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Abstract: The water source area of the middle route of the South-to-North Water Diversion Project is
an important water conservation and ecological protection area in China. Based on remote sensing
data, this paper analyzed the evolution process of land use/cover change in water source region in
the past 35 years. Then, based on the InVEST model, the spatial-temporal patterns of water yield in
the water source region were calculated with land use cover, meteorology and soil data as inputs.
The impacts of climate factors such as precipitation and temperature and land use change on water
yield were discussed, and the responses of water yield to these two changes were also discussed.
The results show that from 1985 to 2020, the average water yield depth in the middle route of the
South-to-North Water Diversion Project increases first and then decreases, from 615 mm in 1985 to
738 mm in 2000, and then decreases to 521 mm in 2020. The spatial heterogeneity of the water-
producing capacity is obvious. The high value of the water-producing capacity is concentrated
in the Daba Mountain area in the south, while the low values are concentrated in the Hanzhong
Basin, Ankang Basin and the eastern plain area. The spatial pattern of water producing depth has
no obvious change. The average water yield depth of forest, grassland and shrub in the region was
the largest, and forest and cultivated land were the main contributors to the total water yield of the
region, providing 82% and 14% of the total water yield in 2020. Precipitation has a significant effect
on water yield, while land use/cover change has a small effect on water yield.

Keywords: GEE; water source area; route of the South-to-North Water Diversion Project; human
activities; land use; water yield function

1. Introduction

Water yield service is one of the most important service functions of ecosystem, which
plays a key role in regulating regional water cycle and maintaining regional ecosystem
stability [1]. It directly affects the overall level of regional water resources and is an
important indicator of regional ecosystem quality [2–4]. Regional water service functions
have strong temporal and spatial heterogeneity, which can directly affect climate, hydrology,
vegetation and soil systems and indirectly affect human activities such as agriculture,
industry, fisheries and hydropower generation [5–13]. In recent years, the study of spatial-
temporal changes in watershed water yield services and their influencing mechanisms has
become one of the hot topics in the interdisciplinary fields of hydrology and ecology, which
has important application value and guiding significance for the rational development and
allocation of watershed water resources, the sustainable development of ecosystems and
the balance of regional economic and social development and ecological security [8,9].

For a long time, scholars of various countries have summed up different methods
for the assessment of ecosystem water yield services. Among them, the observational
statistical method is based on the actual observation data in a small watershed, using
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the soil storage capacity method, comprehensive storage capacity method, water balance
method, precipitation storage method, annual runoff method and underground runoff
growth method to estimate. However, this method is limited by the small number of
monitoring stations in the basin and the quality of observation equipment, and the above
methods have a large error in the estimation of water yield in large regions and basins.
Based on the development of remote sensing science and GIS technology in the fields
of ecology and hydrology, the model calculation method realizes the simulation and
evaluation of large-scale regional water yield service through the establishment of a water
yield service model. There are TOPMODEL [14], MIKESHE model [15], SWAT model and
InVEST model [16–19]. The InVEST model based on ecological processes has been widely
used in the evaluation of ecosystem services in recent years [20–23]. This model has obvious
advantages in data input, parameter calibration, spatial analysis and result visualization.
The water yield module of the InVEST model takes into account the spatial difference of
soil permeability of different land use types, DEM and other factors and uses the principle
of water balance to subtract actual evapotranspiration from precipitation as water yield.
In addition, the input data and calculation results of InVEST model are in a TIF format,
which is convenient for analyzing the driving factors of spatial heterogeneity of runoff
production and the confluence of each sub-watershed in the region and can also quickly
calculate the contribution of different landscape units to watershed water yield [24]. The
InVEST model has been widely used in many countries and regions and has achieved good
application results. The Brazilian Subtropical Basin [25], Atlanta Metropolitan area [26],
arid Basin in Iran and Lower Mekong [27] have been estimated by foreign scholars using
this module [28]. There are many studies based on the InVEST module and land use change
data to study the three-river source area [29] in northeast China [22,30], in the Beijing Gui
River basin [31], in the Yellow River and in Qinling [10,32] in characteristics such as water
rate and the change in time and space [22]. Climate change is discussed under the condition
of the influence of human activities on the regional water rate [33].

As the main carrier of human production and life, land use/cover change has become
an indispensable part of ecological environment change research [24,33–35]. Under the
influence of climate change and human activities, the global land use/cover change is
increasingly frequent, leading to drastic changes in the ecological environment and water
resources environment, aggravating the contradiction between social and economic water
use and ecological water use and resulting in an imbalance between ecosystem structure
and function [35,36]. Research related to land use/cover change and its ecological and
environmental impacts needs to be conducted. It will help to alleviate the contradiction
between man and land and promote the coordinated development of water and soil
resources [17,37,38].

The water source area of the middle route of the South-to-North Water Diversion
Project is an important water conservation area in China [39,40]. The Danjiangkou reservoir
in the region is the starting point of the middle route of the South-to-North Water Diversion
Project in China. The variation in water yield in this region plays an important role in
regulating the water resource security and ecological security in the middle and lower
reaches of the Han River [41]. By January 2022, the project had transferred nearly 45 billion
cubic meters of water, directly benefitting more than 120 million people and becoming a
major source of domestic water for many major cities. Therefore, the water yield in this
region is the key to ensure the high quality and continuous water transfer in the middle
route of the South-to-North Water Transfer Project. Since 1985, urbanization in the middle
route of the South-to-North Water Transfer has developed rapidly, and economic water use
and agricultural irrigation water use have increased rapidly, which has seriously threatened
the role of regional water conservation. Since 1999, China has carried out a series of
ecological construction projects, such as returning cropland to forest (grassland), protecting
natural forests and water and soil conservation, in order to improve the ecological service
functions of the water source areas. The implementation of a series of ecological projects led
to the expansion of forest area, the increase in vegetation coverage and the corresponding
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enhancement of evapotranspiration, which further led to the change in the regional water
yield. Therefore, it is of great scientific significance to study the relationship between land
use/cover change and water yield change in the water source region of the middle route of
the South-to-North Water Diversion Project [42]. At present, the existing studies mainly
focus on vegetation cover change and runoff change caused by landscape pattern evolution
before and after ecological restoration project construction. There are also a lot of studies
on environmental impact assessment of this region, but there are insufficient studies on
the water yield service function of the ecosystem in this region. There are few quantitative
studies on the contribution of climate change and human activities to the variation in water
yield in this region. Therefore, estimating water yield service and its driving factors in
the water source region of the middle route of the South-to-North Water Diversion Project
and clarifying the spatio-temporal dynamic response relationship between water yield,
precipitation, land use and other key factors will provide scientific theory and decision
support for the scientific utilization and rational allocation of regional water resources [43].

Firstly, multi-source remote sensing data provided by the Google Earth Engine (GEE)
cloud platform were used to analyze land use/cover change in the region [44]. Then, the
land use/cover change results and other remote sensing data were put into the InVEST
model to simulate the water yield service before returning cropland to forest (1985 and
1990), at the beginning of returning cropland to forest (2000), after the middle route of
South-to-North Water Diversion Project was officially put into operation (2010) and most
recently in 2020. The difference of water producing capacity under different land use and
climate conditions was analyzed. On the basis of ensuring the accuracy and reliability of
the data, through the deep integration of remote sensing big data, GIS technology and
ecosystem service assessment method, the spatio-temporal dynamic simulation results of
water yield service under the condition of climate disturbance are estimated accurately and
efficiently. Finally, the contribution rate of precipitation change and land use change to
regional water yield change was quantitatively analyzed by scenario analysis method, and
then the key factors affecting the change in water yield service in the middle route of the
South-to-North Water Diversion Project were identified.

2. Materials and Methods
2.1. Study Area

As shown in Figure 1, the water source area of the middle line of the South-to-North
Water Diversion Project (hereinafter referred to as the water source area) is located between
the Qinling Mountains and the Dabashan Mountains (31◦20′~34◦10′ N and 106◦~112◦ E),
forming a typical geomorphic feature of “two mountains sandwiching a river”. The land-
forms are mainly mountainous (88.9%), hilly (3.9%) and alluvial platform (6.9%). The slope
of mountainous areas is generally large, ranging from 0 to 68.8◦. Only Hanzhong Basin,
Ankang Basin and the eastern part of the basin have gentle topography, becoming the main
residential areas, and the range of regional elevation is 100–3177 m. In addition, there are
Danjiang, Hanjiang and Duhe river basins in the water source region, with a total area of
10.9 × 104 km2 and a surface runoff of 39.8 km3. The climate in the water source region is
mild and humid, and the average annual precipitation is 894 mm, which is the main factor
of landmark runoff in the water source region. The vegetation in the west and south of the
water source region is mainly forest, and the natural vegetation mainly includes evergreen
broad-leaved forest, evergreen coniferous forest, deciduous broad-leaved forest and mixed
forest, etc. The vegetation coverage is relatively good, and it is the water conservation area of
the middle route of South-to-North Water Diversion Project. Danjiangkou Reservoir in the
water source area is the source of water diversion for the middle route of the South-to-North
Water Transfer Project, with a dam height of 170 m, a water area of 1022.75 km2 and a storage
capacity of 29.05 billion m3. After the middle route of the South-to-North Water Transfer
project is fully put into operation, about 9.5 billion m3 of water will be transferred annually.
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Figure 1. Sketch map of the water source area of the middle line of the South-to-North Water
Diversion Project, China. The map is from the Chinese Standard Map (http://bzdt.ch.mnr.gov.cn/GS
(accessed on 19 June 2022) (2019) 1822).

2.2. GEE Platform and Remote Sensing Image Statistics

The land use classification in the study area is mainly accomplished by means of
the GEE platform. Google Earth Engine, also known as cloud computing Engine, is
jointly developed by Google, Carnegie Mellon University, NASA and The US Geological
Survey and is the world’s leading cloud computing platform and geographic information
processor for Earth observation data [45]. With the advent of the era of remote sensing
big data, the emergence of remote sensing cloud platform represented by GEE makes it
possible to perform rapid calculation and analysis of water surface extraction and vegetation
monitoring worldwide [46,47]. Its open remote sensing image dataset has stored remote
sensing satellite image data for more than 40 years online and provides convenience for
large-scale and long-term remote sensing image data processing and analysis through
its powerful cloud computing capability. In this paper, the spatiotemporal consistency
processing of Landsat and MODIS data on the GEE platform was carried out to regenerate
the training and testing samples of the growing time series (1985–2020). Then, the features
were constructed, and the land classification data with a resolution of 30 m was produced
by combining the independent sample data of visual interpretation. Ensure the accuracy
of the classification data by checking the classification and comparing the accuracy with
other products. This process is implemented on the GEE platform without data download,
which is very beneficial to data management [46,48]. The amount of Landsat data in the
water source area can support the monitoring of interannual changes of land use in the
area since 1985. Therefore, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI Collection 1
Tier 1 and other surface reflectance data covering the study area from 1985 to 2020 were
used in this study (about 44,000 scenes, about 400 terabytes of data) from the United States
Geological Survey (USGS). All Landsat data were obtained by GEE and passed geometric
correction and atmospheric correction [49,50]. As The Landsat data have been included
in the data archive of GEE cloud computing platform, we counted the effective Landsat
observation times on the annual and monthly scales in the water source area from 1985 to
2020 through the platform, as shown in the Figure 2. However, the average annual cloud
frequency in the study area calculated according to GEE platform is between 56.49%–89%
and 81% [51]. Although it is much lower than the average cloud frequency in southern
China, it is considered to minimize the influence of cloud coverage probability on visual
interpretation of remote sensing images. Therefore, in this paper, the built-in open source
algorithm “simpleCloudScore” of the GEE platform is first used to calculate the “cloud

http://bzdt.ch.mnr.gov.cn/GS
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score” of each image pixel, and then the threshold of “cloud score” = 15 is taken as the
“good observation”; that is, pixels below 15 are considered as “good observation”. Finally,
the “good observation” pixel is used to generate the study area splice map. It can effectively
reduce the impact of cloud coverage on the results. In addition, to enable the LC change
monitoring backdate to 1985, we generated a LUCC map for 1985 as a supplement [51].
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2.3. LUCC Data Source and Classification

GEE platform can only recognize and classify the spectral features, texture features
and topographic elements of the study area as input features of the classifier. Normalized
Difference Water Index (NDWI), and Normalized Difference Vegetation Index (NDVI).
Grey-level Co-occurrence Matrix (GLCM) and SRTM DEM. Finally, training samples were
extracted from global land cover product MCD12Q1 Version 6 IGBP_LC_Type1 to realize
the automatic creation of a large training sample data set. Through the selection of free
access to China’s land cover data sets [52] (CLCD, accessed on 19 June 2022), Geo-wiki [53]
and Global Land Cover Validation Sample Set (GLCVSS) [54] to fully verify the data quality
of this paper, it was found that the classification accuracy of land use/cover data in this
paper was 84.3%, better than that of CLCD (81.31%), MCD12Q1 (79.97%) and GLCVSS
(78.93%). Hydrological and elevation information from The Chinese Academy of Sciences
Data Center for Resources and Environment (accessed on 19 June 2022).

Confusion Matrix (CM) is one of the most popular indices in the accuracy evaluation
of land cover classification [55,56]. Each column of the confusion matrix represents the
real land cover information, and the value in each column is equal to the corresponding
category quantity of real surface pixels in the classified image. In this study, 150 samples
were randomly selected from the study area in 2020, and the classification results and
verification samples were analyzed on the GEE cloud platform [50,57], including cropland,
forest, shrub, grassland, construction land, water body and wasteland. Production accuracy,
user accuracy, overall accuracy, Kappa coefficient, missed error and misclassification error
are calculated by the evaluation index of confusion matrix [49,57,58]. The results are shown
in Table 1.

Table 1. Image classification accuracy and Kappa index.

Land Types Cropland Forest Shrub Grassland Water Barren Impervious

Classification
Accuracy (%) 86.1 85.4 83.2 84.5 86.8 82.1 84.7

Kappa index 0.87
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2.4. Land Use Transfer Matrix

The land use transfer matrix reflects the dynamic transformation process of cropland,
forest, shrub, grassland, construction land, water body and wasteland in 1985, 1990, 2000,
2010 and 2020. After calculating the area conversion between different land use types in
the water source region, we also analyzed the causes of conversion between different land
use types in combination with the implementation of ecological projects such as converting
cropland to forest and South-to-North water diversion [15,24,32,59]:

Sij =

S11 · · · Sn1
...

. . .
...

Sn1 · · · Snn

 (1)

where S represents the area; i, j (i, j = 1, 2, . . . , n) are before and after land use type transfers,
respectively; Sij represents the area from land use type i to type j between the two time
points; and n indicates the classification number of land use types.

2.5. Model of Water Yield

Integrated Valuation of Ecosystem Services and trade-offs (InVEST) is jointly devel-
oped by Stanford University, The Nature Conservancy (TNC) and the World Wildlife Fund
(WWF). Its main function is to visually simulate the changes in ecosystem service quality
and value under different land cover scenarios at the grid scale [60]. The water yield
module is one of the most widely used models for calculating regional water yield based
on the coupled equilibrium theory of water and heat based on Budyko’s hypothesis [61]. In
this study, the model was used to estimate the spatial distribution and temporal variation in
water yield in five periods from 1985 to 2020, and the flowchart of the water yield process
is shown in Figure 3. Its calculation formula is shown in Formula (2):

Y(x) =
(

1− AET(x)
P(x)

)
·P(x) (2)

where Y(x) represents the annual water yield depth of grid X; AET(x) is the average annual
actual evapotranspiration of grid X; P(x) represents the average annual precipitation of grid
X. (AET(x))/(P(x)) is the ratio of the actual evapotranspiration to precipitation, which can
be calculated according to Zhang et al. [62] and Budyko’s hypothesis [61]:

AET(x)
P(x)

=
1 + ω(x) + R(x)

1 + ω(x)·R(x) +
1

R(x)

(3)

ω(x) = Z·PAWC(x)
P(x)

(4)

R(x) =
k(x)·ET0

P(x)
(5)

where Z represents the Zhang coefficient [62], R(x) refers to Budyko’s dryness index which
is the ratio of potential evapotranspiration to precipitation, and PAWC(x) refers to available
water content of plants in grid X. ω(x) is the ratio of improved vegetation annual water
availability to expected precipitation. k(x) is the plant evapotranspiration coefficient; ET0 is
the annual reference evapotranspiration.

The input parameters for the model parameter water yield module include LULC,
precipitation, soil depth, vegetation available water, biophysical parameter list, watershed
and Zhang coefficient. The spatial resolution of all the data in this study is resampled to
30 m, and the coordinate system uses the world Geodetic coordinate System (WGS1984).
In order to save computing cost, this study calls the data of land use and DEM based
on The Cloud platform of Google Earth Engine and performs cutting and pre-processing
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calculations [63]. The InVest model data structure and data information used in this paper
are shown in Table 2.
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Table 2. InVest model data structure and data information used in this paper.

Variable Format Parameter

Land use/land cover
(LULC) tif

The spatial resolution: 30 m
Quantity: 5 issues in 1985, 1990, 2000, 2010 and 2020

(https://code.earthengine.google.com, accessed 3 April 20222)

Precipitation tif
The spatial resolution: 30 m, Units: mm

Quantity: 5 issues in 1985, 1990, 2000, 2010 and 2020
(http://data.cma.cn/user/toLogin.html, accessed 19 April 2022)

Spatial distribution of temperature tif
The spatial resolution: 30 m, Units: ◦C

Quantity: 5 issues in 1985, 1990, 2000, 2010 and 2020
(http://data.cma.cn/user/toLogin.html, accessed 10 June 2022)

Map of evapotranspiration values tif
The spatial resolution: 30 m, Units: mm

Quantity: 5 issues in 1985, 1990, 2000, 2010 and 2020
(http://data.cma.cn/user/toLogin.html, accessed 12 June 2022)

Map of root restricting layer depth tif
The spatial resolution: 30 m, Units: mm

(HWSD v1.2, http://data.tpdc.ac.cn/zh-hans/data/844010ba-d359-4
020-bf76-2b58806f9205/, accessed 9 May 2022)

Map of plant available water content (PAWC) tif
The spatial resolution: 30 m, Units: %

(HWSD v1.2, http://data.tpdc.ac.cn/zh-hans/data/844010ba-d359-4
020-bf76-2b58806f9205/, accessed 6 June 2022)

Maximum root depth for plants in this
LULC class xlsx Units: mm (https://naturalcapitalproject.stanford.edu/,

accessed 3 June 2022)

Evapotranspiration coefficient of different
LULC class xlsx dimensionless (https://naturalcapitalproject.stanford.edu/,

accessed 19 June 2022)

Digital elevation model (DEM) tif The spatial resolution: 30 m, Units: m
(https://code.earthengine.google.com, accessed 20 May 2022)

Watersheds and Sub-watersheds shp Dimensionless
ARCGIS 10.6

The original data of annual average rainfall, maximum temperature and minimum
temperature in the study area were obtained from The Chinese Meteorological Data Center,
and then the spatial grid data of annual average temperature, temperature difference
and rainfall were calculated based on ANUSPLIN spatial interpolation. The reference
evapotranspiration data used in this paper were calculated by the InVEST model and the
Hargreaves method, given by:

ET0 = 0.0019× RA× TD0.5× (Tav + 17.8) (6)

https://code.earthengine.google.com
http://data.cma.cn/user/toLogin.html
http://data.cma.cn/user/toLogin.html
http://data.cma.cn/user/toLogin.html
http://data.tpdc.ac.cn/zh-hans/data/844010ba-d359-4020-bf76-2b58806f9205/
http://data.tpdc.ac.cn/zh-hans/data/844010ba-d359-4020-bf76-2b58806f9205/
http://data.tpdc.ac.cn/zh-hans/data/844010ba-d359-4020-bf76-2b58806f9205/
http://data.tpdc.ac.cn/zh-hans/data/844010ba-d359-4020-bf76-2b58806f9205/
https://naturalcapitalproject.stanford.edu/
https://naturalcapitalproject.stanford.edu/
https://code.earthengine.google.com
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where RA is extraterrestrial solar radiation, in units of (MJ/(m2·day); Tav is the average
daily temperature, in units of ◦C; TD is the average daily temperature difference, in units
of ◦C [63,64].

Plant available water content (PAWC) can be calculated based on soil texture and soil
organic matter content:

PAWC = 54.509− 0.132× SAND− 0.03× (SAND)2 − 0.55× SILT − 0.006× (SILT)2 − 0.738× CLAY
+0.007× (CLAY)2 − 2.688×OC + 0.501× (OC)2 (7)

where SAND, SILT and CLAY represent the proportion of soil SAND, SILT and CLAY
particles (%), respectively. OC represents soil organic carbon content (%).

The Zhang coefficient is a seasonal constant representing precipitation distribution
characteristics. After several simulation runs, when Zhang coefficient is 3.4, the estimated
water yield in the study area is close to the measured annual average runoff, of which
the measured runoff data are from the Yangtze River Hydrological yearbook and related
research results [15,65].

2.6. Scenario Analysis

According to Formula (2), precipitation and actual evapotranspiration are the main
factors affecting regional water yield, and the transformation of land use type will directly
lead to the change in actual evapotranspiration. Therefore, this paper sets up two scenarios
to explore the contribution of precipitation change and land use change to the change of
water yield service in the study area by comparing different scenarios [37,66].

Precipitation change scenario: keep the input of land use data in 1990 unchanged,
input the precipitation data in 2000, 2010 and 2020 into the model and then calculate the
difference between the simulated water yield and the actual scenario water yield, indicating
the influence of precipitation change on water yield, ∆p.

Land use change scenario: keep the precipitation data input of 1990 unchanged, input
the land use data of 2000, 2010 and 2020 into the model and then calculate the difference
between the simulated water yield and the actual water yield of the scenario, indicating
the impact of land use change on water yield, ∆l.

The calculation formulas for the contribution rate of precipitation change and land
use change (RP, Rl) are Formulas (8) and (9):

RP =
∆p

∆p + ∆l
× 100% (8)

Rl =
∆l

∆p + ∆l
× 100% (9)

3. Results
3.1. Temporal and Spatial Characteristics of Land Use Change in the Study Area

From 1985 to 2020, land use in the water source region of the middle route of the
South-to-North Water Diversion Project has changed significantly (Figure 4). The forest
area increased by 8895.09 km2, 11.24%; the area of construction land kept increasing, with a
cumulative increase of 715.95 km2, 138.02%, and the main growth areas were Hanzhong
Basin, Ankang Basin and the gentle terrain area in the east of the water source region.
Due to the implementation of the early-stage water storage project of the South-to-North
Water Transfer Project [42], the water area in the water source area increased by 299.74 km2,
an increase of 38.59%, mainly in the Danjiangkou reservoir area. The effect of returning
cropland to forest was obvious, and the agricultural land area decreased 4067.05 km2,
equivalent to 19.05% of the cultivated land area in 1985. The area of grassland and shrub
decreased by 3922.16 km2 and 1862.7 km2, respectively, with proportions of 77.18% and
88.40%, respectively. In general, the transformation of land use/cover type in the study area
is intense, which is manifested as construction land > shrubs > grass > water > cropland >
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forests (Figure 5). For the process of land use change from 1985 to 2020, we divide it into
four phases, and the specific situation is introduced as follows.
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The conversion between cultivated land, forest, shrub and grassland was relatively
frequent during 1985–1990. The areas transferred into and transferred out of cultivated land
were 960.4 km2 and 930.04 km2, respectively. The increased area was mainly from grassland
and shrub, and the reduced area was mainly from forest and construction land. The transfer-
in area and transfer-out area of forest were 893.7 km2 and 824.1 km2, respectively, and
the transfer-in area mainly came from grassland and shrub. These changes are mainly
concentrated in Hanzhong basin and Ankang Basin.

From 1990 to 2000, the forest area was further expanded, and 3150.6 km2 and
4744.9 km2 were transferred, respectively. In addition, the area of shrub and grassland
continued to decrease, among which the area of shrub transfer was more than 63.4% and
that of grassland transfer was more than 50%. However, with the increase in the population,
the cultivated land area increased rapidly in this period because the effect of the project of
returning cropland to forest, which was implemented in 1999, was not fully reflected. The
areas transferred out and transferred in were 2732.87 km2 and 3920.16 km2, respectively,
with a net increase of 1187.29 km2. At the same time, the water area in the water source
area decreased greatly, and the net decreased area reached 124.9 km2.

From 2000 to 2010, the effect of returning cropland to forest was prominent, and the
cropland area decreased by 2550.14 km2, mainly due to the transfer of a large amount of
agricultural land to forest and grassland in Ankang basin and Hanzhong Basin. Around
2009, the Danjiangkou Reservoir of the middle route of the South-to-North Water Transfer
project had a significant effect on water storage, resulting in a significant increase in
water area in the water source area, up to 110.9 km2. The change in water area is mainly
concentrated in the upper reaches of the Han River, the middle and lower reaches of the
Danjiang River and the Danjiangkou reservoir [67].

From 2010 to 2020, the land type transformation was still affected by the project of
returning cropland to forest and the water storage project of the South-to-North Water
Diversion Project, and the forest area increased by 3476.44 km2, mainly from grassland and
cultivated land. Water area increased 295.52 km2. At the same time, the cropland area was
further reduced by 2673.84 km2, while the grassland area was reduced by 1108.93 km2. The
overall ecological environment was further improved.

During the entire study period (1985–2020), the area of grassland and arable land
decreased significantly, and these two land types were mainly converted to forest and
construction land. At the same time, the water area increased rapidly, mainly because of the
large-scale water storage project of the South-to-North Water Diversion Project, which led
to the relocation of the upper reaches of the Han River, the lower reaches of the Danjiang
River and the vicinity of the Danjiangkou reservoir and a large amount of cropland and
construction land into water bodies.

3.2. Temporal and Spatial Variation Characteristics of Water Yield in the Study Area

From 1985 to 2020, the average water depth of the source region of the South-to-
North Water Diversion Project was between 521.2 mm and 738.3 mm. In 1985, 1990, 2000,
2010 and 2020, the average water yield depth was 615.74 mm, 582.99 mm, 738.25 mm,
688.04 mm and 521.20 mm, respectively, and the average water yield was 671, 635, 804, 75
and 56.8 billion m3, respectively. The water yield in the source region was the highest in
2000 and the lowest in 2020. Compared with 2020, the average water depth in the water
source region increased by 217.05 mm (23.6 billion m3) in 2000. Figure 6 shows the spatial
pattern distribution of water producing depth in the water source region during 1985–2020.
On the whole, there is little difference in spatial distribution pattern of water producing
depth in different years, and the overall pattern is relatively consistent, with low water
producing depth in the central and northern parts and high water producing depth in the
southwest and southeast parts.
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In 1985, the high water yield areas were mainly concentrated in the Daba Mountain
area of Nanzheng County, Zhenba County, Ziyang County, Ping County, Zhenping county
and Zhuxi County in the south of the water source region and the Qinling Mountain
area of Ningshan County and Taibai County in the north of the water source region, with
the maximum water depth of 1226.61 mm. Compared with 1985, the water source area
changed greatly in 1990, mainly concentrated in Ningqiang County, Mianxian County and
Liaoyang County in the west of the water source area, with the maximum water depth of
1192.72 mm. In 2000, the water producing depth in the west decreased significantly, and
the main water source area shifted to the Daba Mountain area in the south, such as Zhenba
County, Ziyang County, Langao County and Zhenping County, with the highest water
producing depth of 1488.09 mm. In the west (west of Ankang), the depth of water yield
increased further, and the southwest and southeast became the regions with high water
yield value. Compared with 2000, the annual high water value area moved westward in
2010, including Nanzheng county and Ningqiang County. Meanwhile, the water yield
depth increased in Xixia County, Luanchuan County and other mountainous areas in the
northeast, while the water yield increased significantly in the plain area in the middle
and east. Overall, the maximum water yield depth in the region was 1379 mm. By 2020,
the spatial differentiation of high water yield in the south and low water yield in the
middle and east became more obvious. The highest water yield depth in the south reaches



Water 2022, 14, 2535 12 of 19

1126.81 mm, while the lowest water yield depth in Danfeng County, Yunyang District,
Danjiangkou City, Xixia County and Xichuan county with low water yield in the east is
only 282.4 mm. It is also closely related to the distribution of precipitation and land use
types in the water-producing area.

3.3. Variation in Water-Producing Depth in Different Land Use Types

Using the spatial analysis function of ARCGIS10.6 software, the average water yield
depth of different land use types in the water source region during 1985–2020 was classified
and statistically analyzed [20,21,68], and the results are shown in Figure 7. As shown
in Figure 7, the water producing capacity of bare land, urban built-up area and forest is
relatively strong. In the experiment, the average water producing depth of each year is
857.92 mm and 836.35 mm, respectively. These land types have no vegetation intercep-
tion of precipitation, and the evapotranspiration is smaller than other land types, so the
water producing capacity is relatively high. Secondly, forest, grassland and shrub had
average water-producing depths of 645.88 mm, 592.71 mm and 591.15 mm, respectively.
In 2010, due to abundant precipitation, the above land features could penetrate part of
the precipitation into the soil and form underground runoff, which also showed a strong
water-producing function. Due to strong evaporation, the water body and cultivated land
have the lowest water producing capacity, with an average water producing depth of only
541.8 mm. The cultivated land in the water source area needs a lot of water. The time when
evapotranspiration is strongest is the season changing time of crops, which reduces some
evapotranspiration [22,69,70], so the water producing capacity is higher than that of the
water body. The average water depth is 566.14 mm. On the whole, the water yield is closely
related to the average annual rainfall. For example, the average rainfall in the water source
region reached 1064 mm in 2010, and the water yield in all regions will reach its peak in
2020. From 1985 to 2020, the water yield depth of each land use type fluctuated in different
amplitude, and the average water yield depth of forest and construction land continued to
increase, but decreased in 2020. Other land categories increased first and began to decrease
around 2000.
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Figure 7. Annual water yield depth of different land types.

From the perspective of total water yield, the total water yield of different land use
types is closely related to the area of each region. As the main land use types in the water
source area are forest and arable land (Figure 5), they account for 75% and 18% of the
total area, respectively, over the years. From 1985 to 2000, forest and cultivated land were
the main contributors to regional water yield, accounting for 74% and 17% of the total
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regional water yield in 1985 and 1990 and 75% and 19% in 2000. In 2010, it was 79% and
16%, and in 2020, it was 82% and 14%. It can be seen that the forest water yield in the
basin increases, which is closely related to the implementation of the continuous project of
returning cropland to forest.

3.4. Relative Contribution of Precipitation and Land Use Type to Water Yield

According to the above experimental results, the actual water yield in 2020 is the lowest
value in each year. For the convenience of comparison, this paper takes the precipitation
and land use situation in 2020 as the benchmark, and simulates the change in water yield
depth in 1990, 2000 and 2010 in the water source region under the precipitation change
scenario and land use change scenario through the InVEST model. As shown in Table 3,
based on the input of precipitation from 1990 to 2010, the water yield depth increases by
70.79 mm,176.31 mm and 215.84 mm, respectively, compared with the baseline scenario
(actual situation in 2020). Water yield increased by 7.717 billion m3, 19.22 billion m3

and 23.53 billion m3. In the case of constant precipitation, the water depth decreases by
0.88 mm,1.41 mm and 0.7 mm, respectively, on the basis of input land use from 1990 to
2010. Water yield decreased by 97 million m3, 154 million m3 and 78 million m3.

Table 3. Simulation of water yield in water source region under different scenarios of constant land
use and constant rainfall.

Scenario Year Water Yield
Depth (mm)

The Amount of
Change (mm)

Water Yield
(/108 m3)

the Amount of
Change (/108 m3)

Standard values 2020 521.20 – 568.20 –

Precipitation
change

1990 591.99 70.79 645.36 77.17

2000 697.51 176.31 760.40 192.2

2010 737.04 215.84 803.50 235.3

Land use change

1990 520.32 −0.88 567.23 −0.97

2000 519.79 −1.41 566.66 −1.54

2010 520.50 −0.70 567.42 −0.78

Under the condition of constant land use type, the average water yield depth of
different land types also changed significantly with the change in rainfall [15,24]. Among
them, the water yield increased 1120%, 980%, 479% and 198% with the change in water
body, forest, grassland and shrub. It can be seen that the change in the regional water yield
pattern is mainly related to rainfall. In the case of constant rainfall, the average water yield
of forest and water decreased by 9% and 4%. The average water yield of cultivated land,
grassland and bare land increased by 13% and 8%, respectively. It is proven that the change
in water yield and water yield pattern is not obvious under the condition of constant
precipitation and land use change. According to Formulas (8) and (9), it can be calculated
that the contribution rates of precipitation change and land use change to water yield
change are 99% and 1%, respectively. The above results show that precipitation change
has a more significant impact on water yield. Under the situation of land use change, the
change in water yield is mainly related to the concrete promotion of the project of returning
cropland to forest [68]. We compared and fitted the results with the annual runoff data of
the Hanjiang River Basin in the study area and the root-zone soil moisture, which were
produced by the Soil Moisture Active Passive (SMAP) mission. Finally, we found that
the results had obvious positive correlation, which realized the further verification of the
regional annual water yield and the regional average water yield of different land use types
in the study area.

4. Discussion
4.1. Basic Conclusions

Based on the Cloud platform of Google Earth Engine [58], this study extracted multi-
temporal land use types from the water source area of the middle route of South-to-North
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Water Transfer Project, and then combined with topography, meteorology and soil data
from other platforms. The water yield depth and water yield in the water source region
from 1985 to 2020 were analyzed and simulated by the InVEST model. The contribution of
precipitation and land use change to regional water yield was quantitatively analyzed by
scenario analysis. The following conclusions are drawn:

(1) From 1985 to 20220, the land use change in the water source region of the middle route
of South-to-North Water Diversion Project was obvious, and the main land type in
the region was forest and cultivated land [57]. In 1985, 1990, 2000, 2010 and 2020, the
proportion of forest area was 72.62%, 72.56%, 74.02%, 77.56% and 80.74%, respectively,
showing a gradually increasing trend. The proportion of cultivated land area was
19.60%, 19.57%, 20.65%, 18.30% and 15.85%, showing a trend of rising first and then
falling, which was mainly related to the implementation of the project of returning
cropland to forest since 1999. The built-up areas such as cities and towns are also
expanding, with the proportion rising from 0.48% in 1985 to 1.13% in 2020, indicating
that the impact of human activities is still gradually expanding. Finally, influenced by
the South-to-North Water Transfer Impounding Project, the water area in the region
increased significantly, decreasing from 0.71% in 1985 to 0.62% in 2000 and increasing
rapidly after the impounding project began to increase to 0.99% in 2020.

(2) In 1985, 1990, 2000, 2010 and 2020, the annual average water yields of water source
areas were 671.25 billion m3, 635.56 billion m3, 804.48 billion m3, 750.08 billion m3 and
56.820 billion m3, respectively. The spatial pattern of water yield in different periods
is basically consistent, with higher water yields in the west and south and lower water
yields in the middle, north and east.

(3) The land with the strongest water-producing capacity in the water source region was
bare land, urban built-up area and forest, with average water-producing depths of
857 mm, 836 mm and 645 mm, respectively. The water body was the weakest with an
average water-producing depth of 541 mm. Forest and arable land have always been
the main contributors to regional water yield. By 2020, the water yield of forest and
arable land will reach 82% and 14%, respectively, in the water source region.

(4) From 1990 to 2010, the contribution rates of precipitation change and land use change
to water yield in the water source region were 99% and 1%, respectively, indicating
that precipitation change had a more significant impact on water yield, while land
use change had a lesser impact.

4.2. Policy Reasons for Land Use Change

From 1985 to 2020, the main characteristics of land use/cover change in the water
source region of the middle route of the South-to-North Water Diversion Project are that
the area of forest, water body and urban built-up area expands significantly, while the area
of cultivated land and wasteland decreases. In the whole region, especially in Hanzhong
basin and Ankang Basin, the urban built-up area and cultivated land have increased
significantly. In the area around Danjiangkou Reservoir, the cultivated land and grassland
have turned into water body. In Daba Mountain and Qinling mountain, the cultivated land
around towns has turned into forest. Among these changes, the growth of cultivated land
mainly depends on the large increase of population and the rapid development of regional
economy, resulting in a surge in the demand for land [59,71,72].

In addition, the ecological environment pattern of the water source region has changed
greatly under the driving effect of returning cropland to forest and relevant national
policies. Since 2000, the state has continued to strengthen its efforts to protect the ecological
environment, carrying out the “Natural Forest Protection Project”, “Returning cropland to
Forest and grassland” and “Returning cropland to lakes”, thus increasing the intensity of
nature protection in water source areas [73–75]. Around 2000, state clearly put forward the
guiding ideology, objectives and tasks of ecological protection, demand across the country
to carry out to determine the ecological function regionalization, ensuring the sustainable
operation of social economy, in 2011, the State Council to the zoning for water conservation
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and soil and water conservation of national key ecological function areas, restricted areas
and water sources in the area to set a development area. This is essential for the continued
expansion of forest and water areas in the region.

The results show that the land use conversion in water source region is mainly from
cultivated land to grassland and forest, and from unused land to urban construction land.
It is proved that “natural forest protection project”, “returning cropland to forest and
grassland project” and “returning cropland to lake project” have played a positive role
in the ecological environment protection of the water source region, and also provided
sustainable guarantee for the forest water yield. However, the continuous expansion of con-
struction land also needs vigilance. With the continuous development of urbanization and
industrialization, the land structure in the water source area will become the main problem
affecting the ecological environment and hindering regional stability and development.

4.3. Suggestions on Protection of Water Producing Function in Water Source Area

Since 1985, the population of the water source area of the middle route of the South-to-
North Water Diversion Project has grown rapidly and the economy has developed rapidly.
ARCGIS software (Version, 10.6, Environmental Systems Research Institute, Redlands,
USA) analysis shows that a large number of forests, shrubs and grasslands have been
reclaimed and developed, and the fragmentation degree of the forest inside the water
source area has intensified [57,75,76]. After 2000, cropland and grassland decreased, but
settlements increased. Although rainfall was the main influencing factor of regional water
yield, the effects of human disturbance on vegetation status, water conservation and water
yield showed an increasing trend from 1985 to 2020. The water producing function of
the water source area needs to be further improved. At the macro level, the water source
region needs to strictly control the red line of cultivated land, rationally plan and use
land according to law and the government should timely promulgate targeted policies
and regulations and supervise their implementation according to law. They should also
continue to pay attention to vegetation restoration, improve water conservation and soil
conservation services within the region and reduce the spatial differences in ecosystem
services within the water source region. Due to the unbalanced and inadequate economic
development in the water source area due to the protection of water yield function, the
harmony and balance between regional ecological protection and economic development
can be realized through ecological compensation mechanism to improve the living stan-
dard of the people in the mountainous areas [77]. We should increase the intensity of
ecological compensation in financial transfer payment, actively explore the market-based
ecological compensation model, and constantly improve the comprehensive benefits of
ecological compensation.

5. Conclusions

In this paper, by using the GEE cloud platform, spectrum, texture and topographic
factors in the water source area are taken as the input features of the classifier to realize the
intelligent recognition and classification of land cover information, complete the change
analysis of land use pattern in the water source area from 1985 to 2020, and make the land
use transfer matrix. The effects of precipitation and land use type transformation on water
yield in water source region were analyzed. The specific countermeasures and methods
to protect the water producing function of the water source area are also put forward.
However, the annual and seasonal variations in water yield were ignored in the study,
and there was no further analysis of water yield in the sub-basins such as the Danjiang
River, Hanjiang River and Duhe River, only the analysis of the overall water yield and
water yield depth in the water source region. The above reasons also weaken the influence
of spatial difference of land use change on water yield. In addition, due to the influence
of policies, there have been many large-scale conversions between land use types in the
water source area. The conversion between construction land, arable land and forest is
more frequent. This also results in increases or decreases in water yield being offset to
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some extent. For example, increasing construction land usually increases water yield, while
increasing forests and decreasing cropland reduces water yield. However, the conversion
among the three will make the impact of land use change on water yield not significant.
Finally, in the process of using the InVEST model to produce water in this paper, the
input data are from a wide range of sources, and the PAWC, precipitation, DEM and plant
evapotranspiration coefficient lack unified standards and applicability evaluation, leading
to a certain degree of uncertainty in the analysis of water yield. By analyzing the spatial-
temporal pattern evolution of land use, land structure change and ecological environment
quality, the research results can provide a scientific basis for the scientific and rational
promotion of the project of converting cropland to forest (grassland) and sustainable
development of the ecological environment in the water source area of the middle route of
the South-to-North Water Diversion Project. In addition, this study can provide reference
for regional social, economic and environmental collaborative development decisions. The
determination of the Zhang coefficient is also lacking a more accurate test, and the actual
verification of model simulation accuracy will be further strengthened in our future work.
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