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Abstract: In the recent decades, the issue of water-resource security of the Daqing River Basin, which
is one of the five major rivers in the Haihe River Basin, has become increasingly serious affected by
climate change and human activities. In this paper, a dynamic simulation and early warning model
of water quantity and quality in this basin based on the SWAT model was constructed to promote
the implementation of water environment quality and safety bottom line in the Beijing-Tianjin-Hebei
region. The results of the study are as follows: (1) When encountering a once-in-a-century rainstorm, the
flood pressure of Zijingguan in the flood season is the highest, with the highest water level reaching
521.23 m, and the overall maximum runoff follows the order of Zijingguan > Fuping > Zhangfang.
(2) When the NH3-N emissions are reduced by 37.64~85.10% in each month (based on the level in
2017), the water quality at the outlet of the basin can reach the standard, and the upper limit of
NH3-N emissions is 504.5 t/m. (3) The regulation and control scheme seeking to “ensure the base
flow with standard water quality” and “optimize NH3-N annual emission” is proposed in this paper.
The NH3-N concentration at the outlet of all watersheds can reach the standard when the basic runoff
of each sub-basin reaches 0.01 to 10.32 m3/s. In addition, concentrating the emission in July, August,
and September and reducing the emission intensity of NH3-N in proportion can significantly reduce
the monthly average NH3-N concentration (<1.99 mg/L) at the outlet section of the basin.

Keywords: water quantity; water quality; early warning; joint regulation; Daqing River

1. Introduction

The Daqing River is one of the five major rivers in the Haihe River Basin and an impor-
tant water system in the Beijing-Tianjin-Hebei region [1]. The Xiong’an New Area is also
located in the hinterland of the Daqing River Basin. The national strategy for “Integrated
Development of Beijing-Tianjin-Hebei”, which was launched in 2014, further promoted
the position of the Daqing River Basin in China’s major strategy. In recent decades, as a
sensitive area affected by climate change and human activities [2], the climate and environ-
mental conditions of the Daqing River Basin have undergone tremendous changes, and the
issue of water resources security in the basin has become increasingly serious.

The river basin, as a type of freshwater resource, is generally put in a state of jeopardy
in terms of quantity and quality due to the development in industry, agriculture, and
urbanization. The quality of surface water in river basins plays a key role in water-resource
security. So, measuring water quality, which is of high importance in water-resource
management, is normally carried out in disparate ways. In this way, an accurate estimation
of WQI (Water Quality Index) is one of the most challenging issues in the water-quality
studies of surface-water resources [3,4]. Due to the intrinsic limitations of conventional
models, Data-Driven Models (DDMs) have been frequently employed to assess the WQI
for natural streams [5]. The DDMs-based WQI formulation is used to assess river in in
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the reliability-based probabilistic framework to consider the effect of any uncertainty and
randomness in the input parameters. In addition, multiple-kernel support vector regression
(MKSVR) algorithm was also proposed to estimate the hard-to-measure parameters from
those that can be measured easily [6–9]. For solving the optimization problem of the
MKSVR, the particle swarm optimization (PSO) algorithm was used.

With the increasing complexity of global water-resources problem [10,11], The single
study of water resources’ allocation has gradually changed to a field of sustainable uti-
lization of water resources which comprehensively considers water-quality constraints,
water environmental pressures, etc. [12,13]. The principles and methods of water-resource-
optimization management have been normally proposed by linear decision-making, multi-
objective planning, and multi-level management [14,15]. On this basis, the joint application
of multi-objective and multistage water resources’ optimal management has further been
put forward [16,17], so as to realize the optimal regulation and allocation of water resources.
With the development of complexity analysis and simulation optimization technologies,
model simulation has become one of the important means of regulation and control of
water resources [18].

At the watershed scale, numerous simulations and predictions research studies regard-
ing the watershed hydrological process have been performed based on hydrological models
and global climate change [19–21]. The rationality and effectiveness of water resources’
allocation has been analyzed to improve the available water resources [22,23]. The SWAT
hydrological model with downscaling deviation analysis has been applied to explore the
response of runoff change to different climate scenarios [24–28]. Furthermore, the coupled
programming model [29–31] has often been used to study the water-resource allocation and
system benefits under different water inflow conditions. At the regional scale, the manage-
ment model of surface water, groundwater, and sewage was established, with the goal of
maximizing the benefits, so as to provide the basic data for the regulation of water quantity
and quality [32]. By using the stochastic fuzzy neural network model (SFNN model), the
indicators of social economy, water quantity, and water quality in regional water resources
systems were treated as fuzzy parameters, and the linkage relationship between water
quantity and water quality was fully considered, so as to study the sustainable allocation
of water resources [33,34]. The dynamic nonlinear programming model was applied to the
integrated management of water quality and quantity [35], and the efficiency, fairness, and
sustainability of the urban water supply were explored.

Other scholars have adopted the copula joint distribution model for the evaluation
of water quality and quantity and proposed measures to strengthen regional pollutant
control and treatment [36,37]. A joint probability distribution approach is used to describe
relationship between water quality and flow discharge by multiple variables [38]. The
copula theory has been widely applied in the field of hydrology and water environment
in recent decades, as it can relate different univariate marginal distributions without
changing the dependence structure and the initial data information in the transformation
process [39,40]. Three copula types are commonly used: Archimedean copulas, which are
relatively more convenient for symmetric relationships; Elliptic copulas, which are suitable
for symmetric relationships; and Vine copulas, which can combine different copula types
in low dimensions [41,42]. These copula functions can be applied to detect the joint change-
point of the precipitation–discharge relationship and perform flood-risk analysis [43–46].

Unlike the previous studies on the joint distribution of water quantity and quality,
the main novelty of this study is that it explored a new joint regulation scheme of water
quantity and quality by developing a dynamic simulation and early warning model in the
Daqing River Basin, based on the SWAT model. The water-level elevation and the rainstorm
in different recurrence intervals were simulated. The relationship between the pollutant
discharge amount and concentration in multiple pollutant discharge and meteorological
scenes were further analyzed. These two major steps are involved in the detection of early
warning values of water quantity and pollutant discharge in this basin, and they illustrate
a suitable joint regulation scheme, using the proposed method. Therefore, it is of great
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significance to carry out joint early warning and regulation research by incorporating both
water quantity and quality in the Daqing River Basin, which can serve as a useful and
reliable tool for an impartial diagnosis and management of water resources. It will further
promote the implementation of the three red lines of “water resources utilization upper
line, ecological space protection red line and water environment quality and safety bottom
line” in the Beijing-Tianjin-Hebei region [47].

2. Materials and Methods
2.1. Study Area

The Daqing River Basin is located in the middle of the Haihe River Basin on the North
China Plain (113◦40′ E–117◦00′ E, 38◦ N–40◦ N) and has a total basin area of 43,060 km2,
with the annual precipitation of 727 mm and annual runoff of 60.2 m3/s (Figure 1). Rainfall
in the basin is unevenly distributed throughout the year, mostly occurring in the form of
rainstorms, mainly falling from July to August, a period that accounts for more than 70%
of the annual rainfall. During the flood season, due to the influence of cold and warm air
flow and subtropical high, heavy rain forms easily, especially in the Fuping–Zijingguan area.
The annual average temperature in the basin is 12.4 ◦C, and the average annual evaporation
is 1309 mm. Soil types are divided into 16 categories and 36 subclasses—mainly cinnamon
soil. Cultivated land accounts for 52.4%, followed by woodland, grassland, and construction
land. The water pollution in the Daqing River Basin is complex and diverse, and the pollution
mainly originates from domestic sewage discharge, pesticide and fertilizer application, and
factory sewage discharge, with the standard rate of the river being lower than 30%.
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2.2. Data Materials

The data covered in this study mainly include DEM, land use, soil type, meteorology,
hydrology, and pollution (Table 1).

Table 1. Data sources and treatment.

Data Types Initial Source Data
Processing Suitable to the Model/Study

Processing Data Display

Basic data for SWAT

DEM ASTER GDEM V3 \

Land use
Remote sensing
monitoring data of land
use status in China in 2010

Reclassification,
land-use grid data,
land-use index table

\

Soil type
Harmonized World Soil
Database (HWSD),
China Soil Data Set (v1.1)

Soil-distribution grid
file, soil parameter
database, soil-type
index table

\

Meteorology
Daily scale data of
National Meteorological
Data Service Center (v3.0)

Weather generator
parameters (R language
programming
calculation)

Daily scale data of
precipitation,
temperature, wind
speed, relative
humidity, and sunshine
intensity from 1
January 2011 to 31
December 2017

Data required for
research

Hydrology Hydrologic yearbook of the
Haihe River Basin

Applicable format
conversion of
SWATCUP2019

Monthly average flow
of each station in the
Daqing River Basin
from 2006 to 2016

Pollutant discharge
Statistics related to
pollutant discharge in the
Daqing River Basin

Monthly scale data in
the Daqing River Basin
from 2010 to 2017

2.3. Method

In this study, the dynamic simulation model of water quantity and quality in the
Daqing River Basin was constructed by using ArcSWAT2012, and its parameters were
calibrated and verified. Next, the relationship curve of runoff and water level in the
Daqing River Basin was established, and the variation law of runoff and water-level
elevation in different recurrence intervals was analyzed by simulating the rainstorm in
recurrence intervals, so as to realize the early warning of water quantity in the basin. The
relationship between the pollutant discharge (point source and nonpoint source) amount
and concentration in a river in multiple-pollutant discharge and meteorological scenes
was analyzed, and the early warning value of pollutant discharge was proposed, so as
to realize the early warning of water quality. On this basis, a joint regulation scheme of
water quantity and quality by which to ensure the river-water quality was put forward.
The schematic diagram of the model is shown in Figure 2.

For this research, in the model, the Daqing River Basin was divided into 35 sub-
basins and 247 hydrological cells. The division of sub-basins is shown in Figure 3. Floods
in the Daqing River Basin are mainly caused by rainstorms occurring in the flood sea-
son, with the rainstorm centers often appearing in Fuping and Zijingguan. Therefore,
three representative hydrologic stations, namely Zhangfang (Sub-basin 4), Zijingguan
(Sub-basin 6), and Fuping (Sub-basin 25), were selected in this paper for water-quantity
early warning, and Taitou (sub-basin 14) was selected as the representative station of basin
outlet for water-quality early warning and joint regulation.
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3. Results and Discussion
3.1. Model Calibration and Verification

In this study, the runoff parameters were checked by the measured runoff data of
Zhangfang, Zijingguan, and Fuping in the Daqing River Basin, and the water-quality
parameters were checked by the pollutant amount of the Taitou Station. The calibration
period of Zhangfang Station was set as 2006–2010, and the verification period was set as
2011–2013. The calibration period of Zijingguan and Fuping Stations was set as 2006–2012,
and the verification period was set as 2013–2016. The calibration period of pollutants at
Taitou Station was set as 2013–2014, and the verification period was set as 2015–2016. In this
study, the determination coefficient (R2) [48,49] and Nash–Sutcliffe efficiency coefficient
(NSE) [50] were selected to evaluate the simulation effect of the model. The calibration and
validation results of the model are shown in Table 2.

Table 2. Calibration and validation results of runoff and water quality in the model.

Stations
Calibration Period Verification Period

R2 NSE R2 NSE

Zhangfang_FLOW 0.61 0.56 0.72 0.52
Zijingguan_FLOW 0.72 0.61 0.88 0.86
Fuping_FLOW 0.76 0.7 0.84 0.72
Taitou_NH3-N 0.66 0.61 0.7 0.69

It can be seen from Table 2 that the monthly simulation results of stations in Zhang-
fang, Zijingguan, and Fuping are all “satisfactory” (NSE > 0.5), while those of NH3-N
at Taitou Station are “very good” (0.6 < R2 ≤ 0.7) [51,52]. By comparing and analyzing
the simulated and measured values of monthly runoff at three stations, respectively, in
Zhangfang, Zijingguan and Fuping (Figure 4), and the simulated and measured values of
water quality at Taitou Station (Figure 5), it can be seen that the simulated and observed
values have the same trend, the model fitting effect is good, and the model can be used for
the further research.
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3.2. Water Quantity and Water Quality Early Warning
3.2.1. Water Quantity Early Warning

Due to the fact that Zijingguan and Zhangfang are driven by Yuxian meteorological
data, while Fuping County is driven by Lingqiu meteorological data, the data of the Yuxian
and Lingqiu meteorological stations were used in this paper as the meteorological data
required for scene simulation. By analyzing the measured rainfall data of the Daqing River
Basin from 1951 to 2019, the daily rainfall in the recurrence intervals of the Yuxian and
Lingqiu meteorological stations was calculated and determined (Table 3), which was taken
as the input item of rainfall scene, and the daily average runoffs of Zijingguan, Zhangfang,
and Fuping were simulated.

Table 3. Scenes of rainfall recurrence interval.

Rainfall Recurrence
Intervals

Maximum Daily in Yuxian
(mm)

Maximum Daily Rainfall in
Lingqiu (mm)

Once every 5 years 46.38 56.82
Once every 10 years 53.20 65.44
Once every 20 years 62.67 71.78
Once every 50 years 81.43 77.58

Once every 100 years 102.58 80.56

In view of the characteristics of short rainstorm duration and concentrated flood in
the Daqing River Basin, the daily average runoff is unable to meet the function of water
quantity early warning. In this study, the fitting analysis was further performed regarding
the relationship between the daily average runoff and maximum flow and the relationship
between water level and flow at three stations, and the results are shown in Figures 6 and 7.
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Figure 7. Relationship between water level and flow.

Table 4 shows the response relationship of rainfall, runoff, and water level at Zi-
jingguan, Zhangfang, and Fuping under different rainfall recurrence intervals. It can be
seen that, under the same rainfall recurrence interval, there are some differences in the
warning values of maximum runoff and maximum water level at different stations. When
encountering a once-in-a-century rainstorm, the water level at Zijingguan, Zhangfang, and
Fuping reached 521.23 m, 106.12 m, and 253.85 m, respectively, and the flood pressure of
Zijingguan during flood season was the highest.

Table 4. Runoff and water-level-warning results of different rainfall recurrence intervals at each sta-
tion.

Hydrological
Stations

Rainfall Recurrence
Interval

Rainfall
(mm)

Simulated Runoff
(m3/s)

Calculated
Maximum Runoff

(m3/s)

Calculated
Maximum Water

Level (m)

Zijingguan

Once every 5 years 46.38 99.8 471.52 519.04
Once every 10 years 53.20 226.8 571.24 519.25
Once every 20 years 62.67 571.9 923.82 519.87
Once every 50 years 81.43 1254.0 1970.95 521.23

Once every 100 years 102.58 2094.0 3899.75 522.99

Zhangfang

Once every 5 years 46.38 93.21 224.31 104.72
Once every 10 years 53.20 102 234.19 104.75
Once every 20 years 62.67 260.6 417.81 105.15
Once every 50 years 81.43 450.4 650.77 105.55

Once every 100 years 102.58 762.2 1064.75 106.12

Fuping

Once every 5 years 56.82 579.94 886.10 252.65
Once every 10 years 65.44 747.01 1112.33 252.85
Once every 20 years 71.78 834.28 1246.03 252.95
Once every 50 years 77.58 1133.21 1784.84 253.32

Once every 100 years 80.56 1582.35 2829.58 253.85

3.2.2. Water-Quality Early Warning

According to the water-quality-monitoring data of Taitou Station from 2015 to 2019, as
well as the Environmental Quality Standards for Surface Water (GB3838-2002), the monthly
average water quality of Taitou Station for many years was Inferior Class V, and the water
quality of all townships in the Daqing River is Class V. The overall water quality is quite
poor [53]. NH3-N, the main pollutant according to monitoring data in long time series, is
selected as the control pollutant for early warning of water quality in the Daqing River
Basin. According to the Langfang Key Rivers Water Quality Standards Plan (Revised
Edition) issued in 2019, the local authorities aim to keep the water quality of the Daqing
River Basin stable and for it to remain as Class V water, i.e., the NH3-N concentration is not
to exceed 2 mg/L.
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Through the analysis of historical runoff data, 2012, 2017, and 2000 were selected as
the representative years of high-, normal-, and low-flow years, respectively. Based on the
current year (2017), the point-source discharge was increased or decreased (+50~−50%),
and a scene was set every 10%. A total of 33 combined scenes of rainfall and point-source
discharges were set (Table 5), so as to simulate the relationship between the emission
intensity of pollution sources and the NH3-N concentration in rivers in different level years
(Figure 8).

Table 5. Combined scenarios of rainfall and point-source discharge.

Scenario No. Rainfall
Intensity of

Point-Source
Discharge

Scenario No. Rainfall
Intensity of

Point-Source
Discharge

1 High-flow years +50% 19 High-flow years −10%
2 Normal-flow years +50% 20 Normal-flow years −10%
3 Low-flow years +50% 21 Low-flow years −10%
4 High-flow years +40% 22 High-flow years −20%
5 Normal-flow years +40% 23 Normal-flow years −20%
6 Low-flow years +40% 24 Low-flow years −20%
7 High-flow years +30% 25 High-flow years −30%
8 Normal-flow years +30% 26 Normal-flow years −30%
9 Low-flow years +30% 27 Low-flow years −30%

10 High-flow years +20% 28 High-flow years −40%
11 Normal-flow years +20% 29 Normal-flow years −40%
12 Low-flow years +20% 30 Low-flow years −40%
13 High-flow years +10% 31 High-flow years −50%
14 Normal-flow years +10% 32 Normal-flow years −50%
15 Low-flow years +10% 33 Low-flow years −50%
16 High-flow years 0
17 Normal-flow years 0
18 Low-flow years 0
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The scenario simulation results show that, when the point-source discharge increases
by 50% (based on the emissions in 2017), 75% (January–June and October–December), and
75% (January–June and October–December), then the monthly average water quality in both
high- and normal-flow years is Inferior Class V. In low-flow years, due to the lower amount
of rainfall, some rivers stopped flowing, thereby blocking the movement of pollutants, and
58.3% of the monthly average water quality reached Inferior Class V. When the point-source
discharge did not increase, then 58.3% (January, February, March, May, June, November,
and December), 58.3% (January, February, March, April, June, November, and December),
and 58.3% (January, February, March, April, May, November, and December) of the monthly
average water quality reached Inferior Class V in the high-, normal-, and low-flow years,
respectively. When the point-source discharge was reduced by 50%, then 41.7% (January,
February, March, June, and December), 50% (January, February, March, April, June, and
December), and 58.3% (January, February, March, April, May, November, and December) of
the monthly average water quality reached Inferior Class V in high-, normal-, and low-flow
years, respectively.

Due to the lower amount of natural runoff in the Daqing River Basin, the NH3-N emis-
sion is high. For example, when the current discharge is reduced to 50% in a normal-flow
year, the monthly average NH3-N concentration still reaches Inferior Class V. However, if
the emission is reduced to 85.1%, then the monthly average NH3-N concentration can reach
the standard. Therefore, with the aim of reaching the standard of NH3-N concentration at
the outlet of the basin (2 mg/L), the early warning values of NH3-N emission in each month
and sub-basin in different level years were determined (Table A1 in Appendix A) according
to the previous fitting relationship between the emission intensity of pollution sources and
NH3-N concentration. The simulation results show that the upper emission limit of July,
August, and September in high-, normal-, and low-flow years, respectively, accounted for
68.69%, 68.74%, and 75.05% of the annual emission, while the emission upper limits of
July, August, and September in the same level years were significantly higher than those
in other months. In addition, for different level years, the upper limit of NH3-N emission
was greatly affected by river cutoff, and the total emission amounts in low-flow years were
13.56% and 6.08% higher than those in high- and normal-flow years, respectively.

3.3. Joint Regulation of Water Quantity and Quality
3.3.1. Ensuring the Base Flow with Standard Water Quality

The flow with standard water quality is the lowest flow of the river at which the water
quality of the river section must be maintained to meet the local standards [54]. Under
the current emission scenario, the monthly average NH3-N concentration in the Daqing
River Basin from July to October did not exceed the standard. In these four months, the
rainfall was abundant, the river runoff was high, and the river channel’s pollutant-holding
capacity was relatively large. In other months, the runoff was small, and the river channel’s
pollutant-holding capacity was poor. Therefore, under the premise of not reducing the
discharge, both ensuring a certain river flow and improving the river’s pollutant-holding
capacity can effectively reduce the river pollution degree [55].

In this paper, the same temperature, relative humidity, wind speed, and sunshine
intensity were given, and different daily rainfall scenarios were set to simulate the minimum
flow of 35 sub-basins (Table 6). The simulation results show that Sub-basin 5 has the lowest
demand for water quality, while Sub-basin 13 has the highest. The NH3-N concentration at
the outlet of all watersheds can reach the standard when the basic runoff of each sub-basin
reaches 0.01 to 10.32 m3/s.
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Table 6. Minimum flow of guaranteed water quality in sub-basins.

Sub-Basins Runoff (m3/s) Sub-Basins Runoff (m3/s)

1 0.16 19 4.56
2 1.86 20 5.27
3 1.58 21 4.93
4 1.60 22 0.80
5 0.01 23 6.82
6 0.63 24 0.26
7 1.48 25 5.68
8 2.64 26 2.43
9 0.94 27 1.00
10 1.75 28 3.45
11 3.50 29 0.56
12 6.91 30 2.60
13 10.32 31 0.02
14 4.29 32 6.57
15 0.16 33 1.51
16 1.64 34 4.71
17 8.71 35 0.62
18 2.66

3.3.2. Optimize NH3-N Annual Emission

The Daqing River Basin has abundant rainfall, high runoff, a relatively large water
environment capacity, and a strong river’s pollutant-holding capacity in summer and
autumn, while the opposite is true in spring and winter. The reasonable adjustment of the
annual discharge of pollutants and optimization measures of discharge intensity based
on water environmental capacity can be applied to effectively utilize the river’s pollutant-
holding capacity in summer and autumn, as well as to ensure that the water quality at the
outlet of the basin reaches the standard [55].

Therefore, in this study, on the premise of not increasing the amount of pollutant
discharge (based on the emissions in 2017), the warning value of NH3-N emissions in each
month in different level years under the water quality standards was reduced in proportion.
In addition, the concentration of NH3-N after optimized emissions and the maximum and
minimum emissions of NH3-N under the water-quality standards were simulated and
calculated according to the optimized emission-intensity and meteorological-data scenarios.

Through simulation (Table 7), taking the high-flow years as an example, the average
runoff of the river is the highest in July and August, i.e., 42.57 m3/s and 42.69 m3/s,
respectively, and the optimized NH3-N discharge amount is 3004.87 t and 3118.49 t, re-
spectively. At this time, the discharge intensity of NH3-N is still able to meet the Class II
water standard, which can fully meet the water-quality requirements of the management
department. In the normal-flow years, it is found that the water qualification rate of NH3-N
in each sub-basin reached 57.14% in July, August, and September, and the runoff accounts
for 57.29% of the total annual runoff. By optimizing the discharge intensity of NH3-N in
the year, the average monthly NH3-N concentration at the outlet section of the basin was
significantly reduced (<1.99 mg/L), and it met the Class V water standard. The simulation
results of low-flow years show a similar condition that concentrating the discharge amount
in July, August, and September can effectively utilize the river’s pollutant-holding capacity,
reduce the concentration of pollutants in the river, ensure the river’s water quality meets
the standard, and promote the ecological improvement surrounding the river, thus proving
it to be a strong regulation measure [56–58].
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Table 7. Pollutant discharge amount and NH3-N concentration after optimization.

Month

High-Flow Years Normal-Flow Years Low-Flow Years

Discharge
Amount

(t)

Simulated
Runoff
(m3/s)

NH3-N
(mg/L)

Discharge
Amount

(t)

Simulated
Runoff
(m3/s)

NH3-N
(mg/L)

Discharge
Amount

(t)

Simulated
Runoff
(m3/s)

NH3-N
(mg/L)

Jan. 0.76 0.21 1.74 96.13 1.47 1.99 5.23 0.70 1.82
Feb. 10.09 0.58 1.01 116.75 0.59 1.94 24.76 3.63 1.94
Mar. 53.53 2.07 1.58 231.81 0.36 1.71 668.90 27.92 1.43
Apr. 787.25 6.98 1.30 290.94 4.85 0.69 1364.47 21.57 1.70
May 565.47 0.59 1.81 765.96 4.51 0.90 851.36 10.11 1.12
Jun. 1212.94 3.73 0.84 104.54 0.35 0.36 532.99 6.02 1.79
Jul. 3004.87 42.57 0.39 2216.67 24.81 0.87 1663.18 2.09 0.77

Aug. 3118.49 42.69 0.34 3093.50 69.98 1.27 2906.43 3.43 0.64
Sep. 1693.75 34.63 0.71 2646.55 89.79 1.36 1840.61 34.42 0.72
Oct. 565.29 17.39 1.81 1008.66 88.24 1.36 667.70 13.47 1.43
Nov. 112.24 15.30 1.41 437.41 28.39 1.51 598.96 12.37 1.59
Dec. 3.85 2.93 1.59 119.62 4.15 1.95 3.96 0.22 1.61

4. Conclusions

Water quantity and quality are two key regulation factors affecting the performance
of integrated watershed management. Conventional water-resource assessment and sim-
ulation of rivers in the previous literature often dealt with water quantity and quality
separately. The nonmonotonic relationship between the water quality and flow discharge
of a river, especially in watersheds with significant human activity impacts and high spa-
tiotemporal variations in flows, such as the Daqing River Basin, is often ignored in contrast
to near-natural conditions. More specifically, the previous literature on the analysis of water
quantity and quality based on copula functions often dealt with the uncertainty analysis of
multivariable correlations, risk analysis for water quality, or forecasting of water quality.

The present results indicate that the proposed method can take into account the near-
natural law between water quantity and quality to make a more reliable simulation for
integrated water resources’ management and regulation.

When encountering a once-in-a-century rainstorm, the flood pressure of Zijingguan
in the flood season is the highest, with the highest water level reaching 521.23 m, and the
overall maximum runoff follows the order of Zijingguan > Fuping > Zhangfang. In addition,
when the hydrological station determines the water-level-warning value, the corresponding
rainfall can be obtained based on the relationship between rainstorm and water level [59].
Furthermore, when the weather station monitors a certain amount of rainfall, it can also
send corresponding water-level-warning information to the hydrological station.

According to the relationship between emission ratio and NH3-N concentration at
the outlet of the basin, when the monthly NH3-N emissions in different level years were
reduced by 37.64~85.10% (based on the emissions in 2017), the water quality at the outlet
of the basin could reach the standard, and the upper limit of NH3-N emissions was
504.5 t/m. The upper emission limits in July, August, and September in high-, normal-, and
low-flow years accounted for 68.69%, 68.74%, and 75.05% of the whole year, respectively,
and the upper emission limits in July, August, and September in the same level year were
significantly higher than those in other months.

In this paper, the regulation-and-control method of basic flow to ensure that the wa-
ter quality is up to standard was proposed. On the premise of not reducing emissions,
we could ensure a certain river flow and improve the river’s pollutant-holding capacity.
The simulation results showed that the NH3-N concentration at the outlet of all water-
sheds could reach the standard when the basic runoff of each sub-basin reaches 0.01 to
10.32 m3/s.

The optimization measures of NH3-N annual emissions based on water environmental
capacity were proposed. By optimizing the annual emission intensity of NH3-N, the
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monthly average concentration of NH3-N in the outlet section of the basin was significantly
reduced (<1.99 mg/L), and it reached the water standard of Class V and above. In addition,
the pollutant-holding capacity of rivers in summer and autumn could be effectively utilized,
and that the water quality at the outlet of the river basin reaches the standard could be
ensured by concentrating the discharge in July, August, and September.
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Appendix A

Table A1. Early warning value of upper limit of NH3-N monthly emission in each sub-basin in
different level years (t).

SUB Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

High-flow
years

1 1.20 1.08 0.76 3.34 1.96 0.43 18.23 10.21 6.87 3.92 2.38 1.02
2 5.59 5.04 3.55 15.52 9.13 1.98 84.80 47.47 31.95 18.22 11.06 4.77
3 1.42 1.28 0.90 3.93 2.31 0.50 21.49 12.03 8.10 4.62 2.80 1.21
4 7.31 6.58 4.63 20.28 11.93 2.58 110.78 62.02 41.73 23.80 14.45 6.23
5 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00
6 4.28 3.86 2.71 11.88 6.99 1.51 64.92 36.35 24.46 13.95 8.47 3.65
7 10.52 9.48 6.67 29.18 17.16 3.72 159.41 89.24 60.06 34.24 20.79 8.96
8 5.60 5.04 3.55 15.53 9.13 1.98 84.84 47.49 31.96 18.22 11.07 4.77
9 1.44 1.30 0.91 3.99 2.35 0.51 21.80 12.21 8.21 4.68 2.84 1.23

10 7.64 6.88 4.84 21.20 12.47 2.70 115.80 64.83 43.62 24.87 15.10 6.51
11 19.34 17.42 12.26 53.66 31.56 6.84 293.12 164.10 110.43 62.97 38.23 16.48
12 15.04 13.55 9.53 41.73 24.54 5.32 227.94 127.61 85.87 48.97 29.73 12.81
13 11.06 9.96 7.01 30.68 18.05 3.91 167.60 93.83 63.14 36.00 21.86 9.42
14 14.50 13.07 9.19 40.24 23.67 5.13 219.80 123.05 82.81 47.22 28.67 12.35
15 1.81 1.63 1.15 5.01 2.95 0.64 27.39 15.33 10.32 5.88 3.57 1.54
16 11.92 10.74 7.56 33.08 19.46 4.21 180.74 101.18 68.09 38.83 23.57 10.16
17 20.32 18.31 12.88 56.39 33.17 7.18 308.05 172.46 116.06 66.17 40.18 17.31
18 5.47 4.93 3.47 15.19 8.93 1.93 82.96 46.44 31.25 17.82 10.82 4.66
19 8.14 7.33 5.16 22.59 13.29 2.88 123.39 69.08 46.49 26.51 16.09 6.94
20 9.25 8.34 5.86 25.67 15.10 3.27 140.24 78.51 52.83 30.13 18.29 7.88
21 2.31 2.08 1.46 6.41 3.77 0.82 34.99 19.59 13.18 7.52 4.56 1.97
22 5.56 5.01 3.53 15.44 9.08 1.97 84.33 47.21 31.77 18.12 11.00 4.74
23 32.77 29.53 20.77 90.94 53.49 11.59 496.77 278.11 187.15 106.72 64.79 27.92
24 2.26 2.04 1.43 6.28 3.70 0.80 34.32 19.21 12.93 7.37 4.48 1.93
25 39.67 35.75 25.14 110.08 64.75 14.02 601.39 336.67 226.56 129.19 78.44 33.80
26 1.34 1.21 0.85 3.73 2.19 0.48 20.37 11.41 7.68 4.38 2.66 1.15
27 1.69 1.52 1.07 4.68 2.75 0.60 25.57 14.31 9.63 5.49 3.34 1.44
28 6.60 5.94 4.18 18.30 10.76 2.33 99.97 55.97 37.66 21.48 13.04 5.62
29 3.30 2.97 2.09 9.15 5.38 1.17 49.96 27.97 18.82 10.73 6.52 2.81
30 15.25 13.74 9.66 42.31 24.89 5.39 231.16 129.41 87.09 49.66 30.15 12.99
31 0.16 0.15 0.10 0.46 0.27 0.06 2.49 1.39 0.94 0.53 0.32 0.14
32 36.90 33.25 23.39 102.39 60.22 13.04 559.33 313.13 210.72 120.15 72.95 31.44
33 5.15 4.64 3.26 14.29 8.40 1.82 78.06 43.70 29.41 16.77 10.18 4.39
34 5.31 4.78 3.36 14.72 8.66 1.88 80.42 45.02 30.30 17.28 10.49 4.52
35 1.51 1.36 0.96 4.20 2.47 0.53 22.92 12.83 8.63 4.92 2.99 1.29
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Table A1. Cont.

SUB Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Normal-
flow
years

1 1.18 1.14 1.15 1.44 3.79 0.52 9.44 15.29 13.09 4.99 2.16 0.85
2 5.48 5.28 5.33 6.69 17.61 2.40 43.91 71.14 60.86 23.20 10.06 3.95
3 1.39 1.34 1.35 1.70 4.46 0.61 11.13 18.03 15.42 5.88 2.55 1.00
4 7.16 6.90 6.96 8.74 23.01 3.14 57.37 92.93 79.51 30.30 13.14 5.16
5 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00
6 4.19 4.04 4.08 5.12 13.49 1.84 33.62 54.46 46.60 17.76 7.70 3.03
7 10.30 9.93 10.02 12.58 33.11 4.52 82.55 133.73 114.42 43.61 18.91 7.43
8 5.48 5.28 5.33 6.69 17.62 2.41 43.93 71.17 60.89 23.21 10.06 3.95
9 1.41 1.36 1.37 1.72 4.53 0.62 11.29 18.29 15.65 5.96 2.59 1.02

10 7.48 7.21 7.28 9.14 24.05 3.28 59.97 97.14 83.11 31.68 13.74 5.40
11 18.93 18.25 18.43 23.13 60.89 8.31 151.80 245.90 210.39 80.18 34.77 13.66
12 14.72 14.19 14.33 17.99 47.35 6.46 118.04 191.22 163.61 62.35 27.04 10.63
13 10.83 10.44 10.54 13.22 34.82 4.75 86.80 140.60 120.30 45.85 19.88 7.81
14 14.20 13.69 13.82 17.34 45.66 6.23 113.83 184.39 157.76 60.13 26.07 10.25
15 1.77 1.71 1.72 2.16 5.69 0.78 14.18 22.98 19.66 7.49 3.25 1.28
16 11.67 11.25 11.36 14.26 37.54 5.12 93.60 151.62 129.73 49.44 21.44 8.42
17 19.90 19.18 19.37 24.31 63.99 8.73 159.53 258.43 221.11 84.27 36.54 14.36
18 5.36 5.17 5.22 6.55 17.23 2.35 42.96 69.59 59.54 22.69 9.84 3.87
19 7.97 7.68 7.76 9.74 25.63 3.50 63.90 103.52 88.57 33.75 14.64 5.75
20 9.06 8.73 8.82 11.07 29.13 3.98 72.63 117.65 100.66 38.36 16.64 6.54
21 2.26 2.18 2.20 2.76 7.27 0.99 18.12 29.36 25.12 9.57 4.15 1.63
22 5.45 5.25 5.30 6.65 17.52 2.39 43.67 70.75 60.53 23.07 10.00 3.93
23 32.09 30.93 31.23 39.20 103.20 14.08 257.26 416.75 356.56 135.89 58.93 23.16
24 2.22 2.14 2.16 2.71 7.13 0.97 17.77 28.79 24.63 9.39 4.07 1.60
25 38.85 37.45 37.81 47.45 124.93 17.05 311.44 504.51 431.65 164.51 71.34 28.03
26 1.32 1.27 1.28 1.61 4.23 0.58 10.55 17.09 14.62 5.57 2.42 0.95
27 1.65 1.59 1.61 2.02 5.31 0.72 13.24 21.45 18.35 6.99 3.03 1.19
28 6.46 6.22 6.28 7.89 20.77 2.83 51.77 83.87 71.76 27.35 11.86 4.66
29 3.23 3.11 3.14 3.94 10.38 1.42 25.88 41.92 35.86 13.67 5.93 2.33
30 14.93 14.39 14.53 18.24 48.02 6.55 119.71 193.92 165.91 63.23 27.42 10.77
31 0.16 0.15 0.16 0.20 0.52 0.07 1.29 2.09 1.79 0.68 0.30 0.12
32 36.13 34.83 35.16 44.13 116.19 15.86 289.66 469.22 401.46 153.01 66.35 26.07
33 5.04 4.86 4.91 6.16 16.21 2.21 40.42 65.48 56.03 21.35 9.26 3.64
34 5.19 5.01 5.06 6.35 16.71 2.28 41.65 67.47 57.72 22.00 9.54 3.75
35 1.48 1.43 1.44 1.81 4.76 0.65 11.87 19.23 16.45 6.27 2.72 1.07

Low-flow
years

1 1.70 1.79 0.50 1.52 1.49 1.51 18.96 13.32 11.53 3.99 0.55 1.50
2 7.91 8.34 2.35 7.08 6.95 7.01 88.19 61.94 53.63 18.54 2.56 6.98
3 2.01 2.11 0.60 1.79 1.76 1.78 22.35 15.70 13.59 4.70 0.65 1.77
4 10.34 10.89 3.07 9.25 9.08 9.16 115.21 80.91 70.07 24.23 3.34 9.12
5 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00
6 6.06 6.38 1.80 5.42 5.32 5.37 67.52 47.42 41.06 14.20 1.96 5.34
7 14.88 15.67 4.41 13.31 13.07 13.19 165.79 116.43 100.83 34.86 4.81 13.12
8 7.92 8.34 2.35 7.08 6.95 7.02 88.23 61.97 53.66 18.55 2.56 6.98
9 2.04 2.14 0.60 1.82 1.79 1.80 22.68 15.93 13.79 4.77 0.66 1.79

10 10.81 11.38 3.21 9.67 9.49 9.58 120.43 84.58 73.24 25.32 3.49 9.53
11 27.36 28.81 8.12 24.47 24.02 24.25 304.85 214.10 185.40 64.11 8.85 24.12
12 21.28 22.41 6.31 19.03 18.68 18.85 237.06 166.49 144.17 49.85 6.88 18.76
13 15.64 16.47 4.64 13.99 13.74 13.86 174.31 122.42 106.01 36.65 5.06 13.79
14 20.52 21.61 6.09 18.35 18.02 18.18 228.60 160.54 139.03 48.07 6.63 18.09
15 2.56 2.69 0.76 2.29 2.24 2.27 28.49 20.01 17.32 5.99 0.83 2.25
16 16.87 17.77 5.00 15.09 14.81 14.95 187.97 132.01 114.32 39.53 5.46 14.87
17 28.75 30.28 8.53 25.71 25.25 25.48 320.38 225.00 194.85 67.37 9.30 25.35
18 7.74 8.15 2.30 6.92 6.80 6.86 86.28 60.59 52.47 18.14 2.50 6.83
19 11.52 12.13 3.42 10.30 10.11 10.21 128.33 90.13 78.05 26.99 3.72 10.15
20 13.09 13.79 3.88 11.71 11.49 11.60 145.85 102.43 88.70 30.67 4.23 11.54
21 3.27 3.44 0.97 2.92 2.87 2.89 36.39 25.56 22.13 7.65 1.06 2.88
22 7.87 8.29 2.34 7.04 6.91 6.98 87.71 61.60 53.34 18.44 2.55 6.94
23 46.37 48.83 13.76 41.47 40.72 41.09 516.65 362.84 314.21 108.64 14.99 40.88
24 3.20 3.37 0.95 2.86 2.81 2.84 35.69 25.07 21.71 7.51 1.04 2.82
25 56.13 59.11 16.65 50.20 49.29 49.74 625.45 439.25 380.38 131.52 18.15 49.49
26 1.90 2.00 0.56 1.70 1.67 1.69 21.19 14.88 12.89 4.46 0.61 1.68
27 2.39 2.51 0.71 2.13 2.10 2.12 26.59 18.68 16.17 5.59 0.77 2.10
28 9.33 9.83 2.77 8.34 8.19 8.27 103.97 73.02 63.23 21.86 3.02 8.23
29 4.66 4.91 1.38 4.17 4.10 4.13 51.96 36.49 31.60 10.93 1.51 4.11
30 21.58 22.72 6.40 19.30 18.95 19.12 240.41 168.84 146.21 50.55 6.98 19.02
31 0.23 0.24 0.07 0.21 0.20 0.21 2.59 1.82 1.57 0.54 0.08 0.20
32 52.21 54.98 15.49 46.69 45.84 46.27 581.70 408.53 353.78 122.32 16.88 46.02
33 7.29 7.67 2.16 6.52 6.40 6.46 81.18 57.01 49.37 17.07 2.36 6.42
34 7.51 7.91 2.23 6.71 6.59 6.65 83.64 58.74 50.87 17.59 2.43 6.62
35 2.14 2.25 0.63 1.91 1.88 1.90 23.84 16.74 14.50 5.01 0.69 1.89
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