 0.7 1
n_estimators 50 100 50

RF

criterion entropy entropy gini
max_depth None None None

min_samples_leaf 1 1 1
n_estimators 50 240 240

MultinomialNB alpha 0 1 1

LR
max_iter 1000 1000 1000

solver liblinear liblinear liblinear

SVM
alpha 0.00001 0.0001 0.0001
loss squared_hinge squared_hinge squared_hinge

penalty l2 elasticnet elasticnet

DecisionTree Classifier
criterion gini entropy entropy

min_samples_leaf 1 1 1
splitter best random random

Ridge Classifier
alpha 1.0 1.0 2.0
solver auto lsqr lsqr
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The results of the experiments are shown in Figure 6. It reflects the quality of attack
classification by machine learning methods for each input dataset using the f1-score metric.

Figure 6. Machine learning method results comparison (f1-score).

5.2. Analysis of the Proposed Visualization Efficiency

The goal of the experiments conducted with a visualization component was to deter-
mine the most suitable parameters for the calculation of the integral metric Change_Measure,
i.e., size of sampling window that defines a number of the points used to construct De-
launay triangulation and enables clear identification of the anomaly. The authors also
evaluated the impact of smoothing filters on the visual efficiency to reveal specific classes
of attacks.

The experimental data consisted of five data sets that are described in Section 5.1.
To determine the optimal number of data points that are used to construct Delaunay triangu-

lation, the authors calculated and plotted the Change_Measure metric with the following param-
eters:

• Distance between 2 points (parameter n = 2),
• Triangular area by 3 points (parameter n = 3),
• Delaunay triangulation by 5 points (parameter n = 5),
• Delaunay triangulation by 10 points (parameter n = 10).

For the test data, the data set with the first class of the attack was used. Figure 7
shows plots of the Change_Measure metric for these four settings, and the background
color shows the time intervals with the attack.

(a) (b)

Figure 7. Cont.
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(c) (d)

Figure 7. Plot of the Change_Measure metric constructed for different settings of the n parameter:
n = 2 (a), n = 3 (b), n = 5 (c), and n = 10 (d).

It is obvious that the plots of the metric based on the calculation of triangular squares
produce similar patterns of anomalous activity, while the metric based on the calculation of
the Euclidean distance between two points gives a slightly different plot (Figure 7a). It is
possible to see the transition period at the beginning more clearly, and the normal period
of functioning is also characterized by periodical bursts in the metric values. In contrast,
the plots of the metrics based on the triangles’ area allow an analyst to detect normal and
anomalous periods clearly: the periods of attack are characterized by high scatter in values
and higher frequency of change, and the metric values for normal periods are almost close
to zero and change slightly. As all plots produce similar results, the metric based on the
calculation of the triangle square is preferable because it is faster to calculate and does
not require the accumulation of data, which may be critical for the online monitoring
of the system. In the next series of experiments, the authors used the Change_Measure
calculated with n set to 3. The next series of experiments was devoted to the evaluation of
the efficiency of the Change_Measure metric to determine different classes of the attack.

An attack of the first class is clearly seen on the plot of the Change_Measure metric
with different visualization settings. Figure 8 shows these plots, it should be noted that
the Change_Measure metric is constructed for the whole set of attributes. The plot of
the “raw” metric is characterized by a constant change of the metric values, the sliding
filters smooth these changes making the start and stop points of the attack more visible.

(a)

Figure 8. Cont.
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(b)

(c)

Figure 8. Plot of the Change_Measure metric constructed for different settings of the sliding filter: no
filter is applied (a), sliding average filter with the window set to 30 is applied (b), sliding median
filter with the window set to 30 is applied (c).

The attack of the second class was not easy to detect as there were no clearly visi-
ble changes in the behaviour of the Change_Measure metric when it was constructed for
the whole set of attributes. Thus, it was decided to focus only on the parameters that
could be potentially impacted by the attack, i.e., parameters that characterize the volume of
the water in the reservoir. This allowed authors to reveal some anomalous spikes in the sys-
tem’s functioning. Figure 9 shows the plot of the obtained values of the Change_Measure
metric. It is clearly seen that there is a sequence of spikes at the beginning of the plot that
could indicate that the system is in a transient state, reaching its normal functioning mode,
and there are four single outliers. When the authors mapped the time intervals of the attack
with this plot, it became clear that these spikes indicate the start and stop points of the at-
tack. These spikes are clearly visible even when no sliding filters are applied. Thus, it could
be concluded that the patterns of system behavior in the normal state and under a given
attack do not differ, which indicates that in this case, the proposed method determines only
the fact of anomaly appearance, but not its effect on the nature of system operation.
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(a)

(b)

Figure 9. System parameters and Change_Measure metric when the system is under attack of the second
class: the plot of Change_Measure metric with background color highlighting the periods with attacks
(a), the plots of system parameters that characterize the volume of the water in the reservoirs (b).

The anomalies of the third and fifth types can be clearly seen on the linear plots
without filtering (Figure 10a) and with sliding median filtering with a window set to 60
(Figure 10b). A characteristic feature of these attacks is a significant change in the density
of points on the plane that results in the higher values of the Change_Measure on the plot
as well as in the absence of periods with a small change in the system state (Figure 10a).
This makes median filtering more effective, enabling highlighting such periods more
obviously. As in the previous case with an attack of the second class, there are also bursts
at the beginning of the graph, which indicates the transient state of the system when it is
reaching the normal operating mode. Such moments should be taken into account when
applying this method.
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(a)

(b)

Figure 10. Plot of the Change_Measure metric constructed for the system under attack of the third
class: no filter is applied (a), sliding median filter with the window set to 60 is applied (b).

The anomaly of the fifth type turned out to be more difficult to determine visually,
although it is a combination of attacks of classes three and four. In contrast to the previous
cases, during this attack, the state of the system does not change significantly in com-
parison with the normal operation of the system, and periods with an anomalous oper-
ation, on the contrary, are characterized by lower values of the Change_Measure. Thus,
the anomaly pattern for this attack consists in the smaller range of the metrics’ values.

The implemented visualization-driven approach to anomaly detection was also ap-
plied to the data set that contains all types of anomalies. Figure 11 shows the results
obtained. The upper plot in Figure 11 shows the class of the attack if the system is un-
der attack or zero if there is no anomaly in the system. The lower plot is the plot of
the Change_Measure metric. The anomalies of the first, third and fourth types are clearly
seen, and these anomalies are highlighted by a background color in Figure 11. The vi-
sual detection of the anomalies of the second and fifth types is much more complicated.
Thus, it is required to apply filtering with a sliding average filter with a window of 60 to
reveal the attack of the second class, while the attack of the fifth class was still difficult to
determine visually. The possible reason for this failure could be in the artificial origin of
the data: the periods with anomalies successively replace each other, and there are almost
no periods with normal functioning of the system except for the first one, but it corresponds
to the transition period of the system when it reaches the normal operational mode.



Water 2022, 14, 2342 20 of 23

Figure 11. The visualization of the Change_Measure metric constructed for the data set that contains
all five different types of anomalies. The upper plot shows if the system is under attack or not, and if
the system is under attack it shows the class of the attack.

5.3. Discussion

The analysis of the experimental results with the machine learning models that are
given in Figure 6 showed that the performance metrics are very high for some classes
of attacks. To avoid overfitting during the experiments, the initial data set was divided
into training and testing subsets (with respect to 70/30). This was applied in all series of
experiments, including data sets with attacks of the first and second classes. The possible
reason for such a high detection rate is the low complexity of these attacks and the high
separability of the classes. The latter is proved by good visibility of the periods with
attacks when they are visualized using the proposed graphical model. With an increase in
the attack complexity as well as their number in the input data set, the performance metrics
of machine learning methods slightly decrease but still remain quite high. This proves
the efficiency of the proposed solutions.

The implemented series of experiments showed that the proposed visualization tech-
nique allows constructing the graphical patterns of the anomalous behavior of the water
treatment system. These patterns are formed by the Change_Measure metric and charac-
terized either by the values of the change metric or by the change rate of these values. It
allows identifying points when the functioning of the system changes, which could be used
as a trigger to start manual and/or machine-assisted checking of the system state.

Nevertheless, the conducted experiments revealed the limitations of the approach.
It was shown that it is required to apply different pre-processing techniques such as median
filtering and window size setting in order to reveal different attack scenarios. To solve
the first problem, the authors currently recommend implementing the following steps:

1. Visualize the “raw” plot of the Change_Measure metric for the whole set of attributes.
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2. Apply filter “sliding average filter” to highlight time periods when the rate of the met-
ric change is higher in comparison to others.

3. Apply filter “sliding median value” to highlight time periods when the values of
the metric are higher in comparison to others

4. If no signs of anomaly are detectable, group attributes based on their semantic rela-
tionships and perform steps 2–3.

The comparative analysis of the proposed approach with the existing ones showed
that with regard to visualization, the proposed approach is close to the solutions described
in [19,21]. Similarly to [21], the authors use a timeline to monitor the system’s behavior
and machine learning behavior. However, to construct the line chart, the authors introduce
a specific preprocessing of data from multiple sensors that, in some sense, is close to [19,20].
Unlike [20], the authors represent the behavior of the whole system by a point in a mul-
tidimensional space and then apply the Delaunay triangulation to assess the amount of
changes in system behavior at a given moment of time. As the proposed Change_Measure
metric incorporates a set of system parameters, the developed visualization is able to form
situational awareness of the water treatment system state.

6. Conclusions

The problem of the attack and anomaly detection in cyber-physical systems, such as
water treatment systems, electric power stations, etc., is of great practical importance, as
malicious activity may result in a significant impact on the environment and human safety.
In the general case, attacks on sensors of a wireless sensor network are characterized by
the complexity of identifying such attacks and their differences from various software and
hardware/software failures. In addition, they are characterized by the complexity and
potential ambiguity of interpreting the analyzed data and classifying them as traces of
an attack without involving additional data from alternative protection mechanisms.

The paper proposes a visualization-assisted approach to anomaly and attack detection
in a water treatment system constructed on the basis of a wireless sensor network. The
distinctive feature of the proposed approach is a combination of the machine learning
and visualization techniques. The former refers to automated attack detection based
on supervised learning on the labeled data sets with five attack classes and mixed data.
The latter is used to assist in anomaly detection and its explanation and the monitoring of
the system state. The authors propose visualizing a metric that characterizes the amount of
change in the system state for a given period. As its calculation is based on a set of system
parameters, it could be considered as an integral and be used in forming the situation
awareness of the analyst.

To evaluate the proposed approach, a water treatment test bed was developed. It
includes a software/hardware prototype of the system that models water treatment pro-
cesses both on physical equipment and microcircuits, as well as a software simulator that
allows generating a sufficient amount of initial data of the normal functioning of the system
and when the system is under attack. In particular, such simulation made it possible to
model five classes of attacks on system sensors and combinations of several attacks. The
obtained data sets were used to train and test classifiers that implement attack detection
and evaluate the efficiency of the visualization component.

The conducted experiments showed the high values of the detection quality metrics for
the machine learning methods applied. It was also shown that the proposed visualization
is able to reveal different anomalous scenarios and determine graphical patterns corre-
sponding to them. It allows detecting points of interest that are considered as a starting
point of the manual or machine-assisted “root-cause” analysis of the anomalies. However,
the experiments also identified certain limitations in terms of the visualization. They relate
to the parameters’ fine-tuning procedure for calculation and visualization of the proposed
metric. The enhancement of the metric calculation procedure and elaboration of the recom-
mendations for its application is included in the scope of future works. Another direction
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of the future work relates to the enhancement of the test bed and extension of the modeled
attack scenarios.
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