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Abstract: In the context of global climate change, the ecological environment of Tibet has been
gaining attention given its unique geographical and fragile nature. In this study, to understand
the pollution status of the surface water of Tibet, China, we collected monthly data of 12 indicators
from 41 cross-sectional monitoring sites in 2021 and analyzed the spatial and temporal variations of
nutrients and heavy metal elements, water quality conditions, and pollutant sources in surface water.
All 12 polluting elements, except lead (Pb), had significant seasonal variations, but the magnitude
of the differences was very small. Spatially, nutrient elements were relatively concentrated in the
agricultural and pastoral development areas in central and northern Tibet. In general, the water
quality in most parts of Tibet was found to be good, and the water quality of 41 monitoring sections
belonged to Class I water standard as per the entropy method–fuzzy evaluation method. The study
used a multivariate statistical method to analyze the sources of pollution factors. The principal
component analysis method identified four principal components. The results of this study can
provide a scientific basis for pollution prevention and control in the Tibet Autonomous Region, and
contribute to further research on water ecology.

Keywords: nutrient elements; heavy metal elements; spatiotemporal characteristics; entropy
method-fuzzy evaluation method; principal component analysis

1. Introduction

Tibet is the main part of the Qinghai–Tibet Plateau in China with the highest and
largest mountain systems in the world, such as the Himalayas, Nyingchi Tanggula, and
Karakoram. It is also the main snow distribution area in China, and its glacial meltwater
is the source of river runoff recharge for more than 10 countries in Asia [1]. With the
global climate change and rapid development of the Tibetan society and economy, the
exploitation of natural resources and development of secondary and tertiary industries
have gradually accelerated, considerably impacting the management and utilization of local
water resources. Therefore, research on the security of water resources in Tibet is of great
scientific research value and practical significance for the harmonious coexistence of man
and nature, and the maintenance of ecological security is a prerequisite for development.

The deterioration of aquatic environments owing to urbanization and economic devel-
opment is becoming a serious problem [2]. In recent years, domestic studies on heavy metal
pollution in surface water have mainly focused on areas with developed water systems or
industrial bases. He et al. collected exposure concentration data of ten typical heavy metals
from eight watersheds in China; they assessed and compared the ecological risks in the
water bodies of each watershed, and mining was identified to be the main cause of heavy
metal pollution [3]. Zhu et al. [4] conducted a study on the distribution characteristics of
heavy metals in the sediments of major water systems and concluded that heavy metal
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pollution gradually developed into complex pollution of multiple elements due to the
development of recent industries. For the western region, especially the Qinghai–Tibet
Plateau, which is a unique geographical unit in the world, there are few studies on its
surface water pollution and the concentration of nutrients and heavy metals in the local
surface water. Based on the analysis of surface water samples collected from the Gongga
mountain area, He et al. [5] found that the mass concentrations of heavy metal elements
and nutrients in surface water generally show an increase from west to east under the
influence of topography and monsoon. Chen et al. [6] investigated the enrichment and
migration characteristics of heavy metal elements in polyunsaturated copper ores and
found that the distribution of heavy metal elements was remarkable influenced by the min-
erals. Yang et al. [7] analyzed the enrichment characteristics of organochlorine pesticides
and heavy metals in fish from remote mountain lakes and the Lhasa River on the Tibetan
Plateau and concluded the plateau to be a regional pollutant convergence area due to long-
range atmospheric transport and topographic cold traps. To date, the relationship among
water quality, organic matter pollution, and heavy metal pollution in Tibet has not been
studied thoroughly. Moreover, information on the distribution of surface water pollution
and water quality evaluation lacks the scope of large watersheds, and most studies were
mainly conducted in small watersheds.

While connecting and allocating rivers, lakes and other water resources for human
use, there are more and more studies on water quality security and ecological impact [8].
Polluted and low-quality water resources will damage natural ecosystems and endanger
human and animal health [9]. At present, arsenic (As) is a ubiquitous toxic substance
in Tibetan rivers, and its compounds have teratogenic and carcinogenic effects [10,11].
Zhang et al. [12]. observed a very high concentration of dissolved As (1130–9760 µg/L)
in the hot springs in the upper reaches of the Yarlung Zangbo River. Wang et al. [13]
conducted a health risk assessment in the Yamdrok-tso basin, southern Tibetan Plateau,
and found that when residents were exposed to As in the lake water through oral and skin
channels for a long time, there was a potential danger in this area, and the contribution rate
of cancer risk was 97.31%. Zhang et al. [14] found that changes in the nutrient structure
and biodiversity of the Lhasa River forced the number of maladapted fish to decline. Based
on the fully covered water quality data of Tibet, the non-parametric Kruskal-Wallis test is
used to show the seasonal and regional changes in nutrient elements and heavy metals in
2021. According to the pollution situation in different regions and the health threat caused
by local pollution, researchers can propose some adaptive treatment measures to alleviate
the pollution.

Human activities are slowly affecting Tibet. So far, there has been no comprehensive
understanding of water quality in Tibet. It is very necessary to carry out water quality
assessment for its surface water. Analytical hierarchy process (AHP) and fuzzy AHP are
usually used, but it is difficult and uncertain to determine model parameters (such as
variable weights) under actual conditions, which leads to inaccurate water quality risk
assessment [15]. Entropy method-fuzzy evaluation method combines the objectivity of
entropy method with the fuzziness of fuzzy evaluation method [16–18]. This method can
not only use the inherent information of the original data, but also takes into account the
judgment of the practical experience of the evaluators to obtain the importance coefficient
of each pollution element. It makes up for the shortcomings of the two methods, provides
a more accurate and objective water quality assessment and determines river pollution risk
indicators [18]. However, this method has never been used in the water quality assessment
of Tibetan rivers, and its applicability is unknown.

In the context of global climate change, due to the unique geographical features and
fragile ecological environment of Tibet, ecological and environmental problems are gaining
attention, and it is important to study the local water resource situation. With the acceler-
ation of urbanization and industrialization, the pollution of water resources in Tibet has
become more serious and the seasonal spatial-temporal distribution of pollutant elements
has changed. The impact on water resources, hydrological processes, social development
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and economy of downstream China will become more complex. Reviewing the literature,
it was easy to realize that previous studies mostly focused on small watersheds or cities
in Tibet, and until now there has been no comprehensive exploration in whole Tibet yet.
Therefore, this study analyzed the spatial and temporal distribution of surface water pollu-
tion, for the first time, using data from 41 monitoring sites in Tibet from a large watershed
perspective to better protect the water resources in Tibet. The study objectives were (1) se-
lect the non-parametric Kruskal–Wallis test combined with box line and spatial distribution
maps to analyze the seasonal and inter-basin variability of elements, (2) combine the en-
tropy value and fuzzy evaluation methods to develop a more objective evaluation of water
quality at the cross-sectional monitoring sites, and (3) use Pearson correlation and principal
component analyses to determine the source of the polluting elements.

2. Materials and Methods
2.1. Study Area Overview

The Tibet Autonomous Region is located in the southwest of the Qinghai–Tibet Plateau
at 26◦50′–36◦53′ N and 78◦25′–99◦06′ E, with an average altitude >4000 m. It covers an
area of 1,228,400 km2, accounting for approximately 1/8 of the total area of China, and
is known as the roof of the world [1]. The region’s local annual average temperature is
low, the temperature difference between day and night is high, solar radiation is strong,
average sunshine time is long, and natural resources are extremely rich. Tibet is one of
the provinces with the largest number of rivers and most concentrated swampy lakes in
China, with more than 20 rivers with watershed areas >10,000 km2 and 819 lakes with
areas >1 km2.

The natural ecosystem types (grasslands, forests, and wetlands) of Tibet account for
more than 90% of the total area of the region and are the main ecosystems of the region.
The arable land in Tibet is mainly concentrated in the middle valley of the Yarlung Zangbo
River, the valley of “three rivers” in eastern Tibet, and in the lower valley of the Niyang
River in the Linzhi region of southeastern Tibet. With the growth of population and the
improvement of urbanization, the construction lands have increased slightly.

Major tectonic blocks of Tibet are bound by the Yarlung Zangbo river fault, which
divides the northern Tibetan Plateau and southern Tibetan Mountains. The geological
structure of Tibet can be divided into five units: the Himalayan, Lhasa–Bomi, Tanggula,
northern Tibet and Xinjiang adjacent area, and Chengdu area linear fold systems. The
mountain range, river course, and rock stability in Tibet are varyingly affected by the
fracture zone activities. Tibet is located in the Mediterranean–Tethyan metallogenic belt,
which makes the local mineral resources extremely rich, and the development of mineral
resource research has become an important industrial project in Tibet.

As an important ecological barrier in East Asia, Tibet is of national macro-strategic
significance for studying the local ecological environment. In this study, data from 41 cross-
sectional monitoring points in seven municipal administrative units—Lhasa, Shigatse,
Chengdu, Shannan, Linzhi, Nagqu, and Ali—-in the Tibet Autonomous Region were
collected. The specific locations of monitoring points are shown in Figure 1.

2.2. Data Collection

The water quality data were obtained from the surface water quality data released
by the Ministry of Ecology and Environment [19]. Monthly water quality monitoring
data from 2021.01 to 2021.12 were collected by using python 3.8 crawler. Every 4 h, the
automatic detection station of surface water quality will conduct the whole process of
automatic collection, processing, analysis and data transmission. We used Dissolved
Oxygen (DO), Permanganate Value (PV), Chemical Oxygen Demand (COD), Ammonia
Nitrogen (NH3-N), Total Phosphorous (TP), and Total Nitrogen (TN) as nutrient monitoring
indicators and copper (Cu), zinc (Zn), As, cadmium (Cd), chromium (Cr), and Pb as heavy
metal monitoring indexes. The study collected data from 41 cross-sectional monitoring
points from seven cities, namely Shannan, Lhasa, Shigatse, Chengdu, Linzhi, Nagqu, and
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Ali and divided them into 15 groups in terms of the watershed to facilitate inter-regional
significance analysis (Table 1).
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Figure 1. (a) Specific location map of monitoring sections in Tibet, China; (b) Geographic location
map; (c) Land use map of the study area.

2.3. Analytical Method of Chemical Indicators

In the monitoring work of the National Surface Water Environmental Quality Monitor-
ing Network, the dissolved oxygen in the basic items of the surface water environmental
quality standards is measured on site, and the other 11 monitoring items are analyzed in
a laboratory.

Precision control: at least 10% of the parallel double samples shall be measured for
each batch of samples (≤20). When the number of samples is less than 10, one parallel
double sample shall be measured. According to the sample content, the relative deviation
of the parallel double sample determination results should be controlled.

Accuracy control: for each batch of samples (≤20), at least one certified standard
sample or matrix spiked recovery sample shall be measured, and the measured value of
certified standard sample shall be within the allowable range. Then the spiking recovery
rate can be determined according to the sample content.

Elemental concentrations were quantified using external calibration standards.
The Table 2 is for specific monitoring and analysis method standards and quality
control standards.
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Table 1. Basic information of monitoring sections.

Basin River Basin
Abbreviation

Name of Section
Monitoring Point

Abbreviation of Section
Monitoring Point

Yarlung Zangbo River YLZBJ

Dongsa DS
Zedang ZD

Bianxiong BX
Daju DJ

Nyalam NCH
Pengqu PKC

Saga SG
Xinjiefang Bridge BB

Bomi BM
Lang County Zhongda LX

Nianchu River LZ
Miru MR
Caina CN
Dazi DZ

Semai SM

Xiba Xiaqu XBXQ
Ridang RD

Gongjue JY

Langpo River LPH Langpo River LP
Luozhaqu LZXQ Linzhi ZM

Peng Qu PQ
Pulan PQ
dingjie DJ

Gyirong River JLZB Jiayu JL
Poqu River BQH Peikucuo NLM

Yadong River YDH Yadong YD

Nujiang River NJ

Biru BR
Naqu NQ
baxiu BX
Jilong LL

Jinsha River JSJ

Mangkang MK
Zaqu River Ruyi ZQ

Downstream of Loza xiongqu GJ
Jiangda JD

Jiayu Bridge GTQ

Lantsang River LCJ
Karuo KR

Oron River AQ
Quzika KM

Lohit River CYH Chayu CY

Shiquan River SGZB
Gar GE
Geji GJ

Kongque River MJZB Gangtuo bridge on Jinsha River PL
Xiangquan River LQZB Tuolin TL
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Table 2. Analysis method and quality control standard of monitoring indicators.

Monitoring Items Analytical Methods Method Source Accuracy Precision Recovery Rate of Spiking

DO Electrode method GB/T 7489-1987 - ±0.3 -
PV Acid process GB/T 11914-1989 ±5% ±20% -

COD Dichromate process HJ 505-2009 ±10% ±10% -

NH3-N Nessler’s reagent
spectrophotometry HJ 535-2009 ±10% ±15% 80–120%

TP Ammonium molybdate
spectrophotometry GB/T 11893-1989 ±10% ±10% 80–120%

TN
Alkaline potassium persulfate

digestion ultraviolet
spectrophotometry

HJ 636-2012 ±5% ±10% 90–110%

Cu Inductively coupled plasma
mass spectrometry HJ 700-2014 ±10% ±20% 70–130%

Zn Inductively coupled plasma
mass spectrometry HJ 700-2014 ±10% ±20% 70–130%

As Inductively coupled plasma
mass spectrometry HJ 700-2014 ±10% ±10% 80–120%

Cd Inductively coupled plasma
mass spectrometry HJ 700-2014 ±10% ±20% 70–130%

Cr Diphenylcarbazide
spectrophotometry GB/T 7467-1987 ±5% ±5% 90–110%

Pb Inductively coupled plasma
mass spectrometry HJ 700-2014 ±10% ±20% 70–130%

2.4. Method
2.4.1. Entropy Value Method-Water Quality Fuzzy Evaluation

The concept of entropy originates from thermodynamics and is a measure of the
uncertainty of system state. The entropy method is a relatively objective evaluation method.
The higher the entropy value of the information, the more balanced the structure of the
system, and the smaller the error [20,21]. Therefore, the weights can be derived from the
calculated entropy values. With m monitoring sections and n monitoring indicators, the
original data matrix X = (xij)m×n is formed. Given the differences in the scale, order of
magnitude, and positive and negative indicators in the matrix, it is necessary to normalize
the original data matrix X [22]. The greater the value of the indicator, the better the
water quality, i.e., the positive indicator calculation method. On the other hand, the
smaller the value of the indicator, the lower the water quality, i.e., a negative indicator
calculation method.

In the entropy value method, the calculation steps are as follows [23]:
Yij =

Xij√
∑m

i=1 Xij
2 Positive index

Yij =
Xij√

∑m
i=1 Xij

2 Negative index
(1)

ej = −
1

ln m ∑m
i=1 Yij × ln Yij (2)

dj = 1− ej (3)

wi =
di

∑n
j=1 dj

(4)

where ej denotes the information entropy of the indicator, dj denotes the information
entropy redundancy, and wi denotes the indicator weights.

Fuzzy evaluation is based on the fuzzy mathematical affiliation theory. The above
two methods are combined to develop a comprehensive evaluation method where the
qualitative evaluation changes into quantitative evaluation, with the advantages of clear
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results and systematic evaluation. This method can better quantify water quality ratings.
The steps are as follows: (1) determine the evaluation object factor set and evaluation set
and (2) establish the affiliation degree function and fuzzy matrix R.

In the fuzzy evaluation method, the calculation steps are as follows [24]:

When j = 1, rij =


0, Ti ≥ Si(j+1)

Si(j+1)−Ti
Si(j+1)−Sij

Sij < Ti < Si(j+1)

1, Ti ≤ Sij

(5)

When 1 < j < n, rij =


0, Ti ≥ Si(j+1)

Ti−Si(j−1)
Sij−Si(j−1)

Si(j−1) < Ti < Sij
Si(j+1)−Ti
Si(j+1)−Sij

Sij < Ti < Si(j+1)

(6)

When j = n, rij =


0, Ti ≤ Si(j−1)

Ti−Si(j−1)
Sij−Si(j−1)

Si(j−1) < Ti < Sij

1, Ti ≥ Sij

(7)

R =

 r11 · · · r1n
...

. . .
...

rm1 · · · rmn

 (8)

where Ti denotes the actual measured value of element I, Sij denotes the corresponding
standard value of level j for element I, and rij denotes the affiliation degree of element i to
level j.

(3) derive the weights of the entropy value method W (w1, w2, · · · , wi), and (4) construct
the fuzzy evaluation results matrix B. Water quality evaluation results were analyzed
according to the principle of maximum affiliation.

B = W× R = (b1, b2, · · · , bn) (9)

2.4.2. Principal Component Analysis Method

The Pearson product-moment correlation matrix was used to analyze the correlation
between the elements. Principal component analysis (PCA) was performed through vari-
max rotation, which used small independent variables to explain the variance of interrelated
large datasets, conducive to the analysis of PCA results [25].

The original data matrix X = (xij)m×n was standardized to obtain the standardized
data matrix R = (zij)m×n, followed by the Kaiser–Meyer–Olkin (KMO) measure of sampling
adequacy and Bartlett’s test of sphericity. Subsequently, the eigenvalue λi of R was calcu-
lated as the variance. The eigenvalues were ranked from the largest to the smallest, and
the variance and cumulative variance contribution rates were derived. The eigenvectors
corresponding to the eigenvalues were used to transform the normalized data into the
principal component F.

The number of principal components was determined by the cumulative contribution
of the variance or the magnitude of the eigenvalues.

Zij =
xij − xj

σj
(10)

where xij is the measured value of the indicator, xj is the mean value of the indicator, σj is
the standard deviation of the jth indicator term, and Zij is the standardized value.
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2.4.3. Non-Parametric Kruskal-Wallis Test

Kruskal-Wallis test was a test method for non-parametric multi-sample comparison in
statistics. It was used for the comparison of multiple continuous independent samples. It
did not require the normality of the overall probability distribution [26].

Suppose there were m mutually independent simple random samples (X1, . . . , Xni)
(i = 1, . . . , m). We arranged all of the observations of each sample into a column in increas-
ing order, and Ri (i = 1, . . . , m) represented the sum of the ranks of ni observations X1, . . . ,
Xni of the ith sample in this arrangement. The calculation statistics were as follows:

K =
12

N(N + 1) ∑m
i=1

R2
i

ni
− 3(N + 1) (11)

If each sample had r identical data, let t1 (i = 1, . . . , r) be the number of occurrences
of the ith public observation of each sample in all N observations, then calculated the
following correction statistics

K′ =
N
(

N2 − 1
)

∑r
i=1
(
t3
i − ti

)K (12)

When N was sufficiently large, H and H’ approximately obey the distribution, and the
degree of freedom v = m − 1.

3. Results
3.1. Time Distribution

By testing the normal distribution of the elements, it was found that the data did not
conform to a normal distribution. Therefore, the non-parametric Kruskal–Wallis test was
chosen to analyze the inter-seasonal and inter-basin variabilities and to produce box plots
to observe the degree of dispersion of the data (shown in Table 3). The results showed
that only the test for Pb had a p-value > 0.05 (0.2774). This indicates that there were no
significant inter-seasonal fluctuations and Pb concentration may be influenced by natural
biogeochemical processes [27]. The p-values of all the remaining elements were less than
0.05, implying that they were significantly different from one season to another.

Table 3. Results of Kruskal–Wallis test.

Season Group

Statistical
Value p-Value Cohen’s f

Value
Statistical

Value p-Value Cohen’s f
Value

DO 27.152 0.000 *** 0.063 14.001 0.45 0.137
PV 18.658 0.000 *** 0.058 39.224 0.000 *** 0.193

COD 42.351 0.000 *** 0.078 12.479 0.568 0.091
NH3-N 9.196 0.027 ** 0.034 15.804 0.325 0.122

TP 55.82 0.000 *** 0.072 18.853 0.171 0.122
TN 8.459 0.037 ** 0.021 37.595 0.001 *** 0.119
Cu 31.225 0.000 *** 0.031 35.385 0.001 *** 0.071
Zn 22.848 0.000 *** 0.044 21.154 0.098 * 0.108
As 9.803 0.020 ** 0.013 54.074 0.000 *** 0.309
Cd 56.313 0.000 *** 0.068 7.22 0.926 0.081
Cr 34.244 0.000 *** 0.075 9.953 0.766 0.096
Pb 3.882 0.274 0.031 32.461 0.003 *** 0.201

Note: Correlation coefficient between water quality indicators and physicochemical parameters of water was
significant at: *** p < 0.01, ** p < 0.05, * p < 0.1.

According to Figure 2, the COD, PV, TP, NH3-N, and Cr contents in the surface
water during different seasons were in the following order: winter > autumn > spring >
summer. Combined with the monthly average precipitation in Figure 3, it is speculated
that an increase in summer precipitation may lead to an increase in runoff, resulting in
dilution [28]. The DO, TN, and As contents in the surface water during the different seasons
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were in the following order: winter < autumn < spring < summer. In winter, the rivers
in Tibet are icebound, which hinders the gaseous exchange between the atmosphere and
rivers, resulting in low DO content. The temperature changes in all four seasons also affect
the chemical activity of the elements. In spring, snowmelt starts, and an increase in heavy
metal concentrations in the surface water may be influenced by atmospheric deposition [29].
The Zn content in summer and autumn was significantly higher than in winter and spring.
This is because, due to the high temperature in summer, Zn is more easily released from
sediments [28,30]. In addition, as Cohen’s f values of all elements are <0.1, it can be inferred
that the magnitude of the difference between the four seasons is very small.
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3.2. Spatial Distribution

According to the non-parametric Kruskal–Wallis test, the variables DO, COD, NH3-N,
TP, Cd, and Cr with p-values > 0.05 were statistically insignificant. This indicates that there
are no significant differences between watersheds, and the magnitude of differences is
small. The p-values for PV, TN, Cu, As, Zn, and Pb were <0.05, indicating that there are
significant differences between watersheds. This implies that the sources of these elements
are relatively complex. Cohen’s f values of the elements were used to infer the magnitude
of inter-basin variation, and the inverse distance weighted (IDW) interpolation method of
ArcMap 10.2 (Environment System Research Institute, ESRI, Redlands, CA, USA) was used
to investigate the internal similarity between the basins and analyze the spatial distribution
of the basins.

The spatial distribution patterns of NH3-N, PV, COD, and TN were relatively similar
(Figure 3) with almost overlapping high-content areas and poor water quality in the central
and northern parts due to agricultural fertilizers and pesticides in the central Tibetan
valley and biological emissions from livestock farming in northern Tibet. Conversely, TP
distribution was lower in the central and northern parts and highest in the western and
eastern parts. High TP content in the west may be related to the phosphorus content of
the soil-forming parent material, mainly from soil erosion and rock weathering [31]. The
eastern part is more urbanized; therefore, the phosphorus present in water bodies may
originate from urban wastewater [32]. The DO content increases from west to east. The
eutrophication of water bodies depletes DO, affecting the metabolism of aquatic organisms
and resulting in the deterioration of the water environment [33]. Cohen’s f value of
As was 0.309, indicating the largest variation between watersheds, with content in the
range of 0.23–81.91 µg/L. The high-content area is in the western Bangongcuo-Nujiang
collision zone. The spatial distribution trend of As is consistent with the analysis result of
Zhang et al.’s field sampling in the Yarlung Zangbo River in 2017–2018. Their conclusion is
that the upper reaches of Yarlung Zangbo River have comparatively high levels of dissolved
As (4.7–81.6 µg/L), while the tributaries of the lower reaches have relatively low levels
(0.11–1.3 µg/L) [12]. The Pb content was high in the south of the study area, and the spatial
pattern demonstrated a decreasing trend from south to north. The highest content of Zn
appears in the south-central direction close to the Tibetan Gondian mineralization zone [34].
The spatial distributions of Cu and Cd were relatively similar. High contents were found in
areas with more developed non-ferrous metals. The development of large cities with high
population density is relatively fast in the central part. Mineral development and human
activities are the main causes of heavy metal enrichment [34].

Further, the significant changes between regions are diluted by water [35], and the
complex compounds combined with heavy metals and organics result in the reduction in
contents downstream [36].

Collectively, the high contents of nutrient elements, under the influence of chemical
fertilizers and pesticides and biological emissions, are mainly concentrated in the agricul-
tural and animal husbandry development areas in central and northern Tibet. Areas with
high heavy metal content are mainly those with rich mineral resources, more developed
cities, or frequent geological activities.

3.3. Entropy Value Method-Ater Quality Fuzzy Evaluation

The application of the entropy method to determine the weights can weaken the
association between samples, eliminate human interference, and make the evaluation
results more scientific and accurate [37,38]. From the weight information matrix in Table 4,
Cu has the largest index weight, accounting for 19.3%, and TP has the smallest index
weight, accounting for only 0.8%. The set of weights can be represented as W {0.0036, 0.056,
0.121, 0.008, 0.051, 0.17, 0.013, 0.17, 0.081, 0.193, 0.082, 0.019}.
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Table 4. Results of weight calculation using the entropy method.

Term Information Entropy, e Information Utility Value, d Weight

PV 0.965 0.035 0.036
COD 0.945 0.055 0.056

NH3-N 0.881 0.119 0.121
TP 0.992 0.008 0.008
Pb 0.95 0.05 0.051
As 0.833 0.167 0.17
Cd 0.988 0.012 0.013
Cr 0.834 0.166 0.17
TN 0.92 0.08 0.081
Cu 0.811 0.189 0.193
Zn 0.92 0.08 0.082
DO 0.981 0.019 0.019

The water quality fuzzy evaluation was performed according to the water quality
standard of the Environmental Quality Standards in Surface Water (GB3838-2002) [39].
Forty-one monitoring sections were selected as water quality evaluation sets. DO, PV, COD,
NH3-N, TP, TN, Cu, Zn, As, Cd, Cr, and Pb were selected as evaluation factors, and the
evaluation categories were I, II, III, IV, and V. Subsequently, the water quality category of
the monitoring section was determined according to the maximum affiliation [40].

According to Table 5, the nutrient and heavy metal contents in the surface water in
Tibet are low, and most areas have a higher content than at the level of surface water
category III. The water quality of 41 cross-sections in the Tibet Autonomous Region was
evaluated as category I. Monitoring point JYQ comes under categories IV and V, and the
percentage of water quality IV at monitoring point GJ reaches 10.9%, which indicates
that both sections are slightly affected by pollutants [41]. The Exceedance factor of the
GJ monitoring point is As, and according to the previous analysis, there are significant
seasonal and regional differences in As contents. The As content in water is mainly
controlled by lithology, and the shale that is rich in As is widely distributed in Qinghai-
Tibet Plateau [42–44].

In general, the water quality in most areas of Tibet is relatively good as per the
national sanitary standards for drinking water; some indicators even exceed the standards
for drinking mineral water in China. Local exceedance factors are mainly affected by
agricultural production and geological and geothermal activities.

3.4. Analysis of Pollution Sources

The correlation between the concentrations of water quality indicators can help to
analyze the interactions among indicators in the water body, as well as the possibility of
homology among indicators or the relationship between migration and transformation
processes. Table 6 shows the correlation between the physicochemical parameters of
water and water quality elements. DO, TN, Zn, As, and Pb showed significant negative
correlations with water temperature (WT). With an increase in WT, the increase in biological
activity reduces the nutrient element index, and the adsorption of metal elements by
sediment significantly reduces their content. Similar correlations have been observed in
the source area of the Yellow River and the Yarlung Zangbo River on the Qinghai Tibet
Plateau [45]. Additionally, DO, TN, Zn, Pb, and NH3-N also showed significant negative
correlations with precipitation. The increase in runoff due to the increase in summer
precipitation, results in a dilution effect [25]. The water with low concentration of these
elements diluted the river water. This conclusion is consistent with that of the previous
studies. On the contrary, Cd has a significant positive correlation with WT and precipitation.
Due to the high content of Cd pollutants in aerosols and surface soil of the watershed,
affected by the increase in precipitation, Cd was transported to the river channel. In
the case of Cd and Cu, pH had significant negative correlations, indicating that Cd and
Cu are more easily dissolved in weakly acidic conditions [46]. Alkaline river water may
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facilitate the uptake and oxidation of dissolved heavy metals [47]. DO, NH3-N, TN showed
significant positive correlation with pH, indicating that the local water quality was good.
The coupling effect of pH and dissolved oxygen in the water column of Erhai Lake on
nitrogen release shows that when the water quality starts to deteriorate, the pH value
shows an upward trend (8.48–8.87), while the DO concentration shows a downward trend
(7.42–6.61 mg/L), and the TN concentration increases significantly [48]. COD and Zn had a
significant positive correlation with turbidity. Conductivity was significantly correlated
only with NH3-N. The relatively weak correlation between Cr in heavy metals and the
physicochemical parameters of water implies that it is more influenced by human activities.
The results of the correlation analysis can provide information regarding the sources of
nutrients and metal elements, which is helpful in the subsequent determination of the
sources of major pollutants.

Table 5. Results of entropy method–fuzzy evaluation for water quality.

Section I II III IV V Evaluation Results Exceedance Factor

ZD 0.914 0.063 0.023 0 0 I -
YD 0.944 0.056 0 0 0 I -
TL 0.922 0.078 0 0 0 I -
SM 0.914 0.074 0.011 0 0 I -
SG 0.905 0.014 0.077 0.004 0 I TN
RD 0.901 0.090 0.001 0 0 I -

GTQ 0.936 0.064 0 0 0 I -
PQ 0.961 0.039 0 0 0 I -

PGC 0.982 0.018 0 0 0 I -
NLM 0.872 0.047 0.024 0.057 0 I TN
NQ 0.820 0.083 0.015 0 0 I -
MR 0.919 0.060 0.021 0 0 I -

QZK 0.923 0.077 0 0 0 I -
MK 0.859 0.141 0 0 0 I -
LZ 0.933 0.067 0 0 0 I -
JL 0.926 0.074 0 0 0 I -

NCH 0.975 0.025 0 0 0 I -
LPH 0.968 0.032 0 0 0 I -

LXZD 0.925 0.075 0 0 0 I -
KR 0.915 0.074 0.011 0 0 I -
JYQ 0.913 0.006 0 0.060 0.021 I TN
JD 0.988 0.012 0 0 0 I -
GJ 0.940 0.060 0 0 0 I -
JY 0.909 0.091 0.001 0 0 I -

LZXQ 0.954 0.046 0 0 0 I -
GJ 0.811 0.019 0.061 0.109 0 I As
GE 0.984 0.016 0 0 0 I -
DS 0.918 0.067 0.015 0 0 I -

DJie 0.947 0.053 0 0 0 I -
PL 0.964 0.036 0 0 0 I -
DZ 0.913 0.085 0.002 0 0 I -
DJu 0.904 0.081 0.015 0 0 I -

AQH 0.925 0.075 0 0 0 I -
ZQH 0.934 0.066 0 0 0 I -
CY 0.980 0.020 0 0 0 I -
CN 0.847 0.127 0.026 0 0 I -
BM 0.961 0.039 0 0 0 I -
NX 0.906 0.079 0.015 0 0 I -
BR 0.910 0.043 0.048 0 0 I -
XJF 0.965 0.035 0 0 0 I -
BQ 0.933 0.067 0 0 0 I -
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Table 6. Correlation between water quality indicators and physicochemical parameters of water.

Index DO PV COD NH3-N TP TN Cu Zn As Cd Cr Pb

WT −0.386 ** −0.069 0.051 −0.183 0.06 −0.228 * 0.023 −0.404 ** −0.225 * 0.297 ** 0.066 −0.226 *
Precipitation −0.441 ** −0.066 0.012 −0.341 ** −0.005 −0.332 ** 0.011 −0.312 ** −0.126 0.453 ** 0.005 −0.22 *

pH 0.234 * 0.087 0.06 0.282 ** −0.053 0.255 * −0.198 * 0.115 −0.063 −0.332 ** 0.018 0.129
Turbidity 0.064 −0.051 0.411 ** 0.061 −0.154 −0.062 0.015 0.286 ** 0.086 0.128 −0.096 0.177

Conductivity −0.077 0.127 0.021 0.327 ** −0.15 0.076 −0.056 −0.098 −0.055 −0.021 −0.02 −0.029

Note: Correlation coefficient between water quality indicators and physicochemical parameters of water was
significant at: ** p < 0.01, * p < 0.05.

As shown in Table 7, PV–NH3-N–TP, Zn–Cu–Cd, and Zn–Pb were significantly pos-
itively correlated (p < 0.01). Table 7 shows a significant negative correlation between Cr
and Zn. However, there were significant correlations between Cr and PV, COD, NH3-N, TP,
and TN, implying that the source of Cr is relatively similar to that of the nutrient elements.
The correlations between As and all the other elements were weak, indicating that their
sources might be specific.

Table 7. Results of correlation analysis between water quality indicators.

Index DO PV COD NH3-N TP TN Cu Zn As Cd Cr Pb

DO 1
PV −0.2 1

COD −0.329 ** 0.275 ** 1
NH3-N −0.25 ** 0.459 ** 0.291 ** 1

TP −0.01 0.258 ** 0.28 ** 0.385 ** 1
TN −0.03 0.3 ** 0.023 0.364 ** 0.217 ** 1
Cu 0.063 0.012 −0.030 −0.055 −0.030 0.002 1
Zn −0.017 −0.023 0.047 −0.035 −0.189 * 0.063 0.367 ** 1
As −0.067 −0.211 ** −0.049 −0.115 * 0.025 −0.179 * −0.013 0.068 1
Cd −0.055 0.046 0.077 −0.062 0.163 * −0.061 0.422 ** 0.267 ** 0.035 1
Cr −0.14 * 0.42 ** 0.318 ** 0.443 ** 0.398 ** 0.25 ** −0.107 −0.25 ** −0.174 * 0.074 1
Pb −0.149 * −0.008 0.306 ** −0.051 0.067 −0.045 0.035 0.230 ** 0.043 0.072 −0.093 1

Note: Correlation coefficient between nutrient elements and heavy metal elements was significant at: ** p < 0.01,
* p < 0.05.

PCA was conducted to determine the sources of nutrients and heavy metals, and the
results are shown in Table 8. The data were first subjected to the KMO and Bartlett’s tests
to analyze the feasibility of PCA. KMO was calculated as 0.603. The p-value of Bartlett’s
spherical test was <0.01, showing significance at the level. The variables were correlated,
indicating that the PCA was valid. Figure 4 shows the explanation of variance by the
normalized rotation obtained using the maximum variance method for nutrients and
heavy metals elements [49]. Four effective principal components were identified according
to the Kaiser criterion, with eigenvalues > 1 [50], which accounted for up to 56.08% of
the contribution.
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Table 8. Results of PCA.

Factor Load Factor
PC1 PC2 PC3 PC4

DO −0.244 −0.149 0.231 0.493
PV 0.644 0.017 0.315 0.019

COD 0.594 0.329 −0.151 −0.205
NH3-N 0.563 −0.052 0.484 −0.277

TP 0.663 0.234 −0.217 0.221
TN 0.135 −0.153 0.746 −0.009
Cu −0.153 0.572 0.369 0.41
Zn −0.319 0.656 0.371 −0.145
As −0.217 0.238 −0.14 −0.324
Cd 0.13 0.539 −0.215 0.554
Cr 0.787 −0.113 −0.141 0.163
Pb 0.032 0.612 −0.086 −0.44

Characteristic root 2.412 1.704 1.381 1.233
Percentage variance 0.201 0.142 0.115 0.103

accumulate 0.201 0.343 0.458 0.561

The first principal component (PC1) pollutants were mainly Cr, TP, PV, COD, and
NH3-N, which accounted for 20.1% of the total variance. Table 7 shows that there were
significant correlations between Cr and TP, PV, COD, and NH3-N, all of which showed
positive loadings indicating that the nutrient elements had the same source as Cr. Figure 4
shows that none of the five elements had significant spatial differences, indicating that
these elements were mainly influenced by natural processes. Additionally, the increase
in Cr content may be related to industrial activities and domestic waste emissions [51,52].
The pollutants in the second principal component (PC2) were mainly Zn, Cu, Pb, and Cd.
The correlation coefficient between Zn and PC2 was high at 0.656, and there was also a
significant correlation between Zn and Cu, Pb, and Cd, indicating that these heavy metals
may have the same source and similar diffusion processes. The spatial distribution map of
metal elements shows that, under the influence of the Gondwana mineralization belt, the
mineral resources of Cu, Pb, and Zn are abundant [34]. The high Zn, Cu, and Pb contents
can be attributed to geothermal activities and mineral extractions [53]. The pollutants in the
third principal component (PC3) were mainly TN and NH3-N, with a component variance
contribution of 11.5%. The N and P in surface water are mainly from farmland water
and municipal wastewater [54]. The NH3-N and TN were highly correlated, reflecting
the nutrient status of water bodies. The increase in NH3-N and TN may be due to the
rapid development of urbanization and agriculture, human production and life, and the
application of pesticides and fertilizers [55]. PC3 represents the source of the agricultural
activities. The fourth principal component (PC4) pollutant was mainly Cd, which is likely
to be influenced by transportation or industrial activities. Fossil fuels and metallurgical
industries release volatile Cd, which is then dissolved in surface water [56]. Table 3 shows
no significant spatial difference for Cd, which is known to be relatively weakly influenced
by anthropogenic activities.

According to the results of multivariate statistical analysis, PC1 pollutants (Cr, TP, PV,
COD, and NH3-N) are mainly influenced by natural processes, PC2 pollutants mainly arise
from mineral extractions, PC3 (TN and NH3-N) mainly arise from production activities
and pesticides and fertilizers, and PC4 (Cd) is mainly influenced by transportation or
industry. Therefore, the elemental indicators in Tibetan surface water are influenced by
natural factors, and human activities aggravate the spread of pollution.

4. Discussion

In this study, the non-parametric Kruskal–Wallis test, production of box line plots, and
IDW method to map the spatial distribution of pollution elements were used to explore
the spatial and temporal distribution characteristics of pollution elements. Temporally, the
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results showed that only the test for Pb had a p-value > 0.05 (0.2774), this indicates that
there were no significant inter-seasonal fluctuations. Moreover, the rest polluting elements
had significant seasonal differences under the influence of temperature and runoff, but the
magnitude of the differences was very small. Spatially, the p-values of PV, TN, Cu, Zn, As,
and Pb were <0.05, with significant results, indicating significant differences among the
watersheds. Nutrient elements are mainly influenced by natural processes, partly under the
influence of fertilizers and pesticides, and are mainly concentrated in the agricultural and
animal husbandry development areas in Tibet. High heavy metal contents are mainly found
in areas rich in mineral resources and in areas of frequent geological activities. Subsequently,
the weights determined by the combination of entropy value and fuzzy evaluation methods
were used to evaluate the water quality, and the results were compared with the water
quality standards according to the Surface Water Environmental Quality Standard (GB3838-
2002). We found that the contents of nutrient and heavy metal elements in the surface
water of the Tibet Autonomous Region were low, and the water quality evaluation of 41
cross-section monitoring points in the study area were all Class I. At GJ monitoring point,
As exceeded the standard more remarkably from lithology and geological activities. Finally,
the potential sources of pollutants were analyzed based on correlation analysis and PCA,
which explained 56.08% of the total variance of the five pollution principal components
and identified four pollution principal components. PC1 is mainly influenced by natural
processes, PC2 can be attributed to geothermal activities and mineral extractions, PC3 arises
from human production activities and the application pesticides and fertilizers, and PC4 is
influenced by industrialization or transportation.

In summary, the NH3-N, PV, COD, and TN contents are mainly influenced by natural
processes, partly under the influence of fertilizers, pesticides, and biological emissions.
High contents are mainly concentrated in the agricultural and animal husbandry develop-
ment areas in central and northern Tibet. However, TP may be related to the phosphorus
content of the soil-forming parent material and urban wastewater discharge and has the
greatest magnitude of inter-basin variation under the influence of the Bangongcuo-Nujiang
collision zone. The area with high Zn and Pb contents was located close to the Gangdise
metallogenic belt in Tibet, which is mainly affected by mineral development and geologi-
cal activities. Cu and Cd are mainly attributed to the development of non-ferrous metal
minerals and human activities.

Currently, the surface water bodies in the Tibet Autonomous Region are less affected by
human activities, and the degree of organic matter and heavy metal pollution is weak and at
a low-risk level. The spatial heterogeneity of heavy metals increased and was significantly
affected by human activities, and the potential risks might exceed our expectations. This is
evidenced by the increasing influence of human activities on water quality deterioration.
In the future, considering Tibet’s fragile ecological environment and unique geographical
location, the security of water resources in Tibet will face an increasingly complex situation.
At the same time, the pollution sources of nutrients and heavy metals will shift from being
influenced by single factors to being influenced by multiple factors and from natural causes
to human causes. This study analyzed the spatial and temporal distribution characteristics
of six nutrient elements and six heavy metal elements in the Tibet Autonomous Region
in 2021, and further health risk evaluation can be performed subsequently. At present, it
is urgent to improve the local water resource management level, and focusing on water
resource security is of great strategic importance.

5. Conclusions

Based on the water quality data of Tibetan rivers in China, this study analyzed the
temporal and spatial changes in surface water nutrients and heavy metals, water quality
status and pollutant sources, and drew the following four conclusions:

1. Temporally, all 12 polluting elements, except Pb, had significant seasonal variations,
but the magnitude of the differences was very small;
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2. Spatially, nutrient elements were relatively concentrated in the agricultural and pas-
toral development areas in central and northern Tibet. High heavy metal content was
mainly found in areas with rich mineral resources, more developed cities, or areas
undergoing frequent geological activities;

3. The water quality of 41 monitoring sections belonged to Class I water standard as
per the entropy method–fuzzy evaluation method, and the local exceedance fac-
tors were mainly affected by agricultural production activities and geological and
geothermal activities;

4. Determine the main sources of four pollutants: the first principal component was
mainly influenced by natural processes, the second principal component was mainly
influenced by mineral extraction, the third principal component was mainly influ-
enced by production activities and pesticides and fertilizers, and the fourth principal
component was mainly influenced by transportation or industrial activities.

The results of this study can provide a scientific basis for pollution prevention and
control in the Tibet Autonomous Region, and contribute to further research on water
ecology and the environment.
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