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Abstract: Low fluvial terraces present azonal spatialization, encompassing several geomorphological
compartments and climate zones in Brazil. Their genesis is directly related to river dynamics. When
influenced by allogenic forces, such as Holocene climate pulses, it results in channel incision and
posterior abandonment of the floodplain. Relatively plain landforms at different altimetric levels
identified between the current floodplain and hillslope (low river terraces) are a result of these
processes. Previous works using Optically Stimulated Luminescence (OSL) in low terraces of several
rivers in Brazil have indicated morpho-chronologic similarities between depositional events, raising
the hypothesis of feedbacks and fluvial adjustments relatively simultaneous to Holocene climate
events. Considering these dynamics, this study employed OSL to obtain absolute dating information
for 114 samples taken from distinct levels of the low river terraces of 30 rivers in Brazil, integrating
the database of the IG-UNICAMP laboratory of Geomorphology and Environmental Analysis. Based
on the data and statistical analysis (cluster and correlation analysis), this study aimed to identify
relationships between different variables which might have controlled spatial homogenous and
heterogeneous feedbacks during distinct paleoenvironmental contexts. The proposed methodology
tested a fundamental hypothesis of the regional climatic geomorphology, and the results obtained
may contribute to future discussions on the relationship between low river terraces and anthropic
occupation.

Keywords: Brazilian rivers; spatial analysis; climatic geomorphology; OSL dating

1. Introduction

Riverscapes are sets of natural components whose shapes result from complex and non-
linear interactions among different processes, thresholds, and (pseudo) equilibrium [1–5].
Consequently, the response of river systems depends upon their emerging properties, the
degrees of sensitivity to different allogeneic inputs, and the connectivity between the differ-
ent elements in the system [6–12]. From this perspective, the inherent complexity of river
systems results in heterogeneous and nonlinear responses across time and space [7,13,14].
On the other hand, the internal evolution of the drainage basin is also an important issue,
since the responses to allogenic inputs would be incorporated immediately, late, or may
not even be influential on internal reorganizations [15–19].

Considering the complex relationship between paleoclimates and fluvial dynam-
ics [6,20–26], the climate influences on river channels can be direct (such as variations in
precipitation rates), indirect, and partial (vegetation). However, these complex responses
concerning Tropical Rivers (TR) and Holocene Climate Pulses (HCP), are still largely unex-
plored and contrast with the greater progress in studies focusing on the complexities in
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large river systems (Basin area > 106 km2) [27–31]. In addition, climate inputs can gener-
ate different responses that depend on the attributes and spatial dimensions of the river
system, indicating that smaller rivers hold important continental records on the Holocene
paleoclimate events due to their greater sensitivity to subtle disturbances [11,20,32–44].

Currently, the Holocene is subdivided into the Meghalayan (Late Holocene −4250
years BP), Northgrippian (Middle Holocene, in the range of 8236–4250 years BP), and Green-
landian (Early Holocene, in the range of 11,700–8236 years BP) [45] Ages. These intervals
are associated with environmental dynamics trigged by high-frequency and low-magnitude
climate events, which mainly increased from the Middle Holocene [3,31,46–49]. For some
authors, these dynamics were named Climate Pulses, and they induced adjustments in
different riverscapes [26,28,36,38,39,50–54].

Previous studies have shown that the Roman Warm Period (300–1 CE), Dark Ages
Cold Period (800–300 CE), Medieval Climate Anomaly (1300–800 CE), and Little Ice Age
(1900–1300 CE) [16,46,55] were associated with oscillations in orbital dynamics, the release
of sulfates during volcanic eruptions, an increase in CO2 concentrations in the atmosphere,
and a displacement of the Intertropical Convergence Zone (ITCZ) [15,46,56]. Furthermore,
the colder–warmer climate oscillations presented environmental anti-phases between the
Northern and Southern Hemispheres during the Late Holocene. Therefore, studies have
shown different environmental conditions in humidity and temperature in the Southern
Hemisphere [57–62].

Based on this, the low river terraces are landforms supported by alluvial deposits
linked to abandoned floodplains [63,64] which record responses to short-term and low
intensities climate and tectonic events [65]. These landforms differ from the floodplains as
they are at higher altimetric levels and are formed by lateral and vertical erosion [50]. For
this study, we considered the low terraces from a morpho-chronological perspective, so that
the high and medium terraces are older than the low terraces analyzed. Nonetheless, these
landforms are important records of human occupation [6,10,32,64–68] and also play an
important ecological role to the development of biodiversity due to sediments and organic
matter storage. However, these landforms have suffered considerable environmental stress,
mainly from the 1970s onwards. Consequently, understanding the processes and dynamics
associated with the low river terraces is useful for environmental management when the
necessary mitigation of the negative impacts relating to the predicted climate dynamics
over the next centuries are considered.

This study aimed to quali-quantitatively correlate the absolute ages of surficial cover at
different levels of low river terraces from different regions of Brazil with Holocene Climate
Pulses, by considering that low river terraces associated with small and medium-length
rivers represent key elements relating to the climate factor acting on the dynamic adjust-
ments of fluvial channels. Following the azonal spatialization of low river terraces, similar
morphogenetic relationships with Holocene climate pulses were identified in different
Brazilian environmental contexts. Therefore, this study is the first to analyze the morpho-
dynamic and geochronology responses of a large number of small and medium-length
rivers to short-term climate events, launching insights into the landscape evolution during
the Holocene.

2. Materials and Methods
2.1. Selection and Spatialization of Geochronological Data

In total, the absolute dating of 114 Optically Stimulated Luminescence (OSL) surface
cover samples associated with low river terraces were employed in the present study. In
detail, all data collected from 30 rivers were obtained by the Environmental Analysis and
Territorial Dynamics of the Laboratory of Geomorphology and Environmental Analysis
IG-UNICAMP [27,34,36,37,41,42,44,66–73].

As shown in Figure 1, these river terraces were in different continental geomorpholog-
ical macro-compartments and along the Brazilian coast (Supplementary Materials).
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Figure 1. Location of sampling sites. (A) Low river terraces in the Piranhas-Açu river, Rio Grande
do Norte state. (B) Low river terraces in the Grande river, Bahia state. (C) Low river terraces in the
São Francisco river, Sergipe and Alagoas states, and the Itapicuru River, Bahia state. (D) Low river
terraces in the Itapicuru, Una, Pardo, and Jequitinhonha rivers, Bahia state. (E) Low river terraces in
the Paraíba do Sul river, Rio de Janeiro state. (F) Low river terraces in different rivers in the state of
São Paulo. (G) Low river terraces in the Araranguá and Itapocu rivers, Santa Catarina state.

Within the scope of the continental morphological compartments of Northeast Brazil,
absolute ages correspond to surficial covers associated with low terraces located at the
middle course of the Itapicuru (see box C of Figure 1) [42,69,72] and Grande (see box
B) rivers, both in the Southern Sertaneja Depression. Meanwhile, the areas analyzed in
Southeast Brazil are associated with the Paulista Peripheral Depression [27,34,37], the
Paulista Western Plateau [34,68], and the Uberlândia-Uberaba plateau on the edge of the
Brazilian Central Plateau [70].

The morphological compartments located on the northeast coast correspond to the
coastal lowlands and coastal plains in the mouths of the Piranhas (see box A), São Francisco
(see box C), Jequitinhonha (see box D) [67,71], Itapicuru (see box C) [69], Una and Pardo
(see box D) [74] rivers. Southeast coast areas are linked to estuaries and deltaic plains
connected to the mouths of the Paraíba do Sul (see box E) and Ribeira do Iguape (see box
F) [75] rivers. Regarding the southern coast of Brazil, we used data from the surficial covers
of low terraces located on coastal plains associated with the mouth of the Araranguá (see
box G) [36,76] and Itapocu (see box G) [73] rivers.

2.2. Identification of Low River Terraces

Low river terraces were identified through the analysis of geological and geomorpho-
logical cartographic databases and aerial photographs. We also employed radar images
from the SRTM mission with a spatial resolution of 30 m (1 arc-second), and ALOS PALSAR
(FBS) with a spatial resolution of 30 m (resampled to 12.5 m), obtained from the data portals
of the USGS Earth Explorer (available online https://earthexplorer.usgs.gov) [accessed on
18 September 2022] and Alaska Satellite Facility (available online https://asf.alaska.edu/)
[accessed on 18 September 2022], respectively. Compositions of high-resolution orbital

https://earthexplorer.usgs.gov
https://asf.alaska.edu/
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images available in the World Imagery plugin inherent to the QGIS Geographic Information
System freeware software were also employed in terms of land/water humidity standards.

Topographic profiles were prepared based on transects transverse to the river courses
through Digital Elevation Models (DEM). Fieldwork then confirmed the differentiation
of the various levels through topography and pedological/sedimentary aspects. Radar
images also contributed to the morphological characterization of surfaces when considering
texture patterns, density, altimetry, structures, and the manipulation of color palette to
distinguish surfaces which alternated between low amplitudes.

2.3. Optically Stimulated Luminescence (OSL)

The DATAÇÃO Laboratory (Datação, Comércio & Prestação de Serviços LTDA–São
Paulo/SP, Brazil) performed the procedures using the SAR (Single Aliquot Regenerative-
dose) method in quartz grains, as proposed by Wintle and Murray [77], with at least
15 aliquots (calibration curves) to determine the moment of deposition of the surficial cover
in low river terraces.

Luminescence measurements were performed using grains (~10 to 30 mg) of a single
sample repeatedly. Therefore, the accumulated dose of a sample was determined by the
accumulated doses of several aliquots (histograms of equivalent doses and radial plot
estimates), to verify that the luminescence signal was zero in the quartz grains [78]. This
method decreased measurement error, making the ages obtained from the relationship
between paleodose and annual dose values more statistically reliable.

The collection was carried out on surface covers which were composed of low river
terrace levels, through the opening of trenches or exposed vertical profiles. As shown in
Figure 2, PVC 60 cm × 6 cm pipes were introduced horizontally into the profiles so that
the samples were not subjected to any kind of radiation. The edges were sealed, and the
pipes were carefully removed after checking for complete filling and wrapped in black
plastic bags.
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Figure 2. Example of sample collection procedure for OSL dating. (A) Horizontal introduction of the
PVC pipe at a certain depth of interest after opening the trench; (B) Pipes inserted and capped, ready
to be taken out of the trench; (C) Pipes sealed in the laboratory ready to be sent for dating by OSL.
(Photo by: L. Lämmle, April/2021).

Collection depths were defined based on the characteristics of the materials, peculiari-
ties of the depositional layers, and pedological horizons. In addition, field adversities, such
as the outcrop of subsurface waters, also limited deeper collections.
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2.4. Data Processing and Statistical Correlations

An experimental table presented the variables which were converted to numbers or
categories, whenever necessary, using Python modules. This meant that levels, regarded as
words, were taken as sequential numbers 1, 2 and 3. Thus, the variables were altitude, age,
longitude and level. As is common procedure for statistics and data analysis, the variables
were normalized. This meant that the data were scaled using normal distribution as a
scaler. This procedure highlights the variations between variables, so correlations are made
clearer. In more detail, the Python module Sklearn was used for these steps, and graphs
were plotted using Matplotlib and Seaborn tools.

3. Results
3.1. Geomorphic Characterization of Low Terraces

The results showed morphological patterns in the spatialization of low river terraces.
The rivers presented up to three distinct levels, distributed in a paired and unpaired way
along the riverbanks.

As illustrated in Figure 3, the terraces rise in the river valley at levels ranging from 1
to 20 m above the current river channel, and are always confined by the slopes that delimit
the topography of these river forms [34]. Is important to highlight that the number of levels,
distance, and elevation in relation to the river channel varies, since it depends on local
environmental characteristics and the intensity of exogenous processes absorbed by the
river system.
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Figure 3. Schematic model of the distribution of low river terraces considered in the present study.

3.2. Statistical Data Analysis

The statistical analysis of data revealed clusters among the geochronological data. The
medians of ages for the surficial covers indicated that the low terraces located in coastal
geomorphological compartments are more recent than those of the inland continental
compartments (Md = 0.585 and Md = 1.325, respectively).

As shown in Figure 4, there is a predominance of Level 1 low terraces compared to lev-
els 2 and 3, and in many cases, there was only a single level. This suggested that most rivers
in the compartment had a vertical incidence only once during the Late Holocene, unlike
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rivers located in the inland continental compartments, which showed mostly staggering
levels.
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Figure 4. Age distribution of samples and their terrace levels. Each dot represents a sample with its
age and terrace level (1, 2, and 3). Coastal samples are younger and present a smaller age distribution
than continental samples.

Considering the variance by geomorphological subcompartment and low terrace
levels, the inland subcompartments of the São Francisco Craton and the Paulista Western
Plateaus showed older ages, with mean values of 5234 ka and 6713 ka, respectively.

By analyzing the same subcompartments in the boxplots presented in Figure 5, it was
possible to observe the variation in the concentration of ages, demonstrating the distinctive
behavior under the area of occurrence and environmental conditions.
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Figure 5. Subcompartment boxplot of the ages of the samples; CP: Coastal Plains; CL: Coastal
Lowland; P: Plateau; PPD: Paulista Peripheral Depression; PWP: Paulista Western Plateau; SD:
Sertaneja Depression; SFC: São Francisco Craton.

Regarding the correlation matrix shown in Figure 6A, a greater correlation was de-
tected between latitude and longitude, and between compartments and subcompartments,
to the detriment of the other variables. The values obtained were close to 1.0, indicating a
significant degree of positive correlation. These results are reinforced by the two follow-
ing Principal Components Analysis (PCA) results represented in Figure 6B,C, where it is
possible to see that the explained variance from the two illustrated components equates to
64.69% of the total variance. Also, in Figure 6B,C, the best groupings of spatial distribu-
tion variables were observed between the inland/coastal continental compartments and
subcompartments, suggesting morphogenetic distinctions between the inland and coastal
groups, as well as the inland subgroups.
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are calculated using normalized values. (B) Principal Component Analysis (PCA) between continen-
tal compartments based on the Köppen climate classification, and (C) between geomorphological
subcompartments, respectively.
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The two main components contain 64.69% (36.39% + 28.30%) of the data variation,
which means that data variation is almost 65%, and is summarized by the two main
components. Latitude and longitude present similarly in sample variation (Figure 6B,C).
They are also unrelated to age and altitude, nearly orthogonal (Figure 6B,C). Age and
altitude are also closely related to each other, and terrace level is strongly related to age and
altitude (in the opposite direction) and weakly related the geographic position (latitude and
longitude). Climate subcompartments can be mostly distinguished, along with geographic
coordinates (Figure 6B,C).

4. Discussion
4.1. Paulista Peripheral Depression, Paulista Western Plateau, and Central Plateau

The results presented in Figure 7a,b indicated a concentration of depositional ages
synchronous to the cooling pulses of the northern hemisphere [15,54] and humid conditions
related to the increase in precipitation inherent to sudden variations in the South American
Monsoon System (SAMS) [79,80]. In detail, yellow dots correspond to the samples from
the Brazilian Central Plateau [70]. Brown dots correspond to samples from the Paulista
Western Plateau [34,68]. Orange dots correspond to samples from the Paulista Peripheral
Depression [7,37,68]. Horizontal bars indicate the standard deviation of dating. Vertical
gray bars indicate Bond events from 0 to 6 [15,56], adapted from Stríkis et al. [79], Cheng
et al. [80], and Zielhofer et al. [81]. The deposition of materials from low river terraces
located in Southeastern Brazil occurred during rainy events, and correlated with Bond
events centered at 9.4/8.2/7.5/5.9/4.2/2.7/1.6/0.4 ka [54,79–81]. Such dynamics possibly
led to more frequent flood pulses in the rivers assessed [41].
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Figure 7. (a) Record of hematite-stained quartz grains (HSG) from the North Atlantic marine core
VM 29-191 [15,56]. (b) Composite record of δ18O from stalagmites LG3 and LG11, Lapa Grande cave,
central east of Brazil [79]. Dots correspond to ages obtained by OSL dating for materials from low
river terraces [27,34,37,68,70] (Supplementary Materials). Source: Adapted from Bond et al. [15,54],
Strikis et al. [79], Cheng et al. [80], and Zielhofer et al. [81].

Additionally, when superimposed on the isotopic records of speleothems from the
Lapa Grande cave located in the South Atlantic Convergence Zone (SACZ) corridor, most
ages obtained for the depositional events present secular correlations linked to the periods
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of rainfall intensification [79]. Rainfall events in the Early and Middle Holocene lasted
∼300 years with amplitudes ranging from 0.9 ‰ to 1.5 ‰, while they were shorter in the
Late Holocene, lasting ∼100 years (Figure 7b) [79].

These paleoclimate dynamics developed different low terrace levels during the
Holocene (See Figures 3 and 4). The oldest depositional ages (Early and Middle Holocene)
correspond mostly to topographically higher single levels (N1) mainly correlated with
Bond events 6, 5, and 4. Furthermore, the higher frequency of rains in shorter intervals of
~100 years explain the concentration of the depositional ages obtained in the Late Holocene,
the elaboration of younger levels through recent erosive/depositional readjustments (Bond
0, 1, 2, and 3), and are responsible for developing terrace staircases composed of different
levels (N1, N2, N3). In addition, in analyzing long-term variations between 10.0 and 1.0 ka
(See Figure 7b), we observed an intensification of humid conditions for the period, which
are determinant for the development of young low terraces closer to the current river
channels [15,34,54,79–84].

Above all, such associations demonstrate that the continental geomorphological com-
partments of Southeastern Brazil, when compared to the others, showed greater sensitivity
concerning the action of humid climate pulses throughout the Holocene (synchronous to
Bond events), mainly in the Late Holocene, when events became shorter, abrupter, more
frequent, and intense, resulting in the development of numerous levels of recent low river
terraces. This recurrence possibly promoted more frequent adjustments in riverscapes
through transitional phases, which explain the genesis of the channel incisions and the
abandonment of old plains.

4.2. Southern Sertaneja Depression of Northeastern Brazil

Figure 8a shows a higher concentration of depositional ages outside of the periods
associated with cooling pulses in the northern hemisphere, reinforcing the hypothesis of
east-west dipole precipitation induced by the Walker circulation, persistent between the
compartments located in the continental areas of Southeast and Northeast of Brazil [84].
This climate dipole also influenced the distribution of precipitation and temperature in
Brazil during the Medieval Climate Anomaly, Little Ice Age, and the current modern
warming period [21,60,83].

Dots correspond to ages obtained by OSL dating for materials from low river terraces
(Supplementary Materials). Red dots represent ages obtained by OSL dating in the ma-
terials from low river terraces corresponding to the samples from the Southern Sertaneja
Depression of Northeastern Brazil [69,72]. Horizontal bars indicate the standard deviation
of dating. Vertical gray bars indicate Bond events from 0 to 6 [10,11,15,56], adapted from
Stríkis et al. [79], Cheng et al. [80], and Zielhofer et al. [81].

However, isotopic records of speleothems from the Diva de Maura, Torrinha, and
Lapa Doce caves (located in semi-arid climatic conditions) showed considerable secular
correlations with the ages obtained for the surficial covers of low terraces (Figure 8b,c).
These ages, when correlated with those from speleothems, indicate superimpositions with
periods of intensified episodic rains, with the likely occurrence of depositions associated
with Hortonian flows, typical of semi-arid environments [21,62].
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Figure 8. (a) Record of hematite-stained quartz grains (HSG) from the North Atlantic marine core
VM 29–191 [15,54]. (b) Composite record of δ18O from stalagmites RN4, RN1, and FN1, Rainha and
Furna Nova caves, Northeastern Brazil [21], and February insolation at 10 ◦S [84]. (c) Composite
record of δ18O from stalagmites DV2, TR5, and LD12, Diva de Maura, Torrinha, and Lapa Doce caves
Northeastern Brazil, and February insolation at 10 ◦S [62]. Dots correspond to ages obtained by OSL
dating for materials from low river terraces [69,72] (Unpublished data in Supplementary Materials).
Source: Adapted from Bond et al. [15,56], Cruz et al. [21], Zular et al. [84], Novello et al. [60], Strikis
et al. [79], Cheng et al. [80], and Zielhofer et al. [81].

The long-term dry trend (4.2 to 0.0 ka) was interrupted by these sudden rainfall events,
with periodicities of about 210 years (Figure 8b,c). The Bond 2 event, with an occurrence
between about 2.8 and 2.65 ka, was the most intense period of humidity in the historical
series of 3.0 ka [21,60]. This interpretation is based on the fact that most depositional ages
of materials from low river terraces are correlated to events of intensification of relatively
wetter and rainier periods in the semi-arid region, and which are represented by the drops
in the lines of the isotopic records of speleothems from the Diva de Maura, Torrinha, and
Lapa Doce caves (Figure 8c).

Considering the variance by geomorphological subcompartment and low terrace
levels, older ages were also found, mainly for the inland subcompartments of the São
Francisco Craton, with values of 5,234 ka (Figures 5 and 8b,c). When correlated with
isotopic records of speleothems from the Rainha and Furna Nova caves (Figure 8b), the
Middle Holocene ages (samples 57, 60, 61, 64, and 68) also indicate the deposition of
materials from low river terraces during wetter episodes within the semi-arid context of
Northeastern Brazil [21,84]. These episodes were likely linked to rainfall events of a greater
magnitude which occurred in wetter conditions than the current ones throughout the
Middle Holocene (7.5 to 4.2 ka), a period of remarkable variability of δ18O on multidecadal
to centenary timescales (Figure 8b).

4.3. Coastal Lowlands and Coastal Plains of the South, Southeast, and Northeast of Brazil

As depicted in Figure 9a, the geochronological results indicate that depositional events
associated with the genesis of low river terraces in coastal compartments are not directly
related to the influences exerted by the cooling pulses of the northern hemisphere [15,56],
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as observed in the geomorphological compartments located in continental areas of the
Northeast and Southeast of Brazil (climate dipole). However, the concentration of deposi-
tional ages in the Late Holocene—when correlated with isotopic records of the speleothems
from the Botuverá (Figure 9b–d) and Cristal (Figure 9e) caves—is also associated with
higher-intensity rainfall events along with the Holocene historical series [61,85–91].
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Figure 9. (a) Record of hematite-stained quartz grains (HSG) from the North Atlantic marine core
VM 29–191 [15,54] (b) Composite record of δ18O from stalagmite BT21a, Botuverá cave, Southern
Brazil [86] (c) Composite record of δ18O from stalagmite BT2, Botuverá cave, Southern Brazil [85].
(d) Composite record of δ18O from stalagmite BTV4a, Botuverá cave, Southern Brazil [87]. (e) Com-
posite record of δ18O from stalagmite CR1, Cristal cave, Southeastern Brazil [88]. Dots correspond
to ages obtained by OSL dating for materials from low river terraces [36,69,72,73,76] (Unpublished
data in Supplementary Materials). Source: Adapted from Bond et al. [15,54], Bernal et al. [86], Cruz
et al. [85], Wang et al. [87], Taylor [88], Strikis et al. [79], Cheng et al. [80], and Zielhofer et al. [81].

Such events are possibly intensified by the depositional processes which helped create
low terraces in the Late Holocene, characterized by younger depositional ages than the
continental samples. These interpretations corroborate the variations in the values of δ18O,
with a downward trend in the last 9.0 ka (Figure 9b) and 4.0 ka (Figure 9d,e). Furthermore,
due to the use of palynological proxies, there is a chronological superimposition with
the periods which indicates the expansion of the Atlantic Forest in the coastal regions of
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Southern Brazil; expansion of the Atlantic rainforest to the south of the Amazon rainforest
along its southwest border; and the expansion of the moist Araucaria forest, replacing large
pasture areas, mainly after 3.0 and 1.5/1.0 ka [59,83,89].

In this perspective, the rains, which correlated with the strengthening of SACZ ob-
served in the Late Holocene, could supply the drainage headwaters of the Brazilian Atlantic
Plateau, increasing volume, flow, transported sediment load, and flood pulses of rivers
which flow into the Atlantic Ocean [89], thereby contributing to the deposition of materials
in the low river terraces of the coastal plains.

Such trends, increasingly negative in values of δ18O, are the result of an increase in
summer solar radiation, SAMS intensity, and south migration of the SACZ average position
through the recovery and increase in moisture from the Amazon basin to the Southeast and
South of Brazil until modern conditions were reached [61,85–88]. However, the climate
dynamics relating to paleo-precipitation are also influenced by other atmospheric circula-
tion activities in the tropical and subtropical Atlantic regions, such as the South Atlantic
Subtropical High (SASH) and the polar cold fronts, which affect the Atlantic climate in
both summer and winter [82,83].

The driest period is linked to the medieval climate anomaly (~1.12–0.92) (Figure 9e),
caused by the weakening of the monsoon system and the decrease in summer precipitation,
and the wettest period of the historical series is associated with the Little Ice Age (~0.42–0.2)
(Figure 9e) [59,88]. Climate pulses are essential in understanding the development of
Holocene low river terraces located in the coastal plains of Brazil.

5. Conclusions

The concentration of Holocene depositional ages in the compartments analyzed in the
present study was associated with rainfall events of greater intensities, but with rhythms
and intensities that varied over time due to different responses induced by the specificities
of each environmental system. In this perspective, the global climate zones were not
responsible for forming low river terraces, but events relating to local/regional climate
pulses which guided the remobilization of sediments and the abandonment of old plains
by fluvial incisions.

Statistical analyses revealed a greater correlation between latitude/longitude variables
and compartments and subcompartments, to the detriment of the other variables. These
analyses showed different responses of environmental systems to the action of Holocene
climate pulses, with morphogenetic distinctions between inland and coastal groups as well
as inland subgroups.

The results also contribute to a better understanding of river dynamics at different
scales, expanding discussions on the relationship between low river terraces as responses
to Holocene climatic pulses, comprising forms developed during periods of hydrological
instabilities.

In the Paulista Peripheral Depression, Paulista Western Plateau, and Central Plateau,
the deposition of materials from low river terraces in Southeastern Brazil occurred most
often during rainy episodes, coinciding with Bond events.

In the Southern Sertaneja Depression of Northeastern Brazil, most depositional events
were located outside the periods associated with the cooling pulses in the northern hemi-
sphere, enhancing the hypothesis of an enduring east-west precipitation dipole between the
compartments located in the continental sectors of the Southeast and Northeast of Brazil.

In the coastal lowlands and coastal plains of the South, Southeast, and Northeast of
Brazil, the depositional events failed to present a direct relationship with the influences
exerted by the cooling pulses of the northern hemisphere. However, the concentration of
the depositional ages in the Late Holocene is also associated with higher intensity rainfall
events, along with the Holocene historical series.
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