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Abstract: In this study, we apply a bibliometric analysis to characterize publication data on droughts,
mainly focusing on drought indices (DIs), drought risk (DR), and drought forecast (DF). Data on
publications on these selected topics were obtained through the Scopus database, covering the
period from 1963 to June 2021. The DI-related publications, based on meteorological, soil moisture,
hydrological, remote sensing, and composite/modeled Dis, accounted for 57%, 8%, 4%, 29%, and 2%
of the scientific sources, respectively. DI-related studies showed a notable increase since the 1990s,
due perhaps to a higher number of major droughts during the last three decades. It was found that
USA and China were the two leading countries in terms of publication count and academic influence
on the DI, DR, and DF studies. A network analysis of the country of residence of co-authors on DR
and DF research highlighted the top three countries, which were the USA, China, and the United
Kingdom. The most productive journal for the DI studies was found to be the International Journal
of Climatology, whereas Natural Hazards was identified as the first-ranked journal for the DR and
DF studies. In relation to individual researchers, Singh VP from the USA was found to be the most
prolific author, having the greatest academic influence on DF study, whereas Zhang Q from China was
identified as the most productive author on DR study. This bibliometric analysis reveals that further
research is needed on droughts in the areas of risk management, water management, and drought
management. This review maps trends of previous research in drought science, covering several
important aspects, such as drought indices, geographic regions, authors and their collaboration
paths, and sub-topics of interest. This article is expected to serve as an index of the current state of
knowledge on drought warning systems and as guidance for future research needs.

Keywords: drought indices; drought risk; drought forecast; bibliometric analysis; scientometrics

1. Introduction

Drought is a natural slow-onset phenomenon with major direct or indirect impacts
on natural systems, the economy, and human health [1,2]. In recent decades, the severity
and spatial coverage of droughts have been increasing due to climate change. Most of the
previous famines can be linked to droughts [3]. Due to the complex nature of drought, it has
no standard definition that works under all possible circumstances [4]. Generally, drought
can be expressed as a deficit in precipitation compared to the long-term mean [5,6]. This is
regarded as an operational definition [7]. Droughts are classified into four major groups
by Wilhite and Glantz [7]: (i) meteorological, deficiency in precipitation; (ii) agricultural,
lack of soil moisture; (iii) hydrological, reduction in streamflow; and (iv) socioeconomical,
inability to meet water demands. Drought types are characterized based on their severity,
frequency, duration, and areal extent [8]. Drought indicators or indices (DIs) are commonly
applied to track a drought and to identify its characteristics in terms of duration (onset and
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end), severity, and location. The selection of a drought index/indicator is important for
drought monitoring. A variety of indicators/indices is needed to monitor different aspects
of drought.

Efficiency and accuracy of hydro-meteorological monitoring are essential inputs for
the identification of risk and a drought early warning system (DEWS). A DEWS plays a key
role in drought preparedness [9–11] and has monitoring and forecasting components so
that it can be used to tackle drought at an early stage and to devise actions within a drought
risk management plan as a means of reducing the likely losses [12]. Therefore, describing
the overall trends of the development of drought monitoring, drought risk, and drought
forecast studies are important for DEWSs, researchers, planners, and decision-makers.

There have been several reviews on various aspects of droughts. For example, Ha-
genlocher et al. [13] presented a systematic review on drought vulnerability and risk
conceptualization. They found that only 10% of the studies developed future scenarios
of drought risk. Orimoloye et al. [14] attempted a systematic mapping of disaster risk
management, whereas Orimoloye et al. [15] focused on the spatial assessment of drought
disasters, vulnerability, severity, and water shortages for developing a potential drought
mitigation strategy. Kchouk et al. [16] investigated 32 drought indices but did not include
composite (or modeled) droughts. Mishra and Singh (2010) presented a comprehensive
review on droughts.

Although there have been several reviews on droughts, as noted above, more reviews
are needed in terms of trends in investigations at the country level on the quality and
quantity of academic outputs, research methods, country-wise collaborations, author-wise
collaborations, and the geographical distribution of studies in order to understand the
evolution of drought, which has become more frequent and severe in recent years due to
climate change. Therefore, we applied a bibliometric analysis, an important quantitative
analysis tool [17,18], to three key components of the DEWS: drought indicators/indices
(DIs), drought risk (DR), and drought forecast (DF). Our objective is to fill the current
knowledge gap in the existing drought literature, as follows and further explained in
Section 2. After refining the scope, we apply a bibliometric analysis in two different stages
for DI-, DR-, and DF-related studies. In the first stage, we investigate the current research
situation in terms of DI, DR, and DF studies individually. In the second stage, we merge
the duplicates of DI studies using the bibliometrix R-package [19] to obtain a number of
studies, and then we combine the DR and DF studies (DR_DF). The main purpose for this
‘combine/merge’ approach is to eliminate the same articles/authors that contain more than
one DI (e.g., SPI and PDSI). Similarly, some authors could have addressed drought risk
and forecast in the same article. Addressing the studies individually and when merged
allows us to interpret the numbers and trends in each field and highlight countries’ and
authors’ productivities and their collaboration paths. It should be noted that this study
does not aim to recommend the ‘best’ drought index. DIs were chosen, based on the specific
characteristics of drought, regional characteristics, or purpose of monitoring. This paper is
expected to exhibit the scientific progress in DI, DR, and DF studies and their evolution in
drought research in order to guide possible future work.

2. Materials and Methods

The adopted research methodology is based on the principle that a thorough biblio-
metric analysis on the overall trends of development of drought monitoring, drought risk,
and drought forecast studies is capable of benchmarking the current state of knowledge on
drought warning systems and providing guidance on further research needs in droughts.
Based on this principle, this study is conducted by following standard bibliometric analy-
sis, as illustrated in Figure 1 and explained in this section. The adopted methodological
approach consists of the following four steps: (1) design of study, (2) data analysis, (3) re-
fined scope, and (4) data visualization. Figure 1 presents the workflow of the bibliometric
analysis adopted in this study.
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2.1. Design of Study

This study investigates the three key components of drought early warning systems
(DEWS), which are drought monitoring, risk, and forecast. Published documents on
drought indices (DIs), drought risk (DR), and drought forecast (DF) were obtained through
the Scopus database (http://www.scopus.com, accessed on 30 June 2021), covering the
period from 1963 to June 2021.

2.1.1. Drought Monitoring

Drought monitoring requires a variety of indicators, encompassing meteorological,
hydrological, soil moisture (or agricultural), and socioeconomic aspects that characterize
information on potential drought or deficiency of water. We addressed the most well-
known and/or frequently used drought indicators in scientific drought studies. For this
purpose, we selected 50 drought indicators/indices (DIs), which are also given in the
World Meteorological Organization (WMO) and Global Water Partnership (GWP) [12]
guidelines. The selected DIs do not include socioeconomic and environmental factors (e.g.,
drought-related impacts). The indices were categorized into five groups: meteorological
(22 indices), hydrological (8 indices), soil moisture (or agricultural) (4 indices), remote
sensing (11 indices), and composite or modeled (5 indices).

http://www.scopus.com
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A query for the selected DIs was identified as: (“drought”) AND (“[name of drought
indicator]” OR “[abbreviation of drought indicator]”) in the title (TITLE), abstract (ABS),
and authors’ keywords (KEY). As an illustration, TITLE-ABS-KEY ((“drought”) AND
(“SPI” OR “Standardized Precipitation Index”)) was the query used for search in the Scopus
database for the SPI. This query was applied to each DI individually. However, we avoided
using some abbreviations of drought indices, such as DRI (Drought Reconnaissance Index),
since DRI may refer to ‘Drought Risk Index’, which is not a drought indicator. The Drought
Risk Index is obtained by multiplying ‘Drought Hazard Index’ and ‘Drought Vulnerability
Index’ to estimate drought risk.

2.1.2. Drought Risk

Risk is the product of both drought hazard and vulnerability [4]. Therefore, keywords
were designed based on this definition. Unlike the drought monitoring query, we searched
for the selected keywords in ‘title’ only, similar to Hagenlocher et al. [13]. The reason was
that authors might choose ‘risk’, ‘hazard’, or ‘vulnerability’ as a keyword or mention in
the abstract in their studies, although the study may not focus on drought risk. The query
for drought risk (DR) studies was established as: TITLE ((“drought” AND “risk”) OR
(“drought” AND (“vulnerab*” AND “hazard”))). The keyword “vulnerab*” may represent
vulnerability or vulnerable.

2.1.3. Drought Forecasting

Although there are different methods for drought forecasting, such as regression
models, hybrid models, and neural network models [20], these methods are also used in
other forecasting studies, such as flood studies. Therefore, using keywords such as ‘drought
prediction’ or ‘drought projection’ to explore drought forecasting publications gives more
robust results. Moreover, similar to the ‘drought risk’ database search, we searched for the
selected keywords in ‘title’ only. The query for drought forecast (DF) studies was described
as: TITLE ((“drought” AND “projection”) OR (“drought” AND “forecast*”) OR (“drought”
AND “predict*”)).

2.2. Data Analysis

The Scopus database, which includes a large number of peer-reviewed publica-
tions, such as journals, conference proceedings, and scholarly book chapters, was used to
search for scientific publications of interest. Furthermore, Scopus allows us to download
2000 documents at once, whereas Web of Science allows us to instantaneously download
only 500 documents. We, therefore, searched for each of the queries in the Scopus database.
The search criteria, which were limited to source types (e.g., journals, conference proceed-
ings papers, and book chapters), language (English), and time span (1963 to June 2021
included), were applied to all the queries.

Data were downloaded in three different formats—RIS format, BibTeX, and csv—for
analysis. The downloaded data included citation information (authors, title, citation
count, and source), bibliographical information (affiliations, publisher, and language),
abstract and keywords (author keywords and index keywords), and other information
(conference information and references). EndNote, Excel 2016, Latex, and Rstudio were
used in addition to the bibliometrix R-package [19] to analyze data. EndNote, Excel 2016,
and the bibliometrix R-package were used to cross-check duplications and inconsistencies
(e.g., misspellings and variant names) in the documents. Latex was used (if needed) to
convert some data from one format to another.

2.3. Refined Scope

Drought monitoring, which involves using drought indicators/indices (DIs) in this
study, was addressed in two stages. First, published documents were found for each DI
individually, and, in total, 11,291 documents were identified. Details of each DI, such as
the total number of studies, the most applied countries, the number of countries using
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the index, and time span, were noted. Second, these documents were merged via the
bibliometrix R-package [19], and 8294 documents were obtained from 1424 sources that
were used to explore global statistics in terms of attributes such as author collaborations,
number of publications, country of collaboration, and co-citations.

On the other hand, the total number of documents was 712 and 1070 for the DR and
DF studies, respectively. The procedure applied to the DI studies was also applied to the
DR and DF studies. First, the DR and DF publications were investigated individually, and
then they were combined for analysis, based on 1694 merged documents (DR_DF) from
648 sources. All in all, three different components of the DEWS were examined.

2.4. Data Visualization

There are numerous tools for bibliometric analysis to prepare a science map of different
results, and some of them are as follows: CiteSpace, BibExcel, VOSviewer, SciMAT, CitNet-
Explorer, and bibliometrix R-package [19,21–25]. VOSviewer, a free java application, allows
us to analyze and visualize citation networks of scientific publications. It is useful for repre-
senting and interpreting large bibliometric maps [21]. In this study, we used the bibliometrix
R-package 3.1.4 [19] in the Rstudio environment (https://www.rstudio.com/, accessed on
30 June 2021) and VOSviewer 1.6.16 [21], ArcGIS 10.6.1 (https://www.esri.com/, accessed
on 16 July 2021), and Excel 2016 for bibliometric analysis.

3. Results and Discussion

This section is organized into two main parts. First, results of data analysis of drought
indicators/indices (DIs) are presented. Second, the results of the data analysis of DR and
DF are presented.

3.1. Drought Indices

Figure 2 presents the proportions of DIs for five different categories: meteorological,
soil moisture (agricultural), hydrological, remote sensing, and composite (or modeled). The
tree map of DIs (Figure 2) clearly illustrates that the most published documents belong
to the meteorological category, whereas the least published documents were reported for
composite or modeled DIs. The percentages of documents (out of 11,291 publications)
were 57%, 8%, 4%, 29%, and 2% related to meteorological, soil moisture, hydrological,
remote sensing, and composite/modeled DIs, respectively. The most notable DIs in terms
of the number of published documents were the Standardized Precipitation Index (SPI), the
Normalized Difference Vegetation Index (NDVI), the Palmer Drought Severity Index (PDSI),
and the Standardized Precipitation Evapotranspiration Index (SPEI), with 2483 (22%), 2023
(17.9%), 1245 (11%), and 1207 (10.7%) publications (percentages), respectively. The total
number of documents on hydrological DIs was 424, which was 4% of total publications in
terms of all types of DIs. There were fewer applications of hydrological DIs in Australia–
Oceania, Middle-East and North Africa, and Sub-Saharan Africa than in other regions [16].
This could be due to a lack of interest by researchers rather than an absence of drought in
these regions. The most popular indicator in the hydrological category was the Streamflow
Drought Index (SDI), followed by the Standardized Streamflow Index (SSFI), with 185 and
89 publications, respectively. The most popular soil moisture indicator was Soil Water
Storage (SWS) which captured 680 publications across 62 different countries (Table S1). In
terms of soil moisture, Australia–Oceania was the leading region [16]. Composite/modeled
DIs, which became popular in the mid-2000s, captured the least number of publications
(239 documents) compared to the other four categories. The most widely cited indices—DIs,
SPI, NDVI, SPEI, SWS, PDSI, the Aridity Index (AI), the Rainfall Anomaly Index (RAI),
SDI, and the Vegetation Condition Index (VCI)—were used in 85, 76, 68, 62, 57, 43, 39, 39,
and 39 countries around the world, respectively. The DI studies showed an increase after
the 1990s, for example, 35 out of 50 DIs were published after the 1990s.

https://www.rstudio.com/
https://www.esri.com/
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Figure 2. Types of droughts and DIs based on 11,291 documents.

There were several factors that affected the selection and use of DIs, such as data
availability, missing data, availability of a code or program to use the index, multiple inputs
for calculation, and complexity of calculation. The most complex indices/indicators were
not the best ones to apply in drought studies. Visualization of published DIs in terms
of the types of DIs and ease of use with their document numbers can help researchers
compare them. A Sankey diagram (Figure 3) was prepared to illustrate the most used
DIs from each category and their ‘ease of use’. Details of the method of classification
based on the ‘ease of use’ can be found in the WMO and GWP (2016). The top three DIs,
which captured the highest number of publications, were selected from meteorological, soil
moisture (2 indicators selected), hydrological, remote sensing, and composite/modeled
indicators to prepare the ‘alluvial diagram’.

Figure 3 shows that nodes of ‘ease of use’ are decreasing while the difficulty level of
DIs is increasing. The total number of publications was 5280, 2923, and 680 at levels 1, 2,
and 3 ease of use, respectively (based on the selected indicators in Figure 3). This result
shows that the ‘ease of use’ of a drought index is one of the main criteria in choosing an
index in addition to its reliability. It was noted that the simplicity of an index did not mean
it was the best index to use.

The most popular DIs—SPI, PDSI, and SPEI—covered 38.5%, 19.5%, and 18.7%, re-
spectively, of meteorological drought studies in terms of total publications. The NDVI was
the most dominant index, which consisted of 60.9% of remote sensing studies. Figure 4
presents the published documents by year for the most-used DIs based on more than
1000 publications.
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The PDSI that had the longest records of meteorological DIs did not show a notable
increasing trend over time. The highest number of documents were published in 2018, 2019,
and 2020, being 105, 101, and 107 publications, respectively. The PDSI uses precipitation,
temperature, and available water content as input data [26]. Figure 4 shows that the
PDSI was not preferred compared to other meteorological DIs due to its complexity of
calculation and several other limitations, including (i) the need for serially completed
data, (ii) the PDSI being slow to respond to developing and diminishing droughts, (iii)
not being useful for identifying a rapid emerging drought due to its lag time, (iv) drought
classifications (e.g., “extreme” or “severe”) of PDSI values varying widely from one location
to another [27–32]. On the other hand, the popularity of SPI, SPEI, and NDVI increased over
the period. The SPEI was introduced in 2010 by Vicente-Serrano et al. [33] to overcome the
limitations of current DIs. Precipitation and temperature were input data for the SPEI. One
of the main advantages of the SPEI is that it is applicable in future climate models under
various future scenarios. The SPEI showed the steepest increasing trend when compared
to other indices (Figure 4). The NDVI [34] uses satellite data to identify and monitor the
effects of drought on agriculture. The SPI was proposed by McKee et al. [35] to monitor
meteorological drought by using precipitation data as input. Similar to other DIs, the SPI has
both advantages and disadvantages, and more details on this can be found in Mishra and
Singh [31]. An abrupt change was detected in 2010 for SPI-related studies. An increasing
trend can be seen after 2010 for the SPI (Figure 4). National meteorological and hydrological
services (NMHSs) were encouraged to use the SPI to characterize meteorological drought. It
was recommended by the WMO in 2009 to take the necessary steps in drought management
globally using the SPI [36]. The average number of published documents by year for the
SPI, SPEI, NDVI, and PDSI was found to be 104, 101, 56, and 28, respectively.

Figure 5 illustrates the word cloud of frequently occurring keywords plus in DI studies.
Keywords plus are index terms obtained by a computer algorithm based on frequent words
(more than once) in the titles and the reference list of documents. The use of keywords
plus helps capture a document’s content with greater variety and depth in bibliometric
analysis [37] since keywords plus comprise the majority of author keywords [38]. Keywords
plus have been widely used to identify gaps or research trends in different scientific
studies [14,39,40].
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Bigger key word size and bold font emphasize the frequency and strength of DI sources
(Figure 5). The word cloud represents visually the most frequent words used in relevant
studies and helps identify the more (or less) important ones. The most dominant keywords
plus were drought (n = 7137), climate change (n = 2202), remote sensing (n = 1612), soil
moisture (n = 1370), evapotranspiration (n = 1237), vegetation (n = 1219), China (n = 1181),
precipitation (climatology) (n = 1046), NDVI (n = 1038), and standardized precipitation
index (n = 941) in the DI-related studies.

Figure 6 and Table 1 present the ranking of the top-20 countries in total citations and
the top publication category for DI studies, respectively. The quantity of publications is
an essential indicator to assess the development trend in a specific field [17]. Therefore,
a country’s research strength in a particular field to a certain extent can be reflected by
its number of publications; however, it does not indicate the frequency and intensity of
droughts in the given country. It can be seen that the USA had the highest total citations
of 62,011 (Figure 6), whereas China was the first-ranked country in terms of the top
publications, with 1694 published documents (Table 1). According to the total citations,
China (n = 28,268), Spain (n = 13,808), India (n = 6229), and Australia (n = 5788) were the
countries that followed the USA, respectively (Figure 6). In terms of top publications, the
USA (n = 1372), India (n = 393), Iran (n = 323) and Spain (n = 290) were recorded as the
highest after China, in that order. On the other hand, average article citations exhibited
different consequences. For instance, Switzerland (n= 80.5) was the first-ranked country in
terms of average article citation, whereas China was placed fifteenth, with 16.69 average
article citations. In accordance with average article citations, Japan (n = 57.22), Spain
(n = 47.61), the USA (n = 45.20), and the United Kingdom (n = 44.47) were the countries
after Switzerland, respectively. There is no doubt that the number of publications has a
direct link with the average number of article citations. All in all, Figure 6 and Table 1 show
that the USA and China were two leading countries in terms of total citations, number of
publications, frequency of publications, single country publications (SCPs), and multiple
country publications (MCPs).
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Table 1. Top publications per country based on the corresponding author’s countries in DI studies.

Rank Country Publications Freq (%) SCP MCP MCP_Ratio

1 China 1694 24.01 1685 9 0.0053
2 USA 1372 19.44 1366 6 0.0044
3 India 393 5.57 390 3 0.0076
4 Iran 323 4.58 318 5 0.0155
5 Spain 290 4.11 287 3 0.0103
6 Australia 218 3.09 217 1 0.0046
7 Germany 197 2.79 196 1 0.0051
8 Korea 189 2.68 188 1 0.0053
9 Italy 184 2.61 184 0 0.0000

10 Brazil 141 2.00 141 0 0.0000
11 Canada 125 1.77 125 0 0.0000
12 United Kingdom 115 1.63 115 0 0.0000
13 Turkey 113 1.60 111 2 0.0177
14 South Africa 103 1.46 102 1 0.0097
15 Portugal 88 1.25 87 1 0.0114
16 France 87 1.23 84 3 0.0345
17 Japan 76 1.08 72 4 0.0526
18 Greece 69 0.98 69 0 0.0000
19 Mexico 67 0.95 67 0 0.0000
20 Netherlands 60 0.85 59 1 0.0167

Note: SCP refers to single country publications; MCP refers to multiple country publications; MCP_Ratio is the
ratio of the MCPs to the number of publications.

SCPs and MCPs refer to the international collaboration of authors in the DI studies.
SCP represents publications done by authors who belonged to the same country, whereas
MCP represents that the publications that were written by authors belonging to different
countries. Academic collaboration on an inter-country/international collaboration level is
an essential element to evaluate academic development in any specific field.

The most related journals, with their Hirsch-index (H-index), g-index, number of
publications, publication ratio (PR), total citations, and citations per publication (CPP),
are presented in Table 2. The H-index was developed by Hirsch [41] to quantify and
evaluate academic achievements. Simply, the H-index is a journal’s (or author’s) number
of publications (h), each of which has been cited in other papers at least H times. A higher
H-index shows a greater academic impact. Hence, the H-index is an important parameter
to evaluate the quality and quantity of academic studies in any bibliometric analysis [17,42].
The g-index was introduced as an improvement of the H-index by Egghe [43] in order to
measure the global citation performance of a set of articles. Costas and Bordons [44] noted
that the g-index was more sensitive than the H-index and that these indices complement
each other.

From the analysis of 1424 journals, the most productive journals, in the top 20, based
on the DI studies, are shown in Table 2. The number of publications listed in the top
20 journals was 31.7% of the total. The International Journal of Climatology was the leading
journal out of 1424 journals. It had published 261 articles and accounted for 3.15% of the
total publications. In terms of CPP, the Journal of Climate’s ranking was much higher than
the rest of the journals. Moreover, it had the highest total citation and the second-highest
g-index of 99 articles. Although Remote Sensing was the second most productive journal
in terms of the number of publications, its total citations and CPP were below the average
of the top 20 journals because of its late first issue (2010).

Factorial analysis of the co-occurrences of keywords plus was performed through
the multiple correspondence analysis (MCA) [45–47] to obtain a conceptual structure
map [48] of the DI studies (Figure 7). The more similar the words in distribution, the
closer to each other they are mapped in a two-dimensional space based on the relative
positions of points (keywords). Three clusters were generated: Cluster 1—in green—
highlights the meteorological drought, drought indices, and streamflow; Cluster 2—in
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blue—identifies remote-sensing-related studies; and Cluster 3—in red—highlights the other
frequent keywords plus, such as water supply, climate change, water management, and
climate models.

Table 2. Most productive sources for DIs. (TP is the number of total publications; PR (%) is the
percentage of the number of one journal’s publications to the total number of publications; TC is total
citation; CPP is the citations per publication, PY_start is the year of the first issue.).

Rank Sources TP PR (%) H-Index g-Index TC CPP PY_Start

1 International Journal of Climatology 261 3.15 54 99 11,244 43.08 1989
2 Remote Sensing 240 2.89 28 41 2840 11.83 2010
3 Theoretical and Applied Climatology 200 2.41 31 51 3601 18.01 1987
4 Journal of Hydrology 195 2.35 49 79 7519 38.56 1998
5 Water (Switzerland) 171 2.06 18 26 1389 8.12 2011
6 Science of The Total Environment 140 1.69 29 46 2829 20.21 2008
7 Agricultural and Forest Meteorology 130 1.57 43 69 5398 41.52 1988
8 Natural Hazards 129 1.56 29 51 3125 24.22 2003
9 Water Resources Management 120 1.45 36 70 5360 44.67 1999

10 Remote Sensing of Environment 118 1.42 54 90 8399 71.18 1987
11 International Journal of Remote Sensing 117 1.41 33 64 4568 39.04 1986

12 International Geoscience and Remote
Sensing Symposium (IGARSS) 101 1.22 8 13 289 2.86 1993

13 Proceedings of SPIE—The International
Society for Optical Engineering 101 1.22 5 6 133 1.32 1990

14 Journal of Climate 99 1.19 45 98 12,114 122.36 1993
15 Hydrology and Earth System Sciences 91 1.10 34 56 3350 36.81 1998
16 Agricultural Water Management 89 1.07 25 41 1963 22.06 1996

17 IOP Conference Series: Earth and
Environmental Science 87 1.05 7 8 133 1.53 2014

18 Geophysical Research Letters 84 1.01 38 76 5849 69.63 1998
19 Climate Dynamics 79 0.95 33 53 2950 37.34 1992
20 Environmental Research Letters 79 0.95 25 43 1979 25.05 2007
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There are several science- or citation-based mapping methods, such as direct citation,
bibliographic coupling, co-citation clustering, and co-citation analysis. These methods differ
from each other, and the details of their relative accuracy can be found in [49]. Moreover,
there are different methods to evaluate citation relations of scientific studies. For example,
Šubelj et al. [50] compared different representative methods such as Louvain (modularity
optimization method), Walktrap (random walks-dynamical process), and Infomap (map
equation algorithms). The modularity optimization method (Louvain) was reported to be
the fastest clustering algorithm by Šubelj et al. [50]. Citation analysis is the most common
analysis in bibliometrics, and many studies have been used in different fields for author
co-citation analysis [51–54]. Therefore, in our study, author co-citation analysis was done
with the Louvain clustering algorithm. Co-citation of two documents occurred when
two documents were cited together in a third document. Figure 8 presents the findings
of frequently cited authors in terms of co-citation. It should be noted that only the first
author’s name was considered in the analysis. We can interpret the ranking of co-citation
analysis in terms of three different algorithms, which are betweenness centrality, closeness
centrality, and PageRank (not shown in here). PageRank is one of the complementary
methods in citation analysis, which allows us to identify publications referenced by highly
cited articles [55]. Betweenness centrality measures the number of times an author acts as a
bridge or the shortest path between two other authors [56], whereas closeness centrality
measures the distance of a vertex to all others in the network [55,57]. Wang, Zhan, Mckee,
Vicente-Serrano, and Li were found to be the top-ranking authors based on betweenness
centrality. The closeness centrality outcome showed that the top 5 authors were Wang, Zhan,
Li, Liu, and Chen. According to the PageRank algorithm, Mckee, Vicente-Serrano, Palmer,
Dai, and Mishra were the top five authors who were referenced by highly cited publications.
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Table 3 summarizes the top 20 DIs and the most applied countries. The top 15 countries
were selected based on a higher number of publications, citations, and affiliations in the DI
studies, whereas the DIs were selected based on the number of publications and frequency
of use by countries. Countries are listed in alphabetical order. DIs were categorized as
meteorological, soil moisture (agricultural), hydrological, remote sensing, and composite
(or modeled). Then, the DIs were listed in alphabetical order in each category.
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Table 3. Top 20 DIs used in different countries and the number of publications in each country.

Type Index Australia Brazil Canada China Germany India Iran Italy Korea Portugal South
Africa Spain Turkey United

Kingdom USA

M

AI 7 3 2 51 12 10 13 6 2 2 4 6 3 1 13
DRI 7 2 - 27 6 16 33 7 7 4 4 20 7 7 11
EDI 4 - 2 11 3 9 13 2 24 1 4 - 2 - 1

PDSI 11 5 32 308 26 16 14 7 17 5 5 13 12 21 448
RAI 25 22 - 36 8 25 5 3 2 - 5 6 5 7 49

sc-PDSI 1 - 2 54 7 - 1 3 - - 2 1 4 3 16
SPEI 19 7 19 430 34 44 31 21 32 23 24 88 13 8 86
SPI 49 46 33 407 45 175 200 88 92 41 41 72 71 37 214

SM
SMA 5 3 5 23 2 2 7 7 2 - - 2 - 4 30
SWS 30 17 5 137 33 23 12 10 2 8 7 63 4 12 81

H
SSFI - 3 - 30 2 5 3 1 1 - 1 5 3 3 8
SDI 5 2 1 21 - 8 25 6 8 1 1 10 3 2 18

RS

EVI 8 16 6 72 8 3 3 3 1 - 3 8 - 7 63
ESI 5 2 - 15 3 3 2 4 10 1 - 3 1 1 22

NDVI 48 24 35 399 50 116 46 48 28 22 28 56 16 24 357
NDWI 2 6 5 31 4 14 4 5 6 2 7 1 - 4 24

TCI - - - 55 1 22 6 2 3 7 2 - 1 - 12
VCI 2 3 2 62 6 42 9 2 3 6 8 - 2 1 26
VHI 2 5 - 38 1 16 2 2 8 4 1 - 2 - 19

CM GLDAS 5 4 1 46 2 4 4 2 5 - 1 - 2 1 12

M: meteorological, SM: soil moisture, H: hydrological, RS: remote sensing, CM: composite or modeled. Highlighted
cells present the maximum for the related indicator.

Table 3 presents that the USA and China are the two leading countries in the category
of DI publications, whereas China is number one in terms of the use of various DIs. The
Effective Drought Index (EDI) was the most used drought index in Korea, among other
countries, which is the origin of the EDI. The Drought Reconnaissance Index (DRI) and SDI
were the most applied indices in Iran compared to other countries.

3.2. Drought Risk and Forecast

The word cloud of frequently occurring keywords plus in the DR_DF studies is shown
in Figure 9. The most appeared keywords plus were drought (n = 1739), risk assessment
(n = 501), climate change (n = 461), weather forecasting (n = 291), forecasting (n = 261),
China (n = 190), prediction (n = 160), soil moisture (n = 160), and United States (n = 154) in
the DR_DF studies.
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Figures 10 and 11 present the spatial distribution of the top countries in terms of the
total number of publications and the SCP and MCP for the DR and DF studies, respectively.
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China was the most dominant country in the DR field in terms of total publications (n = 175),
SCP (n = 139), and MCP (n = 36), which had double the figure of the USA records. The USA
(n = 86), Australia (n = 31), Germany (n = 27), and the United Kingdom (n = 25) followed
China in the DR field. On the other hand, the USA was in the first rank with 192 publications
and 152 SCPs, whereas China was leading in the international collaboration level with
50 MCPs on DF studies.
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Greece and Mexico were not in the top 20 rankings in the DR and DF studies; however,
they were in the 18th and 19th places in the DI studies. Similarly, Brazil, Portugal, and
Turkey were not on the top-ranking list for DR, but they had adequate publications in the
DI and DF field. South Africa was the only African country that ranked in the top 20 in the
DI, DR, and DF studies.

Table 4 shows the ranking of the top 20 countries’ total and average article citations in
the DR and DF studies. The highest total citation was recorded in the USA, whereas China
was the second in both fields. On the other hand, the average article citation of China was
lower than most of the countries in the top-ranking list. Some other countries, such as
Egypt, Slovakia, and Finland, can be seen in Table 4, yet they were not in the ranking of
the top 20 in terms of the number of publications. Australia and United Kingdom showed
better performance in the DR and DF fields than in the DI field. For instance, Australia was
ranked in the third and fifth places based on the number of publications, and its position
was fourth and third in the DR and DF fields, respectively. Moreover, the number of
MCPs shows that Australia and the United Kingdom had good inter-country collaboration,
followed by the USA and China.

Table 4. Total citations per country in DR and DF studies.

Rank
Drought Risk (DR)

Rank
Drought Forecast (DF)

Country TC AAC Country TC AAC

1 USA 7526 87.51 1 USA 5354 27.89
2 China 2128 12.16 2 China 2100 12.00
3 Germany 1087 40.26 3 Australia 1566 33.32
4 Australia 815 26.29 4 United Kingdom 1528 50.93
5 United Kingdom 542 21.68 5 Iran 1259 16.14
6 Japan 455 32.50 6 India 982 26.54
7 Italy 440 25.88 7 Italy 727 51.93
8 Netherlands 278 21.38 8 Canada 643 32.15
9 Spain 258 14.33 9 France 464 35.69
10 India 172 11.47 10 Spain 453 25.17
11 Korea 140 10.77 11 Korea 404 8.24
12 France 113 18.83 12 Turkey 341 21.31
13 Canada 100 16.67 13 Portugal 335 41.88
14 Ethiopia 90 22.50 14 Brazil 314 20.93
15 South Africa 86 12.29 15 Switzerland 310 62.00
16 Iran 81 4.50 16 Japan 260 52.00
17 Egypt 77 38.50 17 Germany 241 18.54
18 Switzerland 71 14.20 18 Finland 143 47.67
19 Slovakia 70 70.00 19 Malaysia 138 10.62
20 Greece 69 23.00 20 Netherlands 138 10.62

TC presents total citations; AAC presents average article citations.

Figures 12 and 13 display international collaborations between countries with the
selected minimum productivity of publications and citations. Co-authorship analysis for
a scientific collaboration has been used in several studies [58–61]. Network visualization
maps illustrate the extent and strength link among countries. The size of the circles depicts
the total strength of the country, and the thickness of the lines represents the strength of
collaboration between any two countries.
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Figure 13. Network visualization map of country co-authorships in the DF field. Countries with
a minimum of 10 published and cited articles were included. The map includes 25 countries in
4 clusters. Total link strength of the top 5 countries are as follows: USA = 137, China = 97, United
Kingdom = 83, Australia = 76, Netherlands = 52.

Co-authorship analysis between countries with the full counting method [21] shows
that there were 124 links between 25 out of 90 countries in 6 clusters in the DR field
(Figure 12). The following pairs of countries were found to be having strong collaborations:
USA–China (link strength = 20), USA–UK (link strength = 14), China–UK (link strength = 9),
USA–Italy, and USA–France (link strength = 7). Number of co-authorships was the highest
for the USA, followed by China and the UK, based on the DR studies.

Figure 13 depicts 153 links between 25 out of 98 countries in 4 clusters in the DF field.
The strong collaborations were found among the following countries: USA–China (link
strength = 29), USA–Australia (link strength = 10), UK–Netherlands (link strength = 10),
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USA–UK (link strength = 9), USA–Italy, and China–UK (link strength = 9). The number of
co-authorships was the highest for the USA, followed by China and the UK, based on the
DF studies.

Figure 14 presents the most relevant sources for the DR_DF studies. Results from the
study disclosed the top 20 sources with the most published research articles on DR_DF-
related research. Natural Hazards was ranked first, with 56 articles, 19 H-index, and
1258 total citations. The Journal of Hydrology was ranked second, with 45 articles, 23
H-index (the highest), and 1801 total citations, followed by Theoretical and Applied Cli-
matology (38 articles, 16 H-index, 539 total citations). The Journal of Hydrology had the
highest citations (1801 total citations), followed by the Journal of Hydrometeorology, with
1399 total citations.
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Trend topics (TTs) on DR_DF research between 1990 and June 2021 are shown in
Figure 15. TTs were created based on the most frequent keywords plus, similar to the
word cloud (Figure 9). However, TTs reveal the most frequent words with their occurrence
by time. The size of the dots represents the frequency of words, whereas the horizontal
line depicts the time frame of frequency of occurrence. For instance, the term ‘New South
Wales’ occurred 16 times between 2019 and 2021 (June included). Why had ‘New South
Wales’ been in the TTs for the last 2 years? This was because New South Wales (NSW) has
had exceptional droughts since mid-2017 [62–64] and extraordinary wildfires in 2019/2020
as a cascading effect of drought [65]. Therefore, DR_DF-related studies on the ‘New
South Wales’ term have been trending since 2019. Furthermore, the frequency of the term
‘Australia’ was recorded 70 times between 2008 and 2019. This result clearly shows that
the number of studies on DR_DF in Australia was focused after one of the worst droughts,
the ‘Millennium Drought’ [66,67]. Similarly, other TTs allow researchers to interpret how
studies have evolved over time and what trends they show.
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We determined research themes that allowed for the superior interpretation of the
results. Figure 16 presents thematic maps of author keywords in the DR_DF-related studies.
The x-axis represents the centrality (relevance degree), which measures the importance
of the selected theme, and the y-axis represents the density (development degree), which
measures the development of the chosen theme [68,69]. The graph was divided into four
parts as follows: motor themes (the upper right quadrant), niche themes (the upper left
quadrant), emerging or declining themes (the lower left quadrant), and basic themes (the
lower right quadrant). Motor themes are well developed and important for the structuring
of the research field. The cluster placed in the motor themes shows a strong relevance
degree and high density. Niche themes are well developed but isolated and hence are of
only marginal importance for the field. Niche themes have high density but lower centrality.
Emerging or declining themes are weakly developed and marginal. The lower left quadrant
of the thematic map has both low density and low centrality. Basic themes are important for
a research field not yet well developed. This theme has high centrality but lower density.

We used the parameters to create the thematic map (Figure 16), as follows: the top
430 keywords; however, the items placed in the clusters are set to the minimum cluster
frequency of 3, one representative label for each cluster. Other relevant details about
cluster representation, themes, and keywords in clusters are given in Table S2 in the
Supplementary section.
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In total, 10 clusters were generated in the thematic map of keywords. ‘Drought’,
‘drought risk’, and ‘SPI’ clusters were placed in basic themes, and the topics under these
clusters were related to climate change, risk assessment, agricultural drought, drought
forecasting, and vulnerability. Some part of the ‘drought risk’ theme was in motor themes,
and many parts were in the basic theme. The clusters placed in the basic or transversal
theme were important for research; however, more research is required. ‘Risk management’
and ‘drought prediction’ clusters were positioned in motor themes. ‘Drought prediction’
showed higher centrality and density than ‘risk management’. Some topics under these
clusters were related to hydrological drought, climate variability, water management,
uncertainty, and meteorological drought. It may be noted that more research is needed
in the ‘risk management’ category, with water management, drought management, and
climate variability topics. ‘Drought stress’, ‘cloud computing’, and ‘Markov chain’ were
placed in the niche theme. These clusters (or themes) were considered highly developed
but isolated. The density of ‘cloud computing’ and ‘Markov chain’ was high, yet centrality
was low. ‘Drought stress’, on the other hand, had higher centrality/lower density than
‘cloud computing’ and ‘Markov chain’. Drought tolerance, water deficit, grain yield, and
wheat were related to the ‘drought stress’ theme. Emerging or declining themes involved
‘prediction’ and ‘remote sensing’ clusters. These two marginal themes had low density and
low centrality, and they were weakly developed. Some topics under these clusters were
modeling, land surface model, GIS, and downscaling which indicate that more research is
required in this field [20].

Table 5 presents the top-20 most productive authors on DR- and DF-related studies.
The number of an academic researcher’s output can reveal the strength of their research
and their effectiveness in carrying out an adequate academic study [17]. Hence, to weigh
an author’s impact on a particular field, the quantity of a researcher’s academic papers in a
field can be inferred as an important index. The results showed that the top authors were
from China, especially based on DR-related studies. The most productive author in the DR
field was Zhang Q, who had 20 articles. 4.31 article fractionalized, and 11 H-index. Wilhite
DA, from the USA, had the highest total number of citations in this field: he published
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9 articles in the field and was cited 448 times. Singh VP, from the USA, was the most
productive author in the area of DF with 15 articles, 700 total citations, and 12 H-index.

Table 5. Most productive authors on drought risk and drought forecast studies.

Rank
Drought Risk (DR) Drought Forecast (DF)

Authors Articles AF H-Index TC Authors Articles AF H-Index TC

1 Zhang Q 20 4.41 11 398 Singh VP 15 4.00 12 700
2 Wang J 19 4.13 9 238 Wang Y 15 3.04 7 174
3 Wang Y 19 3.32 4 166 Kim TW 13 3.84 6 385
4 Zhang J 15 4.18 8 277 Yuan X 11 3.43 8 563
5 Zhang L 13 2.78 6 194 Chen J 11 2.92 5 107
6 Chen J 11 3.43 5 141 Wood EF 10 2.90 9 662
7 Liu X 10 2.09 5 91 Hao Z 10 2.06 7 481
8 Wilhite DA 9 5.67 7 448 Svoboda M 10 1.30 8 316
9 Zhang Y 9 1.74 4 108 Deo RC 9 2.67 8 565

10 Kim TW 9 2.09 4 87 Dutra E 9 1.51 7 410
11 Singh VP 8 1.85 5 196 Wetterhall F 9 1.72 6 374
12 Zhang X 8 1.45 5 171 Wang L 9 2.06 4 358
13 Wang C 8 1.48 3 60 Tadesse T 9 2.21 7 207
14 Li J 8 1.79 3 47 Liu Y 9 2.34 4 72
15 Li Y 7 1.36 4 161 Kumar A 8 1.73 7 434
16 Wang L 7 1.20 5 123 Kisi O 8 1.88 4 200
17 Huang Q 7 1.31 4 108 Rhee J 8 2.89 4 146
18 Shaw R 7 3.17 5 81 Masinde M 8 4.42 4 66
19 Hayes MJ 6 1.47 4 68 Panu US 8 3.67 4 50
20 Bao Y 6 1.29 3 47 Lee JH 8 1.93 4 48

Note: AF and TC refer to article fractionalized and total citations, respectively.

4. Conclusions

This study was not intended to identify the frequency and severity of droughts in any
country/region but rather to map the trends in research on selected drought aspects by
bibliometric analysis. Here, the Scopus database was used in sourcing the relevant articles
on DI-, DR- and DF-related studies.

The percentages of documents out of the selected 11,291 publications were found to
be 57%, 8%, 4%, 29%, and 2% based on meteorological, soil moisture, hydrological, remote
sensing, and composite or modeled DIs, respectively. The most globally used DIs were
found to be SPI, NDVI, PDSI, and SPEI, with 2483, 2023, 1245, and 1207 publications, re-
spectively. The most notable DIs used in each category were SPI (meteorological), SWS (soil
moisture), SDI (hydrological), NDVI (remote sensing), and GLDAS (composite/modeled).
In terms of the ‘ease of use’, 55% (n = 6212), 38% (n = 4253) and 7% (n = 826) of the publi-
cations belonged to levels 1, 2, and 3 ease of use, respectively. The DI studies showed an
increase after the 1990s, and 35 out of 50 DIs were first published after the 1990s. An abrupt
change was detected in 2010 for the SPI-related studies. The results show that there has
been strong global interest and growth in the applications and developments of DIs over
the past 20 years.

At the country level, the USA and China were found to be the two leading and pro-
ductive countries in terms of the largest number of publications and the greatest academic
influence on the DI studies. Furthermore, China also holds the key leadership position in
DI studies in terms of using a variety of the top drought indices, whereas the USA had the
most cited academic researchers’ publications. It should be noted here that the occurrence
of droughts in a given country is not conveyed by this analysis; for example, the US authors
co-authored papers on droughts with the authors of other countries, where the focus was
not US droughts.
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The most productive journal for the DI field was found to be the International Journal
of Climatology in terms of total number of publications (n = 261), H-index (54), g-index
(99), and publication rate (3.15%) when compared to 1424 sources in the area of DIs.

Similar to the DI studies, the USA and China were found to be the most productive
countries in terms of the quantity and quality of academic outputs in the DR and DF fields.
Furthermore, network analysis of country co-authorships highlighted the top 3 countries
as the USA, China, and the United Kingdom, in this field. Natural Hazards was found to
be the first-ranked journal in terms of the number of published articles; although fewer
papers were published in the Journal of Hydrology, it received the highest total citations
and H-index. Singh VP is the most prolific author and has the greatest academic influence
on the DF field, with the largest number of publications, the highest H-index, and far
higher total citations than others, whereas Zhang Q was identified as the most productive
author in the DR-related studies. Wilhite DA (from the USA) published fewer papers in the
DR field, yet his publications were more widely cited and had a significant influence in
the field.

Trend topics analysis based on ‘keywords plus’ showed how researchers had focused
on the area of DR and DF over time. This study also explored the research themes on the
DR_DF field and generated a thematic map, which allowed us to interpret the results of
the bibliometric analysis in terms of keywords. Ten clusters were placed in four different
themes, and their position and frequency allowed us to reveal their importance, develop-
ment, and relevance in the field. According to the thematic map, more research is needed
in risk management, water management, and drought management themes. This review
study performed a bibliometric analysis to determine the main themes of scientific progress
and the evolution and trends in the area of DI, DR, and DF research, which may help
provide guidance for future research in drought science.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14020253/s1, Table S2: Drought indices in terms of ease of
use, number of publications, most used countries and time span; Table S1: Themes and keywords in
thematic map.
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