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Abstract: Groundwater is a crucial source of the world’s drinking and irrigation water. Nonetheless,
it is being rapidly depleted in many parts of the world. To enact policy decisions to preserve
this precious resource, policymakers need real-time data on the groundwater levels in their local
area. However, groundwater monitoring wells are costly and scarce in supply. The use of satellite
imagery is a promising alternative with its ability to provide continuous information over a large
area. Machine learning has also emerged as an alternative to computationally intensive physics-based
models. However, advancements in machine learning such as unsupervised learning methods have
never been translated to groundwater modeling. Thus, in this paper, learned representations were
generated for the GRACE satellite for the first time. When used as an input to groundwater prediction
models, the learned representations reduce the root mean square error (RMSE) by up to 19% and
improve the Nash–Sutcliffe efficiency (NSE) by up to 8x compared to traditional satellite data inputs
at three different spatial scales: national, state, and county. The learned representations are able to
discern fine-grained patterns from the coarse satellite data, globally downscaling the GRACE satellite.
Crucially, the globally trained representations have the potential to improve the performance of
virtually every machine learning-based groundwater prediction model. With accurate measurements,
local officials are empowered to make proactive decisions to ensure the stability of their region’s
water.

Keywords: learned representations; GRACE; downscaling; groundwater prediction; machine learn-
ing; water management

1. Introduction

Groundwater management is crucial for maintaining the world’s water resources.
Fifty percent of the world relies on groundwater for drinking, and forty-three percent relies
on groundwater for irrigation [1]. Factors such as over-pumping, climate change, and poor
management are placing increasing stress on groundwater resources [2,3]. Policy decisions
to preserve this precious resource require timely up-to-date information on the current
status of groundwater [4]. Without continuous information, local officials can be unaware
of changes in groundwater, leading to potentially significant damages to the resource [5].

However, current groundwater monitoring networks are not able to provide this
crucial information. Dedicated monitoring wells are necessary for high-quality groundwa-
ter information, but they are expensive. Building high-quality monitoring wells can cost
between $100,000 and $200,000 per well [6]. Thus, these wells are few and far between. The
need for a scalable groundwater modeling framework to augment physical monitoring
wells is evident. Remote sensing, with its ability to extract detailed global information in
real time, is a low-cost alternative that has shown promise in the literature.

The leading satellites for measuring global trends in water storage are Gravity Recov-
ery and Climate Experiment (GRACE) and its successor, Gravity Recovery and Climate
Experiment Follow-On. However, the GRACE satellites have a coarse spatial resolution
of 200,000 km2, making them sensitive only to large-scale changes in water mass. Be-
cause the GRACE data only provides a singular terrestrial water storage value for an
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entire 1◦ × 1◦ region, it does not capture the variability in groundwater that occurs at
the local level. GRACE fails to provide groundwater indicators at a local scale, which
is the level at which water management information is the most needed [7]. In order to
prevent groundwater stress, management agencies need to know the groundwater trends
in their specific watershed so they can be proactive in their policies. If groundwater stress
is identified, policies such as managed aquifer recharge (MAR) can be implemented to
increase groundwater levels. MAR policies range from implementing infiltration ponds
to stream bed channel modifications [8]. However, MAR can only be implemented when
there is sufficient information on the current state of groundwater locally.

A prominent focus of the literature is the use of both physical and statistical modeling
to predict groundwater metrics using GRACE.

Physics-based modeling has been used for large-scale prediction models. Dynamic
models, when forced with meteorological data, can provide approximate representations
of interactions between climatic variables and their effects on groundwater. However,
physical models pose certain drawbacks as they are computationally intensive [9], and
they sometimes do not account for anthropogenic influence. Two prominent examples are
Schumacher et al. [10] and Li et al. [11]. The former assimilates GRACE data into the Water-
GAP Global Hydrology Model to simulate groundwater storage in the Murray–Darling
Basin. They find that parameter calibration and assimilation with GRACE data lead to
increased model accuracy. Li et al. use GRACE data as an input to the Catchment Land
Surface Model (CLSM), which simulates changes in groundwater levels. Although the
predictions are global, the model fails to take into account changes in groundwater levels
due to irrigation as CLSM does not simulate this. However, overpumping of groundwater
due to irrigation is one of the largest sources of variability in groundwater levels. Specifi-
cally, over 20 of the world’s aquifers are being overexploited due to pumping [12]. These
drawbacks of physics-based modeling have led the literature to largely focus on machine
learning techniques.

These machine learning techniques tend to be small-scale and/or require 10-12 years
of time series data in order to generate accurate monthly predictions [13]. For example,
Ali et al. [14] use the extreme gradient boosting model to downscale GRACE to a resolution
of 0.25◦ × 0.25◦ in the Indus Basin Irrigation System. GRACE data, meteorological data
such as temperature and precipitation, and elevation data were fed into the downscaling
model and validated on ground truth data. While the model achieves strong performance,
it is limited to only a singular basin. Thus, acquiring predictions for multiple basins would
require retraining the model with data from each basin. This method does not generalize
to areas where there are limited monitoring data [15]. Studies have also downscaled
GRACE using time-series data. Gorugantula and Kambhammettu [16] use a long short-
term memory network to spatially downscale GRACE data in the Krishna River basin.
Similar to other downscaling studies, they augment GRACE data with meteorological
variables and face drawbacks due to their limited area of study. In addition, the quality of
downscaling is directly dependent on the amount of time-series data available. Applying
this framework to the many regions with limited availability of time-series data would
result in a poor downscaling of GRACE.

Ultimately, while the methods described above achieve acceptable performance in
groundwater prediction, there is significant room for improvement [17]. Despite the
abundance of downscaling studies, the main drawback remains the coarse resolution of
GRACE. This has yet to be solved on a large scale.

Previous work is able to downscale GRACE through supervised learning. However,
the novelty of this paper is that it uses unsupervised representation learning to downscale
GRACE. Unsupervised learning does not require ground-truth well values. Thus, it is
possible to generate informative representations of the GRACE satellite that are globally
applicable.

In addition, it is to be noted that this method is not at odds with any of the meth-
ods discussed above. Any machine learning model can use the representations as input
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instead of raw satellite data, leading to an immediate performance boost. Because the
representations are globally applicable, they are downscaling GRACE on a large scale.

An unsupervised learning method was developed by taking inspiration from the
field of natural language processing (NLP). The Word2Vec [18] model has proven to be
enormously useful for NLP prediction tasks [19]. This model learns a vector representation
of a word via an unsupervised learning task to predict the word given its surrounding
words. This vector represents the rich, semantic meaning of the word. Semantically similar
words’ corresponding vectors have a small Euclidean distance, for example.

This paper applies a similar methodology to learn informative representations of the
GRACE satellite. Similar to how Word2Vec capitalizes on the semantic meaning of words,
the inherent spatiotemporal correlation of satellite data can also be capitalized on. The
representation learning model learns to extract these correlations and translate them to
a vector. This vector thus captures the important patterns better than the raw data itself,
leading to improved performance on downstream tasks.

Previous implementations of unsupervised representation learning in remote sensing
have been limited despite the significant gains provided in other fields. One of the only
examples is Agastya et al. [20], who use the SimCLR framework to generate learned
representations for Sentinel 2 satellite data. The model takes in an image and passes it
through a convolutional neural network and then a multilayer perceptron. The objective
ensures that the output of the perceptron is similar for random crops from the same image
and different if the crops are from different images. The learned representations were found
to significantly increase accuracy for downstream tasks, specifically, 9x precision and 90%
better recall on irrigation detection.

Unsupervised representation learning is uniquely poised to address groundwater
modeling’s biggest problem: the low resolution of GRACE. To implement unsupervised
representation learning for GRACE satellite data, a neural network model was trained on
GRACE and other meteorological satellites. The model is able to use the other meteorologi-
cal measurements to learn a spatiotemporal representation of the GRACE data, essentially
“downscaling” GRACE. By learning the underlying correlations between the satellite data,
the resulting learned representation vector can better represent groundwater indicators at a
specific location. When these representations are used as an input to a machine learning
groundwater prediction model, they reduce error by up to 19% compared to raw satellite
data. The globally trained representation learning model provides learned representations
that can be used for virtually every machine learning groundwater prediction task. By
increasing the accuracy of groundwater predictions, local officials are provided with the
detailed information necessary to manage groundwater resources.

2. Materials and Methods
2.1. Model Framework

The Tile2Vec model [21] is used to develop representations of the satellite data. The
Tile2Vec model uses a state-of-the-art convolutional neural network (CNN) for unsuper-
vised representation learning of spatially distributed data. CNNs are used because of their
success in image classification tasks. CNNs can quickly extract “features” from the image
using convolutional filters. Thus, the CNN is well suited to extract spatial correlations in
the satellite data. This process is depicted in Figure 1. The CNN is fed three satellite data
images. The first image is an anchor image. The second image is a neighbor image that is
spatially adjacent to the anchor image. The third image is a distant image that is spatially
distant to the anchor image. Through unsupervised triplet loss, the CNN is trained to
minimize the Euclidean distance between the learned representations of the anchor im-
age and the neighbor image and maximize the Euclidean distance between the learned
representations of the anchor image and distant image, as shown below in Figure 2. By
capitalizing on spatial correlations , the model is able to learn meaningful representations
of the satellite data across space and time. In addition, an L2 weight regularization term is
added to the loss. A margin term in the loss prevents the model from continually pushing
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apart distant images; a Euclidean distance greater than the margin will not decrease the
loss. The output of the model is a 2048-long vector that acts as a semantically significant
distillation of the satellite image.

Figure 1. Schematic diagram of Tile2Vec model framework.

Figure 2. On the left, the model inaccurately characterizes the Euclidean distance between the
learned representations of the anchor image and neighbor and distant images. Through unsupervised
triplet loss, the model learns to minimize the distance between the representations of the anchor and
neighbor images and maximize the distance between the representations of the anchor and distant
images, as shown on the right.

2.2. Model Inputs

The Tile2Vec model is trained on multiple remotely sensed datasets, including GRACE,
precipitation, temperature, and Global Land Data Assimilation System outputs. Because
GRACE’s data are quite coarse, the addition of multiple features helps the Tile2Vec model
interpolate between data points.

Model inputs are summarized below and in Table 1.
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2.2.1. GRACE TWS

GRACE TWS for the GRACE and GRACE-FO satellites were obtained with the GRACE
JPL-RL06M mascons solution from the Jet Propulsion Laboratory. Data are available at
a spatial resolution of 0.1◦ × 0.1◦ from 2002 to 2021 with the exception of mid-2017 to
mid-2018. Data were downloaded from the NASA PO.DAAC Drive.

2.2.2. Precipitation

Precipitation data were obtained from NASA Global Precipitation Measurement
through the NASA GES DISC. The GPM (IMERG) product provides monthly global precip-
itation from 2000 to 2021 at a spatial resolution of 0.1◦ × 0.1◦ (URL: https://disc.gsfc.nasa.
gov/datasets/GPM_3IMERGM_06/summary; access date: 16 April 2022).

2.2.3. Temperature

Land surface temperature data were obtained from the MERRA-2 product through
NASA GES DISC. MERRA-2 provides monthly global temperatures from 1980 to 2021
at a spatial resolution of 0.5◦ × 0.625◦ (URL: https://daac.gsfc.nasa.gov/datasets/M2
TMNXSLV_5.12.4/summary; access date: 18 April 2022).

2.2.4. GLDAS Outputs

Outputs from the Global Land Data Assimilation System (GLDAS) NOAH 2.1 Land
surface model were used, namely, Wind Speed, Evapotranspiration, Root zone soil moisture,
Baseflow groundwater runoff, Plant canopy surface water, Snow water equivalent, Storm
surface runoff, and Soil moisture, at a spatial resolution of 0.25◦ × 0.25◦. GLDAS simulates
hydrological variables by integrating satellite and ground-based observations into land
models. Data are available globally (90.0◦ N to 60.0◦ S) from 2000 to 2021 (URL: https:
//disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.1/summary; access date: 10 May
2022).

2.2.5. GLDAS Elevation

Elevation data were obtained from the GLDAS elevation field. The data are averaged
from the GTOPO30 Global 30 Arc Second ( 1 km) Elevation Dataset to a resolution of
0.25◦ × 0.25◦ (URL: https://ldas.gsfc.nasa.gov/gldas/elevation#:~:text=The%20GLDAS%
20elevation%20field%20is,0.25%20degree%20and%201%20degree.; access date: 28 May
2022).

https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGM_06/summary
https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGM_06/summary
https://daac.gsfc.nasa.gov/datasets/M2TMNXSLV_5.12.4/summary
https://daac.gsfc.nasa.gov/datasets/M2TMNXSLV_5.12.4/summary
https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.1/summary
https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.1/summary
https://ldas.gsfc.nasa.gov/gldas/elevation#:~:text=The%20GLDAS%20elevation%20field%20is,0.25%20degree%20and%201%20degree.
https://ldas.gsfc.nasa.gov/gldas/elevation#:~:text=The%20GLDAS%20elevation%20field%20is,0.25%20degree%20and%201%20degree.
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Table 1. Summary of input data used to estimate GWLA.

Dataset Source Data Type Units Spatial
Resolution

Temporal
Resolution

GRACE TWS JPL Remote Sensing cm 1◦ × 1◦ Monthly

Precipitation GPM Remote Sensing mm 0.1◦ × 0.1◦ Monthly

Temperature MERRA-2 Remote Sensing K 0.5◦ × 0.625◦ Monthly

Wind speed GLDAS NOAH Modeled m/s 0.25◦ × 0.25◦ Monthly

Evapotranspiration GLDAS NOAH Modeled kg/m2/s 0.25◦ × 0.25◦ Monthly

Root zone soil
moisture GLDAS NOAH Modeled kg/m2 0.25◦ × 0.25◦ Monthly

Baseflow
groundwater

runoff
GLDAS NOAH Modeled kg/m2 0.25◦ × 0.25◦ Monthly

Plant canopy
surface water GLDAS NOAH Modeled kg/m2 0.25◦ × 0.25◦ Monthly

Snow water
equivalent GLDAS NOAH Modeled kg/m2 0.25◦ × 0.25◦ Monthly

Storm surface
runoff GLDAS NOAH Modeled kg/m2 0.25◦ × 0.25◦ Monthly

Soil moisture GLDAS NOAH Modeled kg/m2 0.25◦ × 0.25◦ Monthly

Elevation GLDAS Elevation Modeled m 0.25◦ × 0.25◦ Constant

2.3. Model Training

The model takes an “image” as input. An “image” consists of a 2◦ × 2◦ coordinate
box, with a 0.25◦ increment, resulting in an 8 × 8 box of coordinates. The GRACE satellite
data are at a 1◦ spatial resolution, whereas much of the other satellite data have a resolution
of 0.25◦. Thus, a 0.25◦ increment was chosen. Additionally, an 8 × 8 box was chosen as it
represents approximately 70,000 km2, which is an area that is large enough to capture vari-
ability while still being spatially similar to the neighbor image. For each of the coordinates
in the image, the 13 satellite data features are queried, acting as the “bands”. This is shown
below in Figure 3. The Tile2Vec model was trained on global satellite data. The anchor
image is built around a randomly selected point. The neighbor image is built around a point
randomly selected on the circumference of a circle with a radius of 3◦ from the anchor point.
The distant image is independently built from a randomly selected point. Images were
rejected if they fell on a body of water. This was determined by using the global-land-mask
python package. Images were also dropped if they contained any masked values. The
Tile2Vec model was trained for 75 epochs with a learning rate of 0.0001 and 20.6 million
parameters on one GPU. The batch size was 10,000 images. The loss is an unsupervised
triplet loss, as described in Section 2.1. Model training and validation loss curves can be
seen in Figure 4.
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Figure 3. Satellite data “image” that is fed into the Tile2Vec model.

Figure 4. Tile2Vec model training and validation loss curve.

3. Model Evaluation

The performance of the Tile2Vec learned representations were evaluated at three
different spatial scales: national, state, and county, against the raw satellite data baseline.
At each level, two random forest models were trained. The objective of both models
is to predict groundwater levels. The first random forest model takes in the learned
representations as input, and the second takes in the raw satellite data as input. This
is shown in Figure 5. All random forest models were trained with 2500 trees and an
80/20 train–test split. All random forest models were validated on ground truth data.
Ground truth data were obtained as a depth to water level below surface value. To calculate
the change in groundwater level, the data were subtracted from the long-term mean of the
site. The long-term mean was calculated by averaging measurements from 2004 to 2009.
This is reflective of how GRACE TWS anomalies are calculated, by subtracting from the
2004 to 2009 long-term mean from the current value [22]. By evaluating the Tile2Vec model
on multiple spatial scales, it can be seen how the learned representations contribute to the
generalizability and accuracy of the models.



Water 2022, 14, 2947 8 of 15

Figure 5. A satellite data “image” is fed into the trained unsupervised representation learning model.
The resulting vector is fed into a random forest model that is trained on ground truth data (GWLA)
to predict the groundwater level.

3.1. National Model

A national model was trained to predict changes in groundwater levels in the con-
tiguous United States. The U.S. contains great geographical diversity. Its topography
includes coastal plains, mountains, temperate and subtropical forests, and grasslands. The
long-term average annual precipitation is 76.05 cm, and the long-term mean, minimum,
and maximum annual temperatures are 11.83 ◦C, 5.78 ◦C, and 19.06 ◦C, respectively.

Due to irrigation and excess pumping, many regions of the U.S. are currently facing
groundwater depletion. Over two out of every three gallons of groundwater is used
for irrigation [23]. In some regions in the Central Valley, groundwater overdraft is over
2 million acre-feet annually. The Ogallala Aquifer, one of the world’s largest groundwater
resources, is also being rapidly depleted. Between 1900 and 2008, 89 trillion gallons of
water have been drained from the aquifer [24]. It is estimated that within the next 50 years,
70% of the entire aquifer will be depleted [25]. With this precious resource rapidly fading,
it is crucial that steps are taken to prevent further loss.

Ground truth well measurement data were obtained from USGS (https://cida.usgs.
gov/ngwmn/index.jsp; access date: 11 February 2022). A total of 61,968 data points were
obtained for this model. The distribution of the points is shown below in Figure 6.

Figure 6. Distribution of ground-truth GWLA values for the national model.

3.2. State Model

A state-level model was trained to predict changes in groundwater levels for Min-
nesota. Minnesota experiences a continental climate with below-freezing temperatures

https://cida.usgs.gov/ngwmn/index.jsp
https://cida.usgs.gov/ngwmn/index.jsp
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in the winter and warm summers. Groundwater accounts for 75% of drinking water and
90% of irrigation water [26]. Central Minnesota has ample groundwater supply, while the
northeast and southeast regions face increased stress. Ground truth well measurement
data were obtained from the Minnesota DNR (https://www.dnr.state.mn.us/waters/cgm/
index.html; access date: 21 February 2022). A total of 69,605 data points were obtained for
this model. The distribution of the points is shown below in Figure 7.

3.3. County Model

A state-level model was trained to predict changes in groundwater levels for Stearns
County, Minnesota. Stearns County is located in central Minnesota. Ground truth well
measurement data were obtained from the Minnesota DNR (https://www.dnr.state.mn.
us/waters/cgm/index.html; access date: 21 February 2022). A total of 5,802 data points
were obtained for this model. The distribution of the points is shown below in Figure 8.

Figure 7. Distribution of ground-truth GWLA values for the state model.

Figure 8. Distribution of ground-truth GWLA values for the county model.

https://www.dnr.state.mn.us/waters/cgm/index.html
https://www.dnr.state.mn.us/waters/cgm/index.html
https://www.dnr.state.mn.us/waters/cgm/index.html
https://www.dnr.state.mn.us/waters/cgm/index.html
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3.4. Error Analysis Metrics

Five metrics were used to analyze the errors and evaluate the performance of the
various models on the test set. The metrics are mean absolute error (MAE), correlation
coefficient (R), Nash–Sutcliffe efficiency (NSE), Spearman Rho, and root mean square error
(RMSE). These metrics are explained below.

3.4.1. Mean Absolute Error (MAE)

The MAE represents the mean of the absolute value of the predicted minus observed
values from the data. The closer the MAE is to 0, the lower the model’s error. The equation
to calculate MAE is shown below.

MAE = (
1
n
)

n

∑
i=1
|yi − xi| (1)

3.4.2. Correlation Coefficient (R)

The correlation coefficient represents the measure of which two variables are linearly
correlated or changes in one variable account for changes in the other. The closer the
absolute value of the coefficient is to 1, the stronger the relationship. The equation to
calculate the correlation coefficient is shown below.

R =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2(yi − y)2
(2)

3.4.3. Nash–Sutcliffe efficiency (NSE)

The Nash–Sutcliffe efficiency coefficient is used to assess the performance of hydro-
logical models. NSE values range from -∞ to 1. The closer the value to one, the better the
predictive power of the model. Generally, values between 0 and 1 are considered acceptable.
The equation to calculate the NSE is shown below.

NSE = 1− ∑(yi − yi,sim)
2

∑(yi − ȳ)2 (3)

3.4.4. Spearman Rho

The Spearman Rho correlation coefficient is used to assess how well two variables
follow a monotonic function. Spearman Rho correlation values range from -1 to 1. The
closer the value is to +1 or -1, the stronger the relationship between the two variables. The
equation to calculate the Spearman Rho is shown below.

ρ = 1−
6 ∑ d2

i
n(n2 − 1)

(4)

3.4.5. Root Mean Square Error (RMSE)

RMSE represents the standard deviation of the difference between predicted and
observed values (residuals). The lower the RMSE, the lower the model’s error. The
equation to calculate RMSE is shown below.

RMSE =

√
(

1
n
)

n

∑
i=1

(yi − xi)2 (5)

4. Results

A summary of results from the three models can be seen in Table 2. The learned
representation model consistently performs better than the satellite data model. In the
national model, the learned representations provide a 19% improvement in RMSE and a
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1.4x improvement in NSE. In the state model, the learned representations provide a 14%
improvement in RMSE and a 7.9x improvement in NSE. In the county model, the learned
representations provide a 6% improvement in RMSE and a 2.5x improvement in correlation.
Across a variety of metrics, it is clear that the learned representations are able to improve
performance.

Table 2. Summary of input data used to estimate GWLA.

Learned Representations Model Satellite Data Model
Metric

United States Minnesota Stearns County United States Minnesota Stearns County

MAE (m) 1.0241 0.6553 0.5303 1.2832 0.8013 0.6258

Corr. Coeff. 0.7830 0.4666 0.4144 0.6588 0.1667 0.2614

NSE 0.6131 0.2177 0.1718 0.4341 0.0277 0.0683

Spearman Rho 0.7324 0.5638 0.6075 0.6311 0.4701 0.4851

RMSE (m) 1.7678 1.3106 0.9753 2.1641 1.5240 1.036

Acceptable performance is achieved in NSE, as all values are greater than 0. Model
performance on the NSE and correlation is comparable to that of Miro and Famiglietti [27],
who downscale GRACE in Central Valley, California. Miro and Famiglietti test their model
on in situ groundwater data and kriged groundwater data. As the data used in this paper
were not spatially interpolated, results are compared only on in situ data.

In the above experimental setup, the model must predict groundwater levels for
locations and climates that are not present in the training set. In the literature, groundwater
level predictions are made at a basin level, and the model has access to well-level time
series data [17]. Thus, the task in this paper is significantly more challenging.

Ultimately, the goal of this paper is not to develop a highly accurate model for pre-
dicting groundwater levels. Instead, groundwater prediction models are used as a metric
for evaluating the performance of the learned representations. At every spatial scale, the
learned representations consistently outperform the raw satellite data on every metric,
illustrating their benefit.

The error distributions of the satellite data and learned representations models are
shown above in Figure 9. The learned representations consistently obtain lower errors than
the satellite data on all three spatial scales. The magnitude of improvement in error is most
visible in the national model, indicating the ability of the learned representations to help
the model generalize to a large area.
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Figure 9. Histogram of error bars of the satellite data and learned representations Random Forest
models: (a) national model, (b) state model, and (c) county model errors have been limited from
−10 to 10 for better visibility.

Scatterplots of model predictions vs. observed GWLA are shown at the three spatial
scales above in Figure 10. Error bars were calculated with the algorithm developed by
Wager et al. [28] in the forestci python package [29]. On the national and state scales, the
satellite data models show a greater deviation from the observed, and their large error bars
indicate a higher variability. Performance on the county model seems to be comparable for
both the satellite data and learned representations model. This indicates that the learned
representations provide the highest predictive power over large regions.

Figure 10. Scatterplots of satellite data and learned representations models performance with error
bars: (a) national model, (b) state model, (c) county model. Random sample of 500 points for better
visibility.

5. Discussion

This paper illustrates how a proof-of-concept unsupervised learning model can im-
prove the accuracy of groundwater prediction models. This is the first time unsupervised
learning techniques have been utilized for groundwater prediction.

Currently, the processed GRACE data are limited to one number for a 1◦ × 1◦ area.
This coarse resolution limits the ability of GRACE to provide detailed groundwater signals
and thus hinders the performance of groundwater prediction models.

In this model, GRACE data are contextualized by the surrounding GRACE and meteo-
rological values in the “image”, which represents a 2◦ × 2◦ coordinate box. The learned
representation depends on the entire context of the image, allowing it to elucidate fine-
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grained patterns in the data. Compared to the single GRACE number, this learned rep-
resentation provides a much richer signal for prediction tasks. Thus, it effectively serves
to downscale GRACE, helping overcome the main bottleneck in the literature [30]. While
current downscaling methods tend to focus on a specific region or basin, the developed
learned representations are applicable globally.

When fed as an input to groundwater prediction models, in lieu of raw satellite data,
the learned representations significantly improve accuracy. This performance is achieved
by training the Tile2Vec model on 20.6 million parameters. Training a larger model for
more epochs will likely lead to larger improvements, as a common finding in the machine
learning literature is that larger models lead to higher gains [31].

The Tile2Vec model was trained on global data to ensure the widespread usability of
the resulting learned representations. However, to improve model performance even more,
the addition of inputs such as soil data and Cropland Data Layer (CDL) could prove to
be beneficial. With the potential to improve performance across virtually all groundwater
prediction tasks, developing high-quality learned representations is a promising future
direction for the field.

Through the use of novel machine learning techniques, this paper presents a way to
improve the accuracy of groundwater predictions, aiding water management efforts across
the globe.

6. Conclusions

With many regions of the world facing extreme groundwater drought, it is crucial
that there is continuous information available to assess the degree of depletion. The status
quo relies on dedicated monitoring wells, which are costly and difficult to maintain in
low-resource settings. Efforts to remedy this include training machine learning models
on satellite data, most notably GRACE. Cutting-edge machine learning techniques such
as unsupervised representation learning have the potential to be of use in groundwater
modeling, but their utilization has been severely limited. In this paper, unsupervised
representation learning techniques were applied to the GRACE satellite, effectively “down-
scaling” the data. The resulting learned representations are able to reduce the RMSE by up
to 19% and improve NSE by 8x at three different spatial scales, indicating their potential for
widespread applications. These globally trained representations will allow for improved
accuracy across a wide variety of machine learning-based groundwater prediction models,
providing the information necessary to manage groundwater.
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TWS Terrestrial Water Storage
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MAE Mean Absolute Error

https://github.com/akhilapram/GRACE-Learned-Representations


Water 2022, 14, 2947 14 of 15

References
1. UN-Water. Groundwater overview: Making the invisible visible. Produced by International Groundwater Resources Assessment

Centre, in cooperation with UNESCO-IHP, IAH, IWMI and with contributions of many UN-Water members and partners.
2018. Available online: https://www.unwater.org/publications/groundwater-overview-making-invisible-visible (accessed 8
September 2022).

2. Jasechko, S.; Perrone, D. Global groundwater wells at risk of running dry. Science 2021, 372, 418–421.
3. Salehi, M. Global water shortage and potable water safety; Today’s concern and tomorrow’s crisis. Environ. Int. 2022, 158, 106936.
4. Elshall, A.S.; Ye, M.; Wan, Y. Groundwater sustainability in a digital world. In Water and Climate Change; Elsevier: Amsterdam,

The Netherlands, 2022; pp. 215–240.
5. Priyan, K. Issues and challenges of groundwater and surface water management in semi-arid regions. Groundw. Resour. Dev.

Plan. Semi-Arid Reg. 2021, 1–17. Available online: https://link.springer.com/chapter/10.1007/978-3-030-68124-1_1 (accessed 6
September 2022).

6. Choy, J. High Quality Groundwater Data Isn’t Always Easy or Cheap, But It Is Necessary. Standford Water West 2016. Available
online: https://waterinthewest.stanford.edu/news-events/news-insights/high-quality-groundwater-data-isn%E2%80%99t-
always-easy-or-cheap-it-necessary (accessed 8 September 2022).

7. Mogheir, Y.; De Lima, J.; Singh, V. Assessment of informativeness of groundwater monitoring in developing regions (Gaza Strip
Case Study). Water Resour. Manag. 2005, 19, 737–757.

8. Dillon, P.; Stuyfzand, P.; Grischek, T.; Lluria, M.; Pyne, R.; Jain, R.; Bear, J.; Schwarz, J.; Wang, W.; Fernandez, E.; et al. Sixty years
of global progress in managed aquifer recharge. Hydrogeol. J. 2019, 27, 1–30.

9. Condon, L.E.; Kollet, S.; Bierkens, M.F.; Fogg, G.E.; Maxwell, R.M.; Hill, M.C.; Fransen, H.J.H.; Verhoef, A.; Van Loon, A.F.;
Sulis, M.; et al. Global groundwater modeling and monitoring: Opportunities and challenges. Water Resour. Res. 2021,
57, e2020WR029500.

10. Schumacher, M.; Forootan, E.; van Dijk, A.I.; Schmied, H.M.; Crosbie, R.S.; Kusche, J.; Döll, P. Improving drought simulations
within the Murray-Darling Basin by combined calibration/assimilation of GRACE data into the WaterGAP Global Hydrology
Model. Remote Sens. Environ. 2018, 204, 212–228.

11. Li, B.; Rodell, M.; Kumar, S.; Beaudoing, H.K.; Getirana, A.; Zaitchik, B.F.; de Goncalves, L.G.; Cossetin, C.; Bhanja, S.; Mukherjee,
A.; et al. Global GRACE data assimilation for groundwater and drought monitoring: Advances and challenges. Water Resour. Res.
2019, 55, 7564–7586.

12. Mascarelli, A. Demand for water outstrips supply. Nature 2012. Available online: https://www.nature.com/articles/nature.2012
.11143.pdf?origin=ppub (accessed 8 September 2022).

13. Ahmadi, A.; Olyaei, M.; Heydari, Z.; Emami, M.; Zeynolabedin, A.; Ghomlaghi, A.; Daccache, A.; Fogg, G.E.; Sadegh, M.
Groundwater level modeling with machine learning: A systematic review and meta-analysis. Water 2022, 14, 949.

14. Ali, S.; Liu, D.; Fu, Q.; Cheema, M.J.M.; Pal, S.C.; Arshad, A.; Pham, Q.B.; Zhang, L. Constructing high-resolution groundwater
drought at spatio-temporal scale using GRACE satellite data based on machine learning in the Indus Basin. J. Hydrol. 2022,
128295. https://doi.org/10.1016/j.jhydrol.2022.128295; accessed 6 September 2022.

15. Ali, S.; Liu, D.; Fu, Q.; Cheema, M.J.M.; Pham, Q.B.; Rahaman, M.M.; Dang, T.D.; Anh, D.T. Improving the resolution of grace
data for spatio-temporal groundwater storage assessment. Remote Sens. 2021, 13, 3513.

16. Gorugantula, S.S.; Kambhammettu, B.P. Sequential downscaling of GRACE products to map groundwater level changes in
Krishna river basin. Hydrol. Sci. J. 2022. Available online: https://doi.org/10.1080/02626667.2022.2106142 (accessed 6 September
2022).

17. Tao, H.; Hameed, M.M.; Marhoon, H.A.; Zounemat-Kermani, M.; Salim, H.; Sungwon, K.; Sulaiman, S.O.; Tan, M.L.; Sa’adi, Z.;
Mehr, A.D.; et al. Groundwater level prediction using machine learning models: A comprehensive review. Neurocomputing 2022.
volume 489, pages 271-308.

18. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013,
https://doi.org/10.48550/arXiv.1301.3781.

19. Sivakumar, S.; Videla, L.S.; Kumar, T.R.; Nagaraj, J.; Itnal, S.; Haritha, D. Review on Word2Vec Word Embedding Neural Net.
In Proceedings of the 2020 International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 10–12
September 2020; pp. 282–290.

20. Agastya, C.; Ghebremusse, S.; Anderson, I.; Vahabi, H.; Todeschini, A. Self-supervised Contrastive Learning for Irrigation
Detection in Satellite Imagery. arXiv 2021, arXiv:2108.05484.

21. Jean, N.; Wang, S.; Samar, A.; Azzari, G.; Lobell, D.; Ermon, S. Tile2vec: Unsupervised representation learning for spatially
distributed data. Proc. AAAI Conf. Artif. Intell. 2019, 33, 3967–3974.

22. Rahaman, M.M.; Thakur, B.; Kalra, A.; Li, R.; Maheshwari, P. Estimating high-resolution groundwater storage from GRACE: A
random forest approach. Environments 2019, 6, 63.

23. Walton, B. US Groundwater Losses Between 1900–2008: Enough To Fill Lake Erie Twice. Circ. Blue 2013. Available on-
line: http://www.ashergrey.info/uploads/1/4/8/3/14835916/circleofblue.org-us_groundwater_losses_between_19002008
_enough_to_fill_lake_erie_twice.pdf (accessed 6 September 2022).

24. Konikow, L.F. Groundwater depletion in the United States (1900-2008); US Department of the Interior, US Geological Survey: Reston,
Virginia, USA, 2013.

https://www.unwater.org/publications/groundwater-overview-making-invisible-visible
https://link.springer.com/chapter/10.1007/978-3-030-68124-1_1
https://waterinthewest.stanford.edu/news-events/news-insights/high-quality-groundwater-data-isn%E2%80%99t-always-easy-or-cheap-it-necessary
https://waterinthewest.stanford.edu/news-events/news-insights/high-quality-groundwater-data-isn%E2%80%99t-always-easy-or-cheap-it-necessary
https://www.nature.com/articles/nature.2012.11143.pdf?origin=ppub
https://www.nature.com/articles/nature.2012.11143.pdf?origin=ppub
https://doi.org/10.1016/j.jhydrol.2022.128295
https://doi.org/10.1080/02626667.2022.2106142
https://doi.org/10.48550/arXiv.1301.3781
http://www.ashergrey.info/uploads/1/4/8/3/14835916/circleofblue.org-us_groundwater_losses_between_19002008_enough_to_fill_lake_erie_twice.pdf
http://www.ashergrey.info/uploads/1/4/8/3/14835916/circleofblue.org-us_groundwater_losses_between_19002008_enough_to_fill_lake_erie_twice.pdf


Water 2022, 14, 2947 15 of 15

25. Steward, D.R.; Bruss, P.J.; Yang, X.; Staggenborg, S.A.; Welch, S.M.; Apley, M.D. Tapping unsustainable groundwater stores
for agricultural production in the High Plains Aquifer of Kansas, projections to 2110. Proc. Natl. Acad. Sci. USA 2013,
110, E3477–E3486.

26. Groundwater. Available online: https://www.dnr.state.mn.us/waters/groundwater_section/index.html (accessed 8 September
2022).

27. Miro, M.E.; Famiglietti, J.S. Downscaling GRACE remote sensing datasets to high-resolution groundwater storage change maps
of California’s Central Valley. Remote Sens. 2018, 10, 143.

28. Wager, S.; Hastie, T.; Efron, B. Confidence intervals for random forests: The jackknife and the infinitesimal jackknife. J. Mach.
Learn. Res. 2014, 15, 1625–1651.

29. Polimis, K.; Rokem, A.; Hazelton, B. Confidence intervals for random forests in python. J. Open Source Softw. 2017, 2, 124.
30. Alley, W.M.; Konikow, L.F. Bringing GRACE down to earth. Groundwater 2015, 53, 826–829.
31. Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260.

https://www.dnr.state.mn.us/waters/groundwater_section/index.html

	Introduction
	Materials and Methods
	Model Framework
	Model Inputs
	GRACE TWS
	Precipitation
	Temperature
	GLDAS Outputs
	GLDAS Elevation

	Model Training

	Model Evaluation
	National Model
	State Model
	County Model
	Error Analysis Metrics
	Mean Absolute Error (MAE)
	Correlation Coefficient (R)
	Nash–Sutcliffe efficiency (NSE)
	Spearman Rho
	Root Mean Square Error (RMSE)


	Results
	Discussion
	Conclusions
	References

