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Abstract: Amongst all natural disasters, floods have the greatest economic and social impacts
worldwide, and their frequency is expected to increase due to climate change. Therefore, improved
flood risk assessment is important for implementing flood mitigation measures in urban areas. The
increasing need for quantifying the impacts of flooding have resulted in the development of methods
for flood risk assessment. The aim of this study was to quantify flood risk under climate change
scenarios in the Rockcliffe area within the Humber River watershed in Toronto, Canada, by using
the Comprehensive Approach to Probabilistic Risk Assessment (CAPRA) method. CAPRA is a
platform for stochastic disaster risk assessment that allows for the characterization of uncertainty
in the underlying numerical models. The risk was obtained by integrating the (i) flood hazard,
which considered future rainfall based on the Representative Concentration Pathways (RCPs 2.6,
4.5, 6.0, and 8.5) for three time periods (short-term: 2020–2049, medium-term: 2040–2069, and
long-term: 2070–2099); (ii) exposed assets within a flood-prone region; (iii) vulnerability functions,
which quantified the damage to an asset at different hazard levels. The results revealed that rainfall
intensities are likely to increase during the 21st century in the study area, leading to an increase in
flood hazards, higher economic costs, and social impacts for the majority of the scenarios. The highest
impacts were found for the climate scenario RCP 8.5 for the long-term period and the lowest for RCP
4.5 for the short-term period. The results from this modeling approach can be used for planning
purposes in a floodplain management study. The modeling approach identifies critical areas that
need to be protected to mitigate future flood risks. Higher resolution climate change and field data
are needed to obtain detailed results required for a final design that will mitigate these risks.

Keywords: flood risk; climate change; exposure; vulnerability; Toronto; stochastic analysis; flood
hazard; CAPRA

1. Introduction

Amongst all natural disasters, floods have the greatest social and economic impacts
worldwide [1]. Globally, flooding-related disasters account for approximately one-third of
economic losses and more than half of human fatalities related to all natural disasters [2].
There are different types of floods—river flooding, flash flooding, groundwater flooding,
drain and sewer flooding, dam failure, and storm surge [3]. Of these, river flooding is
the most expensive and frequent type of flood, affecting most of the countries around the
world [4].

In recent decades, flood frequency has increased on a global scale [5]. The main
causes of this are the poor management of river basins, deforestation, land-use change, and
increased urbanization and economic activities in flood-prone areas. These factors have
changed the hydrological regimes of rivers, causing higher rates of runoff. In addition,
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global climate change is expected to increase extreme weather events and, therefore, in-
crease floods in terms of both the spatial extent and frequency [6]. Global temperature and
rainfall intensities have been rising since the 20th century, and higher increases in both
parameters are projected to occur by the end of the 21st century. For example, in Ontario,
Canada, an increase of 18.4% in the average annual rainfall has been projected between
2013 to 2100 [7]. The increase in flood frequency and related losses have highlighted the
urgent need to improve flood risk management.

There is an increasing need to develop and improve methods for flood risk assess-
ment to estimate areas susceptible to flooding and to quantify economic losses and social
impacts. The most common, widely used, and most applicable models for river flood risk
assessment were reviewed in this study (which are summarized in Table 1). Of the methods
reviewed, many of the methods, including Flood Loss Estimation Model (FLEMO) [8],
FloodCalc [9,10], the In-depth Synthetic Model for Flood Damage Estimation (INSYDE) [11],
Strategies of Urban Flood Risk Management (SUFRI) [12], RiskScape [13], LATIS [14], and
Hydrologic Engineering Center Flood Impact Analysis (HEC-FIA) [15], amongst others, do
not have the capability for hydrological and hydraulic modeling to inform the flood risk
analysis. Instead, these methods rely on user-inputted flood depths, duration, or inunda-
tion maps, which means that these methods have limitations in terms of characterizing the
spatial and temporal trends of flood hazards and risks. Furthermore, most of the methods
listed in Table 1 are deterministic and, therefore, do not account for the uncertainty associ-
ated with flood hazards and the associated economic damages. Lastly, the social impacts of
floods are not widely considered in these methods, with only FloodCalc [9,10], SUFRI [12],
RiskScape [13], LATIS [14], HEC-FIA [15], Hazus-MH [16], and CAPRA [17] considering
social impacts, which are typically limited to fatalities rather than other direct, intangible
social impacts. Thus, one of the major limitations and drawbacks found among these
methods is that the social risk has been evaluated much less frequently than the economic
risk (67% of the methods reviewed do not account for the social impacts of floods). In
addition, half of the methods only perform deterministic risk, and only 44% of the methods
developed software for flood risk, from which only three are open source (Multicriteria
Approach, Kalypso, and CAPRA). Therefore, there is a need to develop and test the use of
flood risk assessment methods that can characterize the uncertainty of flood risk (using
stochastic methods) and account for both the social and economic impacts of floods. This
review of the literature demonstrates the major limitations of current flood risk methods.
Furthermore, it is important to consider the effects of future climate change, as general
circulation model (GCM) models have predicted an increase in rainfall intensities in the
future, which may lead to an increase in flood risk, along with future changes to land use
and population growth.

Table 1. Characteristics of the different methods for flood risk assessment.

Method Source Location Economic
Impacts

Social
Impacts Software Hydrological

Hydraulic Model

Flood Loss Estimation
Model

(FLEMO)
[8] Germany Buildings

(Deterministic) No No No

FloodCalc [9,10] Germany

Buildings
(Probabilistic,

Expected Annual
Damage)

Yes
(Annual average

affected
population,

probability of
social hot spots)

Yes
(Open source) No

In-depth Synthetic
Model for Flood

Damage Estimation
(INSYDE)

[11] Italy Buildings
(Deterministic) No No No
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Table 1. Cont.

Method Source Location Economic
Impacts

Social
Impacts Software Hydrological

Hydraulic Model

Strategies of Urban
Flood Risk Management

(SUFRI)
[12] Europe

Buildings
(Probabilistic

Expected Annual
Damage)

Yes
(Potential
fatalities)

No No

Towards standardizing
the assessment of
flood-damaged

properties in the UK

[18] UK Buildings
(Deterministic) No No No

Doughnut Structure
Model [19] Japan Buildings

(Deterministic) No No No

A Grid-Based GIS
Approach to Regional

Flood Damage
Assessment

[20] Taiwan

Buildings
(Probabilistic,

Expected Annual
Damage)

No No

Hydrological: HEC-1
Hydraulic: 1D

dynamic channel flow
routing, 2D

overland-flow routing

Decision Support
System (DSS) combined

with cost-benefit and
multi-criteria analysis

[21] Belgium Buildings
(Deterministic) No No Hydrological: No

Hydraulic: WOLF 2D

Vulnerability of
building types [22] Germany Buildings

(Deterministic) No No No

Kalypso [23] Germany

Buildings
(Probabilistic,

Expected Annual
Damage)

No Yes
(Open source)

Hydrological:
Kalypso Hydrology
Hydraulic: Kalypso

WSPM
Kalypso 1D/2D

Hydrologic Engineering
Center—Flood Damage

Reduction Analysis
(HEC-FDA)

[24] US

Buildings
(Probabilistic,

Expected Annual
Damage,

Equivalent Annual
Damages, Annual

Exceedance
Probability)

No Yes
(Not open source)

Hydrological:
HEC-HMS

Hydraulic: HEC-RAS

RiskScape [13] New Zealand Buildings
(Deterministic)

Yes
(Fatalities,
injuries)

Yes (Open source) No

Agricultural flash flood [25] Greece Agriculture
(Deterministic) No No

Hydrological: No
Hydraulic:

MIKE FLOOD

Mathematical Model for
flood loss estimation [26] Japan

Buildings,
Agriculture

(Deterministic)
No No Hydrological: Yes

Hydraulic: 1D and 2D

Hazus-MH Flood
Model [16] US

Buildings,
Agriculture

(Probabilistic,
Expected Annual

Damage)

Yes
(Fatalities,

shelter)

Yes
(Not open source)

Hydrological/
Hydraulic:

HAZUZ-MH

LATIS [14] Belgium

Buildings,
Agriculture

(Probabilistic,
Expected Annual

Damage)

Yes
(Fatalities)

Yes
(Not open source) No

GIS-based tool for flood
direct damage [27] Greece

Buildings,
Agriculture

(Deterministic)
No Yes

(Not open source) No

Hydrologic Engineering
Center—Flood Impact
Analysis (HEC-FIA)

[15] US
Buildings,

Agriculture
(Deterministic)

Yes
(Fatalities)

Yes
(Not open source) No
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Table 1. Cont.

Method Source Location Economic
Impacts

Social
Impacts Software Hydrological

Hydraulic Model

CAPRA [17] Central
America

Buildings,
Agriculture

(Probabilistic,
Expected Annual
Damage, Probable

Maximum Loss,
Loss curve)

Yes
(Fatalities)

Yes
(Open source)

Hydrological:
HEC-HMS

Hydraulic: HEC-RAS

The CAPRA method for flood risk assessment [28–31] was chosen in this study due to
its advantages over the other methods. It allows for both deterministic and stochastic risk
assessment through the generation of stochastic rainfall scenarios (the only model to do so
of the 18 models reviewed). In addition to quantifying economic damages, it also quantifies
the social impacts of floods and the spatial distribution of flood risk. It has an open-source
group of programs that focus on hazard, vulnerability, and risk assessment. CAPRA
was developed by Ingeniar, Evaluación de Riesgos Naturales (ERN), Ingenieria Tecnica
Y Cientifica (ITEC), and the International Centre for Numerical Methods in Engineering
(CIMNE). Several risk assessment studies focusing on different types of hazards have
used CAPRA. A study in Barcelona, Spain used CAPRA for a probabilistic earthquake
risk assessment and a holistic evaluation of risk by considering the lack of resilience and
the socioeconomic fragility [30]. The CAPRA method was also applied to Acapulco city,
Mexico, to perform a probabilistic flood risk assessment [31]. A study used CAPRA to
evaluate the probabilistic hurricane risk in Guatemala and considered the effects of climate
change [32]. CAPRA was used to evaluate seismic risk, tropical cyclone risk, and flooding
risk at a global scale for GAR15 [33]. CAPRA has been widely used across the world over
the last 10 years and a summary of its applications has been presented by Reinoso et al. [34].

Objectives

In 2015, the National Disaster Mitigation Program (NDMP) was created to mitigate the
impacts of natural disasters in Canada. In 2018, the Toronto Region Conservation Authority
(TRCA) started the Flood Risk Assessment and Ranking project [35], which was the final
stage of the NDMP. The scope of this project was to quantify the risk associated with
riverine flooding at each of the 43 flood-vulnerable clusters within the TRCA’s jurisdiction
in the City of Toronto, and to rank these clusters relative to each other. The Rockcliffe
area was amongst the top ten clusters with the highest susceptibility to flooding. A flood
risk assessment for the Rockcliffe area was conducted by the TRCA as part of the Flood
Risk Assessment and Ranking project. However, their approach only included steady-state
hydraulic modeling for current climate conditions using deterministic rainfall as the input
and did not consider the social impacts of flooding.

Therefore, the objective of this study was to expand on previous risk assessment
efforts for the Rockcliffe area using the CAPRA method to quantify the flood risk (including
economic and social damages) using stochastic rainfall scenarios for both historical and
future projections of rainfall. By using unsteady-state flow to account for the temporal
variability of surface runoff and by driving the hydraulic models by using future climate
conditions, the results of this study will allow the TRCA to provide a higher level of service
in flood hazard forecasting and risk analysis. Note that the future changes to land use and
population density are outside of the scope of this study. Previously developed hydrological
and hydraulic models, as well as estimates for economic and social damages within the
region, were used within the CAPRA framework for this study. The future rainfall scenarios
are based on the different climate scenarios (Representative Concentration Pathways (RCPs)
2.6, 4.5, 6.0, and 8.5) for three time periods (short-term: 2020–2049, medium-term: 2040–2069,
and long-term: 2070–2099). Therefore, the contributions of this study provide estimates
of flood risk (including both economic and social impacts) for the Rockcliffe region for
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historical and future climate conditions using a stochastic framework developed with
CAPRA, which allows for the quantification of uncertainty in risk estimates. The study
integrates the key components of flood risk, including hazard, exposure, and vulnerability,
the latter of which has been ignored in previous efforts for the region. Doing so highlights
and improves our understanding of how climate change will change rainfall regimes in the
area as well as its effects on flood hazards and the economic and social consequences of
floods. The stochastic approach proposed herein provides risk results for a wide range of
possible scenarios, the likelihood of occurrences, and the quantification of expected losses
and damages. This will help provide information that can guide future flood mitigation
efforts in the region. Details of the study area and the models used, as well as the risk
assessment framework, are detailed in Section 2, followed by the results and discussion in
Section 3, and conclusions and recommendations for future research in Section 4.

2. Materials and Methods
2.1. Study Area

Toronto, located in Southern Ontario, is the most populous city in Canada. Over the
past century, five major flood events in Toronto have resulted in significant environmental,
economic, and social damages. Figure 1 shows the rainfall intensities of these events, repre-
sented in blue bars, along with its corresponding economic losses, shown with an orange
line. It also shows the average monthly rainfall (around 70 mm) as a dashed black line. It is
clear from the chart that these five events had significant rainfall intensities and the rainfall
depths exceeded the average monthly rainfall. The reasons for the high susceptibility to
floods in Toronto include the increase in impervious areas due to urbanization, tributaries
of the lower Don River have been filled or artificially channelized, wetlands have been
filled or drained, the characteristics of the river valley, which is a non-confining valley, and
the smooth topography of Toronto [36].
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Figure 1. Major flood events in Toronto in the last century.

There are eleven watersheds within Toronto. The Humber River watershed is the
largest with an area greater than 911 km2 and a population greater than 850,000 inhabitants.
Most of the southern parts of the Humber River watershed have been highly urbanized.
The Black Creek subwatershed is part of the Humber River watershed and has a drainage
area of 65 km2. The Black Creek is located at the east of the Humber River and the junction
of these rivers is at Dundas Street. This area is highly susceptible to flooding, as it is
completely urbanized and has a limited flow capacity for heavy storms, resulting in floods.
Based on daily discharge data for the year 2020 [37], the average flow at the Black Creek near
Weston hydrometric station (station number 02HC027) was 0.80 m3/s, and the maximum
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and minimum daily flows were 18.9 m3/s and 0.11 m3/s, respectively. For the period from
1966 to 2020, the mean daily flow was 0.72 m3/s, and the maximum observed discharge
occurred in July 2013, with a peak flow of 41.4 m3/s. There are different land uses in this
area, such as industrial, commercial, institutional, and residential. In addition, the creek
has been highly modified with artificial concrete channels and several bridges and culvert
crossings. The watercourse’s floodplain has been encroached, which has increased the
flood risk in this area. Furthermore, the maximum flow capacity of the low flow concrete
channel in this area is only a 10-year storm [38]. It is a narrow corridor that is, on average,
15 m wide and 2 m deep. The Rockcliffe region was selected as the case study to apply
and test the proposed method due to previous flooding issues in the region. It is located
downstream end of the Black Creek, a subwatershed of the Humber River watershed in
Toronto, Canada (as illustrated in Figure 2).
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Figure 2. Study area: Rockcliffe region within the Black Creek subwatershed.

2.2. Overview of the Proposed Modeling Methodology

In this study, we quantified the flood risk for the Rockcliffe region using the CAPRA
method. This stochastic framework considers the frequencies of extreme rainfall events and
generates stochastic rainfall scenarios with random shapes, locations, and rainfall intensities
based on observed data. The CAPRA platform contains four submodules—(i) IT-NHRain,
which evaluates the stochastic rainfall hazard by creating stochastic scenarios of rainfall
intensity; (ii) IT-Flood, which uses the stochastic rainfall scenarios to generate multiple
flood scenarios by using a hydrological (HEC-HMS) and hydraulic model (HEC-RAS);
(iii) Funciones de Vulnerabilidad (FUNVUL) Simplified creates vulnerability functions
(depth–damage curves) to estimate the economic costs of each flood scenario; finally, (iv)
the overall flood risk is calculated on CAPRA-GIS software by integrating the flood hazard
with the vulnerability of exposed elements. The following sections describe each of these
processes in detail.

2.3. Rainfall Hazard Analysis

The rainfall hazard analysis was performed for both current and future climate con-
ditions. The current climate conditions were based on daily observed rainfall data for
30 years of records (1960 to 1989) obtained from seven rain gauges within the Humber
River watershed (the locations are shown in Figure 3). These historical daily rainfall data
were obtained from Environment Canada. To account for future climate conditions, future
daily rainfall data were obtained from the Ontario Climate Data Portal (OCDP) which con-
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tains climate projections in Ontario from various General Circulation Models (GCMs) [7].
The data portal provides climatic scenarios of the Intergovernmental Panel on Climate
Change (IPCC) Fifth Assessment Report on Climate Change (AR5) for different RCPs [39].
In this study, projections from RCPs 2.6, 4.5, 6.0, and 8.5 were used, where RCP 2.6 is the
most optimistic scenario, as it projects the lowest CO2 concentration, and RCP 8.5 is the
most pessimistic with the highest CO2 concentration [40]. In addition, projections for three
future time periods, short- (2020–2049), medium- (2040–2069), and long-term (2070–2099),
were used for the analyses.
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There are several GCMs available in the OCDP, including NorESM1-M, MRI-CGCM3,
MPI-ESM-MR, MIROC-ESM, and IPSL-CM5A-MR, among others. To determine the models
that best represent the climate of the study area, the simulated historical GCM results
were compared to the observed historical monthly rainfall using the Pearson correlation
coefficient. The GCMs that provided the highest correlation between these two datasets
(simulated and observed monthly rainfall) were selected for the analyses. For the climate
scenarios RCPs 2.6, 4.5, and 6.0, the NorESM1-M model was selected. For RCP 8.5, the
CMCC-CEM model was chosen. The next step was to downscale the GCM output using
the Delta Change method, where the change factor is calculated through the ratio of the
mean future (simulated) monthly rainfall and the mean historical (simulated) monthly
rainfall [41]. The future downscales rainfall values were then obtained by multiplying the
observed rainfall by the calculated change factor.

The observed and projected downscaled rainfall data were then used to generate
stochastic rainfall scenarios with a random shape, location, and rainfall intensities for a
given duration and frequency. The CAPRA method includes the following steps to create
stochastic rainfall scenarios. The first step was to conduct a geomorphological analysis of
the basin and stream to determine the area of influence, which corresponds to the potentially
flooded area and watershed. Following this, a hydrological characterization of the basin was
performed to determine the maximum rainfall spatial extent, and to identify the preferential
storm centers for the observed and simulated rainfall data. The maximum rainfall spatial
extent analysis consists of the generation of Depth–Area–Duration–Frequency (DADF)
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curves. These curves establish the relationship between the maximum depth of average
rainfall (D), the area (A) over which this rainfall falls, the duration (D) during which the
rainfall takes place, and the frequency (F) of the events for each depth, spatial coverage,
and duration. DADF curves determine the maximum rainfall for different durations and
frequencies over a range of areas and describe the rainfall pattern of the basin. In order
to obtain DADF curves, first, the depth–area–duration (DAD) curves were built (one for
each event and duration). Then the frequency (return period) was calculated for each
rainfall depth for a certain area and duration, established in the DAD curves, which results
in DADF curves for the homogeneous hydrological zone. For the frequency analysis,
the Gumbel distribution was used using the probability-weighted moments method for
estimating the parameters of the probability function [42]. The frequency analysis was
performed for six return periods (2, 5, 10, 25, 50, and 100 years). The duration of the storms
for the DADF curves is one day. Figure 4 shows an example of the DADF curves generated
for the historic period (1960–1989).

In order to identify the preferential storm centers, isohyet maps were generated and
the zones with higher rainfall intensities were identified. Finally, the stochastic storms are
generated from the information within the DADF curves and the isohyet maps, which
determine the typical patterns and preferential location of storms in the study area. Thirty
stochastic scenarios for each return period were generated with a grid size of 500 m for the
rainfall maps.
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2.4. Flood Hazard Analysis

Flood hazard is defined by the relationship between flood depth and its probability
of occurrence, which is represented by depth–frequency curves [16], and by flood hazard
maps, which determine the spatial extent of flooded areas based on the estimated discharges
for different return periods.

For the flood hazard analysis, stochastic rainfall events, described in Section 2.3, were
used to run a hydrological model, which provides the runoff hydrograph for the basin
analyzed based on the rainfall. This hydrograph is then fed into the hydraulic model as an
upstream boundary condition, which routes the hydrograph through the main channel (i.e.,
the Humber River) and, thus, water (or flood) levels and velocities can be obtained for the
area of interest. These parameters are then used to generate the corresponding floodplain
maps, which show the flood extent and water depth (velocities were not used in this study
for the flood risk analysis).

Since the stochastic rainfall scenarios only provide the rainfall intensity and its spatial
distribution, the Atmospheric Environment Service—Southern Ontario (AES-SO) design
storm was used to define the temporal distribution of the storm events [43]. A calibrated
hydrological model of the Humber River was provided by the TRCA in the software Visual
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OTTHYMO (VO) [44] and was used as a reference to create the hydrological model in
HEC-HMS Version 4.0, as CAPRA requires this specific software for the hazard module. To
create the hydrological model, the subbasins, reaches, junctions, and the outlet were created
in the Hydrologic Engineering Center’s Geospatial Hydrologic Modeling (HEC-GeoHMS)
extension of ArcGIS from the DEM, with a ground resolution of 5 m x 5 m (obtained from
Scholars GeoPortal). For the subbasin elements, the loss method used was the SCS Curve
Number and the transform method selected was the SCS Unit Hydrograph. The canopy,
surface, and baseflow components were not considered. For the reach elements, the routing
method selected was Muskingum–Cunge, and the gain/loss component was not included.
As for the meteorological model, only the precipitation was taken into account by using
the gridded precipitation method. The model was calibrated by comparing the results
of the HEC-HMS model to the OTTHYMO (VO) model provided by the TRCA by using
the univariate gradient method and the peak-weighted Root Mean Square Error as the
objective function. The difference in peak flow between the two models for the 2-year, 24-h
AES-SO design event was 1.3%, which was considered to be suitable for this study.

The 1D hydraulic model was developed in HEC-RAS Version 4.1 for the Black Creek
within the Rockcliffe region, which was run under unsteady flow conditions using the
hydrograph from the HEC-HMS model. Note that the version of CAPRA used for this study
only allows for the use of a 1D hydraulic model (HEC-RAS Version 4.1). One-dimensional
models assume that water flows unidirectionally (longitudinally) in the main channel.
However, the secondary flows perpendicular to the main channel that occur during flood
events (as a result of the spills) cannot be modeled in 1D [45]. Two-dimensional models
may be capable of modeling these secondary flows and are better for modeling flows
through hydraulic structures, confluences of streams, and compound channels, among
others. However, for a general analysis of floodplains, as presented in this study, 1D
modeling is sufficient, but specific adaption and risk measures should be modeled using
2D hydraulic models.

The original, calibrated HEC-RAS hydraulic model was provided by the TRCA, which
used bathymetric data to create the model. However, this model was unstable to perform
unsteady state simulations as required for this study. Thus, a Digital Elevation Model
(DEM) with a ground resolution of 5 m was used to create a new HEC-RAS model using
HEC-GeoRAS. This model used the same model parameters as the original TRCA model.
The upstream boundary condition was defined by the flow hydrograph (from HEC-HMS),
and the downstream boundary was the normal depth. The model was calibrated by
comparing the results to the TRCA model for steady-state conditions. Note that for the
study area, the highest available resolution for the DEM was 5 m—this can affect the
accuracy of the cross-sections of the river in the hydraulic model. However, the simulated
flows were compared with observed flows from a flow gauge and there were no significant
differences.

The IT-Flood module within CAPRA integrates the hydrological and hydraulic models,
along with the set of stochastic rainfall scenarios, to generate the flood hazard maps for the
corresponding rainfall scenarios. Figure 5 shows a schematic of each step of this analysis.
The rainfall and flood hazard scenarios were stored in AME filetypes, which is a collection
of raster files (the standard format of CAPRA for hazards) and then used for the hazard
analysis. An * AME file is a raster geodatabase containing a raster for each simulation. The
metadata stores additional information, such as the associated frequency of each scenario
and the type of evaluated hazard, among others.
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2.5. Exposure Assessment

Exposure refers to the elements or assets exposed to a hazard, whether they are
buildings, infrastructure, agricultural areas, or people. The exposure of buildings normally
includes the type of building, location, the value of assets, and the number of stories
(i.e., levels) of the building. The exposure to people includes the population density at a
particular location. The vulnerability analysis quantifies the level of damage of a component
(typically as a percentage of the exposed value) for a given hazard intensity (e.g., water
depth), through vulnerability functions represented as depth–damage curves.

An inventory of the “exposed components” must be quantified to determine the flood
risk. These components are the structures or elements that are exposed to flood hazards
for a given rainfall event. The exposure was created in ArcMap (as a polygon shapefile)
containing the economic value, the building category, and population (which is an indicator
of social impact). The polygons of each building category were created using Google
Maps. Figure 6 shows the exposure maps for these three categories for the study area. A
description of how these categories were quantified follows.

The economic value estimates the economic damages of the exposed components
during flood events—this is often a difficult task [46] due to the lack of detailed data.
Economic damages are commonly represented through the exceedance probability curve,
which describes the probability that the loss will exceed a specific value within a period
of time (usually annually), and through the expected annual damage, which is the area
under the exceedance probability curve. These damages can be direct, indirect, tangible,
or intangible. Direct damages refer to those resulting from direct contact with the hazard
(e.g., the damage occurs within a flooded area), whereas indirect damages may result after
a delay or outside a flooded area (indirect contact with the hazard). Tangible damages
are those that have a specific monetary value, whereas intangible damages are difficult to
assess in monetary terms. [46–49]. In this study, only direct tangible damages were taken
into account, which is the most common type of economic flood damage assessment. In
the context of flooding, this refers to the physical losses due to the contact with water (i.e.,
direct) and can be measured based on a monetary value (i.e., tangible), such as the cost of
repair or replacement of the assets affected.
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The direct damages were based only on the construction value per square meter
obtained from the TRCA. The value of contents was not included. Table 2 shows the
economic values used for each building category. For consistency, the economic values for
the residential buildings were all assigned the same value of the category “House Class
A—two floors” or A2S.

Table 2. Economic values per building category.

Category Subcategory Specification ID Value ($/m2)

Non-residential
Office buildings 5 floors or less (with surface parking) S1 2314

Industrial 28′ Clear height (20,000–50,000 sq. ft.) S2 1022

Residential

House Class A—two floors High-quality construction materials
and finishes A2S

4198House Class B—two floors Medium-quality construction
materials and finishes B2S

House Class C—two floors Low-quality construction materials
and finishes C2S

Apartment up to four floors High-quality AP4
Apartment from five floors High-quality AP5

Social damages due to flooding include loss of human life, loss of property, loss of
livelihoods, mass migration, diseases, disruption of utility services, psychosocial effects,
loss of trust in the authorities, and hindering of economic growth and development,
amongst others [50]. The social impact was determined by the number of people affected
(i.e., exposed) to a flood event. In this study, social impact was limited to tangible damages
rather than intangible social effects, such as stress, psychological trauma, or illness [47,48],
and as such, is a simplification of the real damages. The population per polygon was
calculated based on the area of the polygon and the population density, which was obtained
from the 2006 census data for Toronto [51]. In this study, it was assumed that the exposure
stays constant with time (i.e., does not change for the future periods). Table 3 summarizes
the exposure for the study area, for each building category, the exposed area in m2, the
exposed value in Canadian dollars ($), and the exposed population.
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Table 3. Exposed area, exposed value, and exposed people per building category.

Building’s
ID

Exposed Area Exposed Value Exposed People

m2 % ($) % # of People %

A2S 41,489 8.7 174,190,106 11.5 119 5.2
B2S 116,039 24.2 487,133,836 32.2 584 25.7
C2S 63,499 13.2 266,577,763 17.6 252 11.1
S1 34,655 7.2 80,222,569 5.3 131 5.8
S2 136,137 28.4 139,283,066 9.2 586 25.7

AP4 20,828 4.3 87,470,653 5.8 66 2.9
AP5 66,702 13.9 280,006,743 18.5 539 23.6

Total 479,349 100 1,514,884,735 100 2277 100

2.6. Vulnerability Assessment

Vulnerability is defined as the inherent susceptibility of an element to be affected by a
hazard and is directly associated with the element’s exposure to the hazard and inversely
proportional to the resistance of the element to cope with it. This means that when a
hazard occurs, the vulnerability of the people and the exposed assets will determine the
damages caused by the hazard [52]. Vulnerability functions quantify the level of damage of
a component for a given hazard intensity. In this study, the hazard intensity is based only
on the flood depth (i.e., depth–damage curves).

The vulnerability of infrastructure was based on the flood vulnerability functions
produced for Alberta [53]. These functions contain depth–damage curves in terms of
monetary damage per meter square ($/m2) for the different types of residential and non-
residential buildings. The monetary damages of these curves were then transformed to
percentages based on the economic values from Table 1. Figure 7 shows the values of the
depth–damage curves per building category.
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Social vulnerability to flooding disasters has been used by several flooding studies,
where the vulnerability is a function of the demographic characteristics, socioeconomic
status, land tenure, and neighboring characteristics [54,55]. In this study, a simpler ap-
proach was used where the social vulnerability is only a function of the number of people,
regardless of their characteristics. As the damages to infrastructure start at a water depth
of 0.1 m (from the main floor), it was assumed that people are affected by flooding from
a flood depth of 0.1 m. Therefore, for water depths less than 0.1 m, the population af-
fected is 0% and for water depths equal to or higher than 0.1, it is 100%, as shown in
Figure 8. The values of the depth–damage curves were inputted into FUNVUL Simplified
(the vulnerability module of the CAPRA platform) to create the vulnerability functions
in a FVU filetype. FUNVUL Simplified uses equations to calculate the loss mean and the
loss standard deviation that corresponds to the mean damage ratio and its corresponding
variance [56].
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2.7. Flood Risk Analysis

Flood risk refers to the expected losses of a particular hazard (e.g., flood hazard) to a
specific element at risk, in a particular time period or scenario [57]. Generally, flood risk
is defined as the product of the hazard, exposure, and vulnerability. As the exposure and
vulnerability are implicitly evaluated as the consequences of the flood hazard, a simpler
definition of flood risk is the product of the probability and the consequences [58]. The
risk is developed by associating the hazard on the inventory of exposed assets through the
related vulnerability functions, resulting in the quantification of damages, both economic
and social.

The final component of the study was the flood risk analysis, which combined the
results of the rainfall and flood hazard analyses with the exposure and vulnerability
assessment, within a stochastic framework. This component provides the damages (in
terms of losses) expected from each stochastic rainfall event and was performed using the
CAPRA-GIS module. This software integrates hazard with the vulnerability of exposed
elements to generate the flood risk, either for a single scenario (deterministic) or for all
scenarios (stochastic). The results are given in a RES filetype, which shows the number of
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people affected and economic damages (in terms of loss exceedance curve, average annual
loss, and probable maximum loss).

The loss exceedance curve, also known as the exceedance rate of loss, represents the
frequencies, usually annually, with which events will occur, and within which a specified
value of losses is exceeded. The exceedance rate of loss v(p) is calculated with the following
equation [17]:

v(p) =
Events

∑
i=1

Pr(P > p|Event i)FA(Event i) (1)

where Pr(P > p|Event i) is the probability that the loss is greater than p given that event i
took place, and FA(Event i) is the annual occurrence frequency of event i. The probability
that the loss is greater than p given that event i took place is computed through vulnerability
functions by using the following equation [17]:

Pr(P > p|Event) =
∫ ∞

0
Pr(P > p|I) f (I|Event)dI (2)

where Pr(P > p|I) is the probability that the loss exceeds the p-value since the local intensity
was I; this term takes into account the uncertainty in vulnerability relationships. f (I|Event)
is the probability density function of intensity conditioned on the occurrence of the event;
this term takes into account the fact that since an event occurred, the intensity at the site
of interest is uncertain. The average annual loss is the expected loss per year. It can be
obtained by integrating v(p) or by the following equation [17]:

AAL =
Events

∑
i=1

E(P|Event i)FA(Event i) (3)

where AAL is the average annual expected loss, E(P|Event i) is the expected loss value
since event i occurred, which depends on the vulnerability of the exposed element, and
FA(Event i) is the annual occurrence frequency of event i. The probable maximum loss is
a measurement of the magnitude of maximum losses that could be expected during the
occurrence of a hazard event for a certain return period. In CAPRA-GIS, the probable maxi-
mum losses are calculated by using a Beta distribution to find the cumulative probability
of each stochastic scenario [17].

3. Results and Discussion
3.1. Climate Change Rainfall Projections

Figure 9 shows a comparison of the historical annual rainfall and projected rainfall
in the study area for the three future periods for each of the four climate change RCP
scenarios. The climatic scenario RCP 8.5 shows the highest annual rainfall throughout
the century with an upper trend, rising from the third quartile (Q3) of rainfall of around
940 mm/year for the short-term period to 980 mm/year in the medium-term period and,
finally, to 1300 mm/year in the long-term period. The climatic scenarios RCP 2.6 and RCP
6.0 show similar values in Q3, where the highest values are in the long-term period at
around 900 mm/year (RCP 2.6 being slightly higher), followed by the short-term period
with approximately 850 mm/year (RCP 6.0 being slightly higher), and the lowest values for
both climatic scenarios are presented in the middle-term with around 840 mm/year. The
climatic scenario RCP 4.5 shows the lowest rainfall, with the highest values of Q3 in the
long-term, at close to 980 mm/year, followed by the short-term period with 830 mm/year
and the medium-term with 820 mm/year. On a seasonal basis, historical observations
show that the summer season had the highest rainfall while the winter was drier. However,
future rainfall trends show that December to May will be wetter, whereas the summer
months (June, July, August), October, and February will be drier.
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Figure 9. A comparison of projected annual rainfall for each time period (for different GCMs) and
the observed historical values. The dots in the figure represent outliers in the data.

Overall, the climatic scenario RCP 8.5 shows the highest annual rainfall and RCP 4.5
the lowest. The long-term period has the highest annual rainfall values for all the climatic
scenarios and the medium-term the lowest (except for the climatic scenario RCP 8.5, the
lowest values of which are for the short-term period). In terms of the median, or the second
quartile (Q2), almost all are greater than the historical mean, except for RCP 4.5 and RCP
6.0 for both the short and medium-term periods, which are lower. The first quartile (Q1)
off all climatic scenarios is below the historical average, except for the climatic scenario
RCP 8.5, for which Q1 values for the three periods are all above the observed rainfall. The
long-term period projections suggest an increase in annual rainfall for the study area for all
RCP scenarios. As mentioned in Section 2.3, these projected rainfalls were first obtained
from the OCDP [7] and then downscaled using the Delta Change method.

The daily rainfall data, both observed and projected, and the boundary map of the
Humber River watershed were inputted into IT-NHRain, which generated the DADF
curves that were used to generate the stochastic scenarios. In total, 2340 stochastic rainfall
scenarios were generated (each taking about 5 min). Figure 10 shows some representative
stochastic rainfall scenarios, illustrated in the CAPRA-GIS interface, that are distributed
throughout the Humber River watershed. For illustrative purposes, scenarios with different
locations of storm centers and for different return periods have been selected, one for each
return period for the climatic scenario RCP 2.6 and the short-term period. The units are
in millimeters per day, where the highest values are represented in red and the lowest
in green.
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Figure 10. Illustrative examples of stochastic rainfall scenarios for the climatic scenario RCP 2.6
and the short-term period for the return periods of (a) 2 years; (b) 5 years; (c) 10 years; (d) 25 years;
(e) 50 years; (f) 100 years (mm).

3.2. Stochastic Flood Risk Assessment

The hydrological modeling was performed for the entire Humber River watershed
and considered the stochastic rainfall scenarios generated to create hydrographs for each
scenario. Only the hydrographs for the Black Creek watershed were selected as input for
the hydraulic modeling since the study area (Rockcliffe) is located in this watershed. For
each stochastic rainfall scenario, a hydrograph was obtained. An example of one of the
hydrographs generated is shown in Figure 11. Then, each hydrograph was routed through
the hydraulic model to obtain the flooded areas and water depths for each stochastic
rainfall scenario. This output data was then used in IT-Flood to generate the corresponding
floodplain maps. Figure 12 shows a visualization of the flood scenarios in the CAPRA-GIS
program, showing the flooded areas and their respective water depths in meters.
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Figure 11. Example of a hydrograph of one of the stochastic scenarios (RCP 4.5, 10-year return period).

The stochastic flood scenarios were then combined with the exposure and the vulner-
ability functions in CAPRA-GIS to estimate the economic and social impacts associated
with the historical and future rainfalls. The average annual economic and social impacts
are shown in Figure 13. The figure compares the expected damages of the historic period
and the three future climate change projects. The figure shows similar trends for both
factors—the average annual economic losses and the number of people affected are highest
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for the RCP 8.5 scenario for the long-term period, followed by the RCP 2.6 period (the most
optimistic scenario). For this long-term period, both factors are higher than the estimates
based on the historical data for each RCP scenario except for RCP 4.5, which shows a lower
amount than the historical data. Following the results of the annual rainfall analysis, the
medium-term effects are lower for both factors for RCPs 4.5 and 6.0. These results show that
in the near term, RCPs 6.0 and 8.5 will lead to higher economic damages and social impacts,
whereas RCP 2.6 has lower impacts, which are roughly similar to the RCP 4.5 scenario. For
the medium-term results, the RCP 2.6 and 8.5 scenarios resulted in higher impacts, whereas
the other two scenarios resulted in lower impacts. Lastly, for the long-term simulations, all,
except for the RCP 4.5 scenario, lead to higher impacts than the historic simulations. These
differences in flood risk estimates are important to highlight that not all future conditions
(RCPs, timelines) result in an increase in flood risk. The changes in the rainfall pattern are
complex for these scenarios and result in differences between the estimates. It is important
to note that future changes to land use and population within this region (which were not
modeled in this study) will further affect future estimates.
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the short-term period for the return periods of (a) 2 years; (b) 5 years; (c) 10 years; (d) 25 years;
(e) 50 years; (f) 100 years.

These results were verified by comparing the historical results from the present analy-
sis to those obtained by the TRCA (as part of their Flood Risk Assessment and Ranking
project [35]). The average annual losses obtained in this study and in the TRCA study are
$8.8 million and $8.9 million respectively, whereas the annual average of people affected
found in this study and from the TRCA study are 56 and 60 people, respectively. This
shows a good match between the proposed stochastic approach and the deterministic
approach used in the original study. Since the TRCA analysis took into account damages to
the contents of the exposed building, a higher economic loss is expected.

Figure 14 shows the average annual losses per building category. The category “house
class C—two floors” (C2S) has by far the highest average annual losses among all the build-
ing categories for all the scenarios (between $4.1 to $5.6 million), while “office buildings”
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(S1), “industrial” (S2), and residential apartments with more than five floors (AP5) have
the lowest (around $40.2 million). The reason why the building category C2S presents
the highest average annual loss is its high vulnerability to floods (second highest) and its
location with respect to the flood scenarios.
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The spatial distribution of the average annual losses for all the climate scenarios
allowed identifying two main clusters in the study area with the highest values. Figure 15
shows the economic expected loss maps for the historical period and the climatic scenario
RCP 8.5 with the clusters identified with black circles. The cluster with the highest average
annual losses (“a”) is located downstream of the Black Creek to the Westside, specifically at
Black Creek Blvd close to Scarlett Rd. This area belongs to the building category “house
class C—two floors” (C2S). The other cluster (“b”) is located at Humber Blvd at Hilldale
Rd with the building category “apartment up to four floors” (AP4).

Histograms of economic expected losses were developed, which show the number
of scenarios for each range of expected loss (six ranges with a bin size of $10 million).
These histograms (Figure 16) show that all climate scenarios (RCPs) and time periods
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(short-, medium-, and long-term) have expected economic losses between $0 to $30 million,
whereas only a few scenarios have economic expected losses higher than $30 million.

The probable maximum loss curves for all climate scenarios are shown in Figure 17.
Overall, the climatic scenario RCP 8.5 for the long-term period has the highest probable
maximum losses for all the return periods, except for the 100-year period for which RCP 2.6
has a higher value ($32.4 and $33.1 million, respectively). The lowest probable maximum
losses correspond to the climatic scenario RCP 4.5 for the medium-term period ($25.8
million for the 100-year period), which in turn is the only one that has lower values than
the historical period for all the return periods.

It is important to note that based on the results above, not all RCP scenarios lead to a
higher flood hazard and risk. According to the IPCC [59], vulnerability and exposure are
major drivers of risk. They vary temporally and spatially and depend on several factors,
such as social, economic, geographic, and cultural, amongst others. In some cases, these
factors can have a higher effect on risk than climate events. Hence, adaptation and risk
reduction are more successful when considering not only the projections of the future
climate but also the change in vulnerability and exposure. These factors, vulnerability and
exposure, were kept constant for future periods in this study and, thus, may have a higher
role to play in overall risk than the results shown here.
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Unlike a deterministic approach, the stochastic framework of the risk analysis allows
for obtaining results for a wide range of possible scenarios and their likelihood. It allows
the risk to be expressed in terms of potential or expected losses and its comparison for
different hazard conditions. In this study, the use of spatially varying rainfall scenarios
was useful to analyze the impacts of the different possible hazard conditions. This gives
a better understanding of the impacts of climate change on rainfall regimes and, thus, on
flood hazards, and the economic and social consequences. Additionally, the risk can be
expressed in terms of probable maximum losses, which is essential for establishing financial
protection mechanisms [60].
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In conclusion, the analysis of the stochastic rainfall shows that, in general, the future
rainfall intensities will be higher, with RCP 8.5 being the most pessimistic since it resulted
in the highest projected rainfall. Even though RCP 4.5 is not the most optimistic scenario, it
projects the lowest rainfall. Average annual rainfalls were predicted to be higher for the
long-term period and lower for the medium-term period for RCP 4.5 and RCP 6.0. It is
important to highlight that the hydrological processes are a highly complex and nonlinear
system, and thus, an increase in a certain amount of GHGs may not necessarily lead to an
increase in rainfall throughout the different time periods.

The results show that future rainfall will lead to higher economic and social impacts
due to floods. The RCP 8.5 long-term period showed the highest impacts and the RCP 4.5
medium-term period the lowest. The results also indicate higher average annual losses for
the building category C2S. The area, with the highest expected economic losses, is within
a neighborhood with building category C2S, located at the south of the Black Creek, in
Black Creek Blvd close to Scarlett Rd. The second-highest expected economic losses were
also found in a residential area, with building category AP4, located at Humber Blvd at
Hilldale Rd.

3.3. Deterministic Flood Risk Assessment

The CAPRA method allows for both stochastic and deterministic risk assessments.
The stochastic analysis, presented in Section 3.2, considered the impact of all the stochastic
scenarios generated and their respective likelihoods. Conversely, a deterministic analy-
sis evaluates the impact of a single hazard scenario. In this study, the deterministic risk
assessment was performed for the worst-case scenarios. This can be useful for implement-
ing mitigation measures that not only evaluate the most probable scenarios (determined
through the stochastic analysis) but also the most severe in terms of the associated impacts.
The single scenarios selected to perform the deterministic flood risk assessment were ob-
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tained from the scenarios of the historic period and RCP 8.5 for each term period. Each
climate scenario for a specific time period has 180 stochastic scenarios. The worst-case
scenarios were identified as those with the highest expected losses out of the 180 scenarios
available. Hence, the deterministic analysis was performed for the worst-case scenarios
where some parameters, such as the peak flow of the runoff hydrograph (see Figure 18),
the expected loss, the area affected, and the number of people affected, were obtained for
each one of the four worst-case scenarios (listed in Table 4).

Table 4. Parameters of the worst-case scenarios.

ID Scenario Time Period Peak Flow (m3/s) Expected Loss ($) Area Affected (m2) People Affected

155 Historic 1960–1989 163.8 53,489,348 125,769 517

163
RCP 8.5

2020–2049 234.9 71,568,513 149,243 617
155 2040–2069 185.4 50,979,159 122,918 504
175 2070–2079 348.3 88,327,427 170,360 705
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From this analysis, it was found that for RCP 8.5, the long-term period has the highest
peak flow and the medium-term the lowest. As the peak flow is a major contribution
to flooding, RCP 8.5 for the long-term period also presents the highest values in the
other parameters analyzed, and the medium-term period the lowest. Amongst the four
worst-case scenarios, the scenario from the historic period has the lowest values in all the
parameters.

It is worth mentioning that both stochastic and deterministic risk analyses are im-
portant to highlight regions at high risk that need flood protection measures. While the
stochastic results give the whole range of economic and social impacts for the different
scenarios, the deterministic analysis of the selected single scenarios identifies the spatial
distribution of the rainfall, the flood hazard, and its associated impacts through maps for
the worst case. Figure 19 shows the rainfall map, the floodplain map, and the economic
expected loss map for the historic worst-case scenario. Additionally, from the economic ex-
pected loss maps for all four worst-case scenarios, five additional clusters of high economic
risk (yellow circles in Figure 19c) besides the two clusters from the stochastic assessment
(black circles in Figure 19c) were found.
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4. Conclusions

Several flood risk methodologies have been developed and presented in the research
literature; however, many of these methods used a deterministic approach (which does not
quantify the uncertainty of the risk estimates), and did not consider the effects of future
climate change. Lastly, the majority of methods presented in the research only focused on
economic damages rather than both economic and social damages of flood hazards.
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This study aimed at performing a flood risk analysis in the Black Creek subwater-
shed in the Rockcliffe region in Toronto, Canada by implementing the CAPRA method,
a platform for stochastic risk assessment. This framework allowed for considering the
frequencies of the extreme events and to generate stochastic rainfall scenarios with random
shapes, locations, and rainfall intensities based on the observed data (and hence, quantify-
ing the uncertainty of the risk estimates). This method provided a valuable tool not only for
identifying areas susceptible to floods but also to quantify the economic and social impacts
and the associated probabilities of occurrence.

To quantify the flood risk of this region, we developed and applied five methods.
First, we determined the stochastic rainfall hazard for the region with random shapes,
locations, and rainfall intensities to quantify the uncertainty of both historical observations
and projected data (for three future periods, four RCP scenarios, and six return periods).
These scenarios were used to create DADF curves and spatial rainfall maps. Next, these
rainfall scenarios were fed into a hydrological and hydraulic model to generate stochastic
flood hazards within the region. Both the hydrological and hydraulic models were created
for this region based on previous modeling efforts. The models were run in unsteady-state
conditions—an improvement on previous modeling efforts. These contributions, therefore,
considered both the spatial and temporal aspects of rainfall scenarios on the flood hazard.
Third, we quantified the exposure of elements within the flooded area, which considered
the type and value of the structures within the region. Next, we quantified the vulnerability
and exposure of the exposed elements where the economic damages (via depth–damage
curves) and social impacts (e.g., people exposed to floods) were quantified. Lastly, we
integrated these components to determine the overall flood risk of the region and generated
floodplain maps.

A major contribution of this study is that the CAPRA method can successfully recreate
the historic flood risk in the region (by comparing the results to existing, deterministic
risk reported for the Rockcliffe region). This allows for a better understanding of the
impacts of climate change on rainfall regimes and, thus, on flood hazards and the economic
and social consequences. Next, future rainfall patterns due to climate change will lead to
higher economic and social impacts due to floods. The RCP 8.5 long-term period shows
the highest impacts and the RCP 4.5 medium-term period the lowest. These conclusions
were expected, as both scenarios had the highest and lowest rainfalls, respectively, in the
rainfall hazard analysis. The reduction in flood risk due to the RCO 4.5 medium-term
simulations shows that not all climate change scenarios will lead to higher flood risk. This
result is important since it demonstrates the importance of other factors, such as social and
economic exposure, which can have a higher contribution to risk than the flood hazard
itself. The deterministic worst-case scenario from the historical period and the RCP 8.5
scenario (one for each time period) were compared based on the expected losses and the
number of people affected. The lowest losses were seen for the RCP 4.5 medium-term
scenario, followed by the historical period, the short-term, and the long-term RCP 8.5
scenarios.

The stochastic framework of the risk analysis provided results for a wide range of
possible scenarios and their likelihood. The deterministic risk performed for the worst-
case scenarios can be useful for implementing mitigation measures that not only evaluate
the most probable scenarios but also the most severe in terms of the associated impacts.
However, higher resolution spatio-temporal field data are needed to reveal any scaling
differences in calibration of the hydraulic and hydrological models. The uncertainty of the
parameters entailed in the numerical models points out the possible differences (under or
overestimation) of the results obtained via the stochastic and deterministic approaches.

Recommendations for Future Research

Based on the findings of this study, the following recommendations were identified as
opportunities for improving future work on flood risk assessment.
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1. The DEM used in this study has a resolution of 5 m. However, for creating the cross-
sections for the hydraulic model, it is recommended to use a DEM with a resolution
around 1 m or lower (from LiDAR or HR satellite pictures). An alternative approach
may be to obtain the bathymetry of the river from a field survey.

2. The current version of IT-Flood only allows for integrating the HEC-RAS 1D model.
However, 2D modeling is more appropriate in several situations, for example, when
the length-to-width ratio of the river is less than 3:1.

3. Currently IT-NHRain only allows for generating stochastic rainfall scenarios on a
daily basis. However, it may be more appropriate to use sub-daily or sub-hourly
rainfall data and analyze its effect on the peak flow of hydrographs since significantly
higher rainfall intensity is more likely to occur in these shorter time intervals. A
recommendation to CAPRA would be to develop a version of IT-NHRain that allows
for generating rainfall scenarios on a sub-daily basis.

4. In this study, only seven rain gauges with rainfall data (with at least 30 years of
records) were identified within the Humber River watershed. However, for such an
extensive area (911 km2), the number of rain gauges may not be suitable enough to
capture the spatial variation of rainfall. Moreover, several of the gauges only have
daily data. An increase in the spatial density of rain gauges with a finer temporal
resolution would improve the analysis (e.g., provide estimates of marginal flood risk)
and ultimately may affect the outcome of the risk analysis.

5. The tangible damages quantified in this study only considered direct damages. Direct
damages generally consider the damage to structures and contents. A potential
improvement to the quantification of damages would be to include content damages
as well as indirect tangible damages (e.g., business disruption, detours, and loss of
revenue).

6. The social vulnerability in this study was determined only as the number of people
affected based on the water depth at their place of residence. An opportunity to
enhance social risk analysis would be to consider the different indicators of social
vulnerability, such as demographic characteristics, socioeconomic status, land tenure,
and neighborhood characteristics.

7. Collaboration with the TRCA is advised to identify other possible errors in measuring
key parameters, such as precipitation and discharge, that will affect the validation of
the modeling results. Additional field data is required to better cover the watershed
spatially and temporally in order to evaluate the results obtained via the stochastic
and deterministic approaches.
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