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Abstract: A persistent precipitation deficiency (meteorological drought) could spread to surface
water bodies and produce a hydrological drought. Meteorological and hydrological droughts are thus
closely related, even though they are separated by a time lag. For this reason, it is paramount for water
resource planning and for drought risk analysis to study the connection between these two types of
drought. With this aim, in this study, both meteorological and hydrological drought were analyzed in
the Wadi Ouahrane Basin (Northwest Algeria). In particular, data from six rainfall stations and one
hydrometric station for the period 1972–2018 were used to evaluate the Standardized Precipitation
Index (SPI) and the Standardized Runoff Index (SRI) at multiple timescales (1, 2, 3, 4, . . . , 12 months).
By means of a copula function, the conditional return period for both types of drought was evaluated.
Results evidenced that runoff is characterized by high level of temporal correlation in comparison
to rainfall. Moreover, the composite index JDHMI (Joint Deficit Hydro-meteorological Index) was
evaluated. This index is able to reflect the simultaneous hydrological and meteorological behavior at
different timescales of 1–12 months well and can present the probability of a common hydrological
and meteorological deficit situation more accurately and realistically compared to precipitation or
runoff-based indicators. It was found that, over the analyzed basin, the average severity of combined
hydro-meteorological drought (JDHMI) was 10.19, with a duration of 9 months and a magnitude
of 0.93.

Keywords: meteorological drought; hydrological drought; copula; SPI; SRI; Wadi Ouahrane Basin

1. Introduction

In recent years, modifications in catchment dynamics as a consequence of environ-
mental and climate changes have been observed. In fact, both human impact and climate
variability can affect the hydrological processes of a river catchment [1,2], with conse-
quences for water resources, hydropower production [3,4], and crop yield [5]. Indeed,
depending on the region, the climate variability can increase or decrease the components
of the hydrological regime. As an example, in Morocco, the authors of [6] analyzed future
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streamflow regimes by means of the Indicator of Hydrological Alterations (IHA) and de-
tected that, under future changes in climate patterns, flow regimes, expressed as monthly
flow magnitude and frequency flow pulses, can be altered. Such changes would in turn
influence the ecological status of a river. Ref. [7], by analysing future climate prediction
for the Heihe River basin in northwest China, concluded that climate change may affect
stream ecosystems through flow regime alterations. Henriksen et al. [8] showed signifi-
cant changes in the freshwater cycle with climate factors in two large-scale catchments in
Denmark. At the same time, at higher elevations or latitudes, climate change is expected
to weaken the modulating effect of snow and glacier fields, with possibly strong impacts
on hydropower generation, floods and droughts, irrigation water supplies, and associated
food production [9]. Moreover, the variability of a hydrological regime is strongly affected
by anthropogenic actions such as irrigation, urbanization, and recreational activities [10].
In particular, land cover change is a dominant factor affecting ecosystems [11,12] and the
hydrological regime [13]. For example, Lopez et al. [14] detected that forest conversion
to agriculture use has directly affected the surface runoff and groundwater contribution
of the Upper Teles Pires (Brazil). Zhang et al. [15] evidenced that the watershed size in-
fluences the sensitivity of annual runoff to forest cover change and that annual runoff is
more sensitive to forest cover change in water-limited watersheds than in energy-limited
watersheds. In a study proposed by Dorjsuren et al. [16] in Mongolia, it was pointed out
that land cover changes are directly linked to the hydro-meteorological parameters and
that in arid and semi-arid regions, climate change significantly impacts land cover changes.
Wojkowski et al. [17] examined landscape hydric potential as a descriptor of water storage
and showed that land cover can influence the predictability of maximum annual flow in a
mountainous region of central Europe.

Drought, which is characterized by a high spatial and temporal variability [18], is
currently one of the main global problems for water resources and has significant envi-
ronmental, social, and economic consequences [19]. In particular, the investigation of the
relation between meteorological and hydrological drought is important for water man-
agement and early warning and mitigation at the basin scale [20]. In fact, meteorological
and hydrological droughts are inherently correlated, but with a time lag [21]. Knowledge
of this relationship can be used for water resource planning and for developing drought
resistance measures. This relationship can be represented, e.g., by copula-based bivariate
probabilities [22]. Ding et al. [23], by analyzing meteorological and hydrological drought in
China, highlighted a weaker propagation relationship in arid environments than in moist
environments and evidenced a stronger relationship between the two types of drought, espe-
cially in summer and autumn. Bevacqua et al. [24] indicated that, over 457 basins in Brazil,
hydrological droughts are usually more long-lasting, severe, and with a slower recovery
time compared to meteorological droughts. Moreover, hydrometeorological variables very
often are non-stationary, so there is justification for introducing time dependence into the
definition of standardized drought indices. In this context, Zhang et al. [25] introduced the
Nonstationary Meteorological and Hydrological Drought Index (NMHDI) and detected that
the time-varying copula model can better predict the drought induced under a changing
environment in the Weihe River Basin (western China). Ho et al. [26] applied run theory to a
high-resolution remote sensing daily dataset to analyze some standardized drought indices
representing precipitation, runoff, evapotranspiration, and soil moisture in the Central
Asian subcontinent. As shown by Zhu et al. [20], a traditional statistical model can be
inappropriate in drought analyses, while a copula-based conditional distribution method
can provide a satisfactory probabilistic prediction of hydrological drought characteristics
based on the information about meteorological drought characteristics. Gu et al. [27], us-
ing copulas, analyzed drought in three catchments of China and detected that drought
shows lengthened duration, amplified severity, and time-delay phenomena among these
catchments. In order to analyze drought characteristics and the connection between meteo-
rological and hydrological droughts over the Yellow River basin, Zhu et al. [20] proposed
a probabilistic framework based on the copula function. Farrokhi et al. [28] introduced



Water 2022, 14, 653 3 of 24

a new methodology for modeling multivariate dependence structures of meteorological
drought characteristics based on the combination of four-dimensional vine copulas and a
data mining algorithm. Wang et al. [29] used the Frank copula to analyze meteorological
and hydrological drought in the Yellow River basin.

With regard to Algeria, several studies, e.g., [30–32], have been performed on meteoro-
logical drought using the Standardized Precipitation Index (SPI). However, although in
an arid and semi-arid country such as Algeria the problem of water scarcity caused by the
strong spatial and temporal variability of precipitation is pervasive, a coupled analysis of
meteorological and hydrological drought has not been performed [33]. The application of
the composite index JDHMI, to analyze meteorological and hydrological drought in this
region, better reflects actual problems with water resources. In fact, this index includes
the main sources of drought, i.e., the deficit of precipitation that in consequence results
in decreasing flow. Moreover, a more complex index of drought can be an excellent tool
for decision makers to analyze drought and water management in regards to mitigation
activities to prevent drought. In this context, the objective of this study is thus to investigate
both meteorological and hydrological drought in the Wadi Ouahrane Basin (northwest
Algeria) by using two standard drought indices, the SPI for meteorological drought and the
SRI for hydrological drought, evaluated at different timescales (1, 2, 3, 4, . . . , 12 months).
In particular, the conditional return period for both types of drought will be evaluated by
means of copula functions.

2. Materials and Methods
2.1. Study Area and Data Collection

The study area is the Wadi Ouahrane Basin in north Algeria, which is located between
36◦00′ and 36◦24′ N and between 01◦00′ and 01◦3′ E. It is a small tributary of the Wadi
Cheliff Basin (Figure 1) and has an area of more than 270 km2, with a maximum altitude of
991 m a.s.l. and a minimum altitude of 165 m a.s.l.

The Wadi Ouahrane Basin is limited to the east by the basin of Wadi Fodda, to the
west by the Wadi Ras Basin, to the north by the Wadi Allala Basin, and to the south by the
Wadi Sly Basin. It has a Mediterranean climate, with an annual average rainfall of 333 mm
over the period 1972–2018. The mean annual temperature is 18 ◦C.

The rainfall series used in this study includes data collected monthly at 6 stations
(Figure 1 and Table 1) in the period from 1972 to 2018. These rainfall data were taken
from the National Agency of the Water Resources (Agence Nationale des Ressources
Hydrauliques–ANRH) and the National Meteorological Office (Office National de Météorol-
ogique–ONM). Monthly runoff data from 1972 to 2018 were also collected from ANRH.

Table 1. Rainfall and hydrometric station characteristics.

Stations Type ID Name Longitude Latitude Elevation (m)

S1 H 012201 LARBAT OULED FARES 01◦13′56” 36◦14′14” 173
S1 R 012201 LARBAT OULED FARES 01◦09′18” 36◦16′20” 116
S2 R 012224 BOUZGHAIA 01◦14′27” 36◦20′15” 217
S3 R 012205 BENAIRIA 01◦22′28” 36◦21′04” 320
S4 R 012221 MEDJAJA 01◦20′53” 36◦16′39” 487
S5 R 012209 CHETIA 01◦15′53” 36◦12′56” 108
S6 R NMO Airport, Chlef 01◦19′28” 36◦13′31” 158

H: Hydrometric Station; R: Rainfall Station.

With regard to land use/land cover (LULC), changes over the Wadi Ouahrane Basin
were evaluated using a remote sensing and geographic information system (GIS). The
images were collected for different years, i.e., 1979, 1989, 1999, 2009, and 2017 from the
Landsat 2, Landsat 5, Landsat 7, and Landsat 8, with the objective of deriving information
on different LULC classes. The multi-temporal remotely sensed images were used for
detailed LULC classification. The classified maps for the years 1979, 1989, 1999, 2009, and
2017 are presented in Figure 2. The spatial variation of LULC classes (dense vegetation,
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moderate vegetation, sparse vegetation, bare soil, and water surface) in different years can
be clearly visualized. From Table 2, the temporal changes in individual LULC classes over
the Wadi Ouahrane Basin can be noticed. The percentage of basin area under each of these
classes during 1979, 1989, 1999, 2009, and 2017 is also presented.
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Table 2. Areal coverage details of LULC classes over the Wadi Ouahrane Basin.

Soil Occupation
1979 1989 1999 2009 2017

Area
(km2) Area (%) Area

(km2)
Area
(%)

Area
(km2)

Area
(%)

Area
(km2) Area (%) Area

(km2) Area (%)

Dense vegetation 0.00 0.00 0.25 0.09 1.30 0.48 0.17 0.06 0.24 0.09
Moderate vegetation 10.46 3.87 39.87 14.77 56.48 20.92 93.08 34.47 187.80 69.56

Sparse vegetation 86.68 32.10 94.73 35.08 72.52 26.86 96.85 35.87 77.00 28.52
Bare soil 172.86 64.02 135.05 50.02 139.68 51.73 79.90 29.59 4.90 1.81

Water surface 0.00 0.00 0.10 0.04 0.02 0.01 0.00 0.00 0.06 0.02
Total 270 100 270 100 270 100 270 100 270 100

2.2. Analysis Methods
2.2.1. Univariate Indices in Monitoring of Meteorological and Hydrological Drought

In this study, the Thiessen polygons method was first applied to compute the mean
monthly areal rainfall in the study area, which was then used to find SPI. SPI and SRI were
first proposed by McKee et al. [34] and Shukla and Wood [35], respectively, and are widely
used to assess meteorological (SPI) and hydrological (SRI) droughts. If Xw represents
the total precipitation (runoff) over a period of w previous months, by fitting a suitable
distribution such as the gamma distribution of the Xw time series, uw = Fxw(xw), a marginal
cumulative distribution function (CDF) is obtained. Then the SPI (SRI) is transformed to
normality by applying the inverse CDF for the standard normal distribution or ϕ−1(uw).
In other words, the distribution of the SPI or SRI time series at any timescale w is described
by a standard normal variable (mean zero and standard deviation of 1).

Although the method of calculating SPI and SRI seems logical in appearance, it has
its drawbacks. For example, there may be significant autocorrelation in the observations,
leading to a skewed probabilistic fit. This problem is exacerbated for longer timescales,
because the successive samples have more overlap. To solve this problem, according to Kao
and Govindarajo [36], a modified SPI and SRI were used in this study. The modification is
in normalizing the precipitation or runoff series ending in each month of the year separately,
so that SPI and SRI both have zero mean and unit standard deviation for any month of
the year, and autocorrelation within each subseries is greatly reduced [36]. Xw is grouped
by its ending month to create a new dataset Xmonth

w , in which month represents one of the
months of January, February, . . . December. In this way, XJan

1 represents January rainfall

and XAug
5 represents the total five-month rainfall from April to August, and thus samples

in each Xmonth
w dataset are collected annually without overlapping as long as w ≤ 12. By

fitting the distribution function to each group separately, SPImod was calculated similarly
to the original SPI from the following equation:

SPImod
w = ϕ−1

(
umonth

w

)
= ϕ−1

(
FXmonth

w

(
umonth

w

))
(1)

Precipitation margins (univariate cumulative distribution functions) {u1, u2 . . . u12}
with different timescales from 1 to 12 months can be generated by the SPImod method. u1
shows last month’s rainfall status (u1 is important for detecting the onset of drought) and
u12 represents last year’s rainfall status (important for diagnosing long-term droughts).
It should be noted that none of the ui can completely reflect the information of the other
uj, and each single ui can only reflect a partial view of the meteorological drought as a
cross-timescale phenomenon. The same process can be applied to generate runoff indices
based on 1 to 12 month timescale modified SRI, {v1, v2, . . . , v12}, which each give a partial
representation of hydrological drought.

2.2.2. Drought Definition and Characteristics

Table 3 shows the classification of drought severity based on SPI values, which can be
used also for the SRI.
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Table 3. Classification of drought based on SPI (SRI).

SPI Values Drought Category

2.00 or more Extremely wet
1.50 to 1.99 Very wet
1.00 to 1.49 Moderately wet

0 to 0.99 Near normal
−0.99 to 0 Mild drought

−1.00 to −1.49 Moderate drought
−1.50 to −1.99 Severe drought
−2.00 or less Extreme drought

In this study, according to the recommendation of Loucas and Vasiliads [37], meteoro-
logical (resp. hydrological) drought events were defined as periods in which drought
index values (such as the modified SPI or resp. SRI at some given timescale w) are
less than zero. Some other researchers, such as Xiao [38], Shiau and Modarres [39], and
Mirabbasi et al. [40] have defined drought in the same way. A period of drought begins
when the drought index value is consistently negative (for two months or more) [34]. This
period ends when the index returns to positive values. Therefore, each drought event has
a period of time that is defined by its onset and end, which is called drought duration.
Drought severity is defined as accumulated index deficit, which indicates the amount of
moisture deviation from normal during a determined period [41]. Acute water resource
problems during droughts are generally associated with long-term and severe events.

2.2.3. Copula Functions

Copulas are a flexible way to create probability distributions with different margin
functions. In essence, copula is a function that combines any specified margins of univariate
distribution functions to form a two- or multi-variate distribution function. Copulas are
multivariate distribution functions whose one-dimensional margins are uniform over the
range [0,1]. Sklar [42] showed theoretically how any univariate distribution functions can be
combined with any copula to form valid multivariate distributions. Although copula theory
was proposed for general dimensions (2 or more), the complexity of the joints increases
rapidly with an increasing number of variables. Therefore, many researchers use empirical
copulas in multivariate analysis (especially in dimensions much higher than 2). The concept
of empirical copulas is in fact similar to the concept of graph positional formulas used
in the univariate statistical analysis. When a large enough sample is available, empirical
copulas can be used to create non-parametric joint empirical probability distributions that
are computationally efficient [43,44].

2.2.4. Joint Deficit Index (JDI)

Kao and Govindarauo [36] defined the joint drought index (JDI) using the joint distri-
bution function to provide a scientific description of the general drought condition across a
set of timescales (1 to 12 months). In order to create the JDI, parametric or empirical copulas
can be used to create the dependency structure of the u1, u2, . . . , u12 (or v1, v2, . . . , v12) set.
However, due to the mathematical complexity of 12-dimensional parametric copulas, Kao
and Govindaraju [36] used empirical joints for this purpose. To specify the dependence
structure encoded in a copula, either parametric or non-parametric approaches can be used.
However, in a higher-dimensional setting, the non-parametric approach has an advantage
over the parametric one, given the complexity of parameter estimation as well as the strong
assumptions that have to be made in the parametric approach. Empirical Copula [45] with
dependence structure defined by independent rank transformations of the samples in each
of the dimensions of the multivariate data space, provides a non-parametric alternative to
circumvent the above issues associated with the parametric approach. According to the
definition of Empirical Copula, if two multivariate samples have identical rank structures,
their Empirical Copulas are the same [46]. The choice of u1, u2, . . . , u12 in forming high-



Water 2022, 14, 653 8 of 24

dimensional copulas increases the complexity of the dependency model [47]. However,
because the duration of droughts shows wide time variations, droughts can only be well
described by considering different periods (from 1 to 12 months). In addition, this structure
allows for a month-by-month assessment of future conditions. Kao and Govindaraju [36]
did not consider timescales longer than 12 months (w > 12) because they observed that the
samples used will overlap, and even after applying the modified SPI process, the results
could be distorted. Therefore, in this study, only 12 modified SPIs were considered to
create the joint deficit meteorological index (JDMI), and the corresponding modified SRIs
were used to create the joint deficit hydrological index (JDHI), both special cases of the
JDI concept.

A copula is actually the cumulative probability P[U1 ≤ u1, . . . , U12 ≤ u12] = t of the
marginals of the u1, u2, . . . , u12 sample. As each margin indicates the conditions of moisture
deficiency for each given period of time, the conditions of joint deficit are determined by t.
Clearly, a smaller cumulative probability indicates drier conditions (drought on different
time scales), and a larger value indicates wetter conditions. Assuming t reflects the severity
of the combined drought, knowing the probability of events occurring with joint values less
than or equal to t (i.e., events drier than a certain threshold) will be very beneficial. For this
purpose, the definition of the joint distribution function is used, because the joint distribu-
tion function is in fact the cumulative probability KC(t) = P

[
CU1,U2,...,U12(u1, u2, . . . , u12)

]
t.

The special advantage of using KC is that it allows a single probabilistic criterion for joint
deficit conditions to be calculated, which can be interpreted as an indicator of combined
drought. In fact, KC is the joint CDF. Figure 3 shows the distribution function of KC in
different values of CU1,U2,...,U12 joints for the rainfall (Figure 3a) and runoff (Figure 3b) of
the study area.
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Therefore, the joint deficit index (JDI) was defined similar to the SPI (SRI) [47].

JDI = ϕ−1(KC), (2)

Similar to SPI (SRI), a positive JDI (KC > 0.5) indicates a general wet condition, a
negative JDI (KC < 0.5) indicates a general dry condition, and JDI = 0 (KC = 0.5) indicates
a normal condition. Since JDI is inverted on a normal scale (similar to SPI (SRI)), the
classification of droughts based on the SPI (SRI) (Table 3) can also be applied to the JDMI
(JDHI). The most important character of JDI is the evaluation of general joint conditions
based on the structure of dependence of deficiency indices with different time periods.
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2.3. Parametric Copula

In general, copula functions are divided into parametric and non-parametric categories.
Parametric copulas are preferred, at least over 2 or 3 dimensions, since copula fitting with
the input data makes it possible to extrapolate beyond its range, which is a limitation for
non-parametric copulas. The copula parameters represent the intensity of the dependence
of the variables and have a certain mathematical relationship with it. Due to the use of
different parameters in different parametric copulas, the results will also be different [48];
the best copula type to use for a given data type can be determined using goodness
of fit tests. Among the copula functions, the Archimedean and Elliptical copula family
of functions are the most widely used. Table 4 shows the types of parametric copulas
considered and their equations and parameters.

Table 4. Parametric copulas used by the Archimedean and elliptical families.

Copulas Bivariate Copula C (u, v) Parameters

Elliptical copulas

Student’s t
∫ t−1

θ (u)
−∞

∫ t−1
θ (v)
−∞

1
2π
√

1 − r2

{
1 + x2 − 2rxy + y2

θ(1 − r2)

} −θ + 2
2

dxdy

tθ(x) =
∫ x
−∞

Γ( θ + 1
2 )√

πθΓ(θ/2)

(
1 + y2/θ

) −θ + 1
2 dy

θ > 2, r ∈ (0, 1]

Gaussian Φ2
(
Φ−1(u), Φ−1(v), ρ

)
−1 ≤ ρ ≤ 1

Archimedean copulas

Clayton
(

u−θ + v−θ − 1
)−1/θ

θ ∈ ∪(0, ∞)

Frank −1
θ log

[
1 + (e−θu − 1)(e−θv − 1)

e−θ − 1

]
θ ∈ ∪(0, ∞)

Joe 1−
[
(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ

]1/θ
θ ∈ ∪(0, ∞)

2.4. Estimation of Parameters and Goodness of Fit Test

In the present study, the maximum likelihood (ML) method was used to estimate the
parameters in marginal distribution. The Akaike (AIC) [49] and the Bayesian (BIC) [50] are
the most commonly used information criteria for selecting the best model from all available
models used. A model is better with a smaller AIC (or BIC). The basis of the AIC is the
Kullback–Leibler distance in information theory, while the basis of BIC is the integrated
neighborhood in Bayesian theory [51].

One of the advantages of using copula functions in multivariate distributions is that
they take into account the correlation between variables and in fact do not require the
independence of the variable, but even these functions take into account the structure of the
correlation between the variables. When estimating the copula function, the value of the
correlation coefficient must be specified. Three coefficients—Kendall correlation, Spearman
coefficient, and Pearson coefficient—were used for this purpose [43,50].

In copulas, the Maximum Pseudo-Likelihood (MPL) method was used to estimate
the parameters, and the AIC, BIC, and Cramér–von Mises test statistic were used for the
goodness of fit test [52].

In the current study, the copula was selected based on the P value, which was obtained
from the bootstrap method [53]. The higher the P value, the better the copula.

In addition to the numerical approach, Chi plot and Kendall plot were used to graph-
ically represent the degree of fit, all of which are contained in the copula package in R
software [54].

2.5. Conditional Return Period

The copula function interprets the dependency structure between drought charac-
teristics very well. In this study, we used three variables—Severity-Duration-Magnitude
(S-D-M)—for the conditional return period, as follows [52]:
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P(S ≤ s, D ≤ d ∨M ≥ m) =
P(S ≤ s, D ≤ d, M ≥ m)

P(M ≥ m)
=

C1(s, d)− C2(s, d, m)

1− Fm(m)
=

C1(s, d)− C2(C1(s, d), Fm(m))

1− Fm(m)
, (3)

The methodology steps are presented in Figure 4.
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3. Results
3.1. Calculation of Univariate Drought Indices and Fitting of Marginal Distribution Functions

Table 5 represents the results of goodness of fit tests at the 5% significance level for
Xmonth

w (W = 1, 2, . . . 12) for precipitation and runoff based on Kolmogorov–Smirnov (K–S),
Cramér–von Mises (CM), Anderson–Darling (A–D), AIC, and BIC.

Table 5. Goodness of fit test statistics on SPImod and SRImod.

Distribution Statistics Evaluation Index

SPImod (1,2, . . . , 12) Gamma K–S = 0.16; CM = 4.79; A–D = 27.37 AIC = 4656; BIC = 4665
SRImod (1,2, . . . , 12) Log-normal K–S = 0.15; CM = 1.26; A–D = 7.83 AIC = −788; BIC = −780

The best fitted model on modified Xmonth
w (w = 1, 2, . . . , 12) for precipitation and

runoff was determined to be the gamma and log-normal distribution, respectively (Table 5).
These were used for transforming the SPI and SRI series to approximately follow standard
normal distributions.
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3.2. Correlation Analysis of Two Variables of Modified Rainfall and Runoff Indices

Spearman rho coefficient, Kendall tau, and Pearson coefficient correlation were used to eval-
uate the correlation between rainfall and runoff. In the three methods, the correlation coefficient
was significant. Here the Spearman rho correlation coefficient between

{
umod

1 , umod
2 , . . . , umod

12
}

(precipitation marginal distribution functions) and
{

vmod
1 , vmod

2 , . . . , vmod
12
}

(runoff margin dis-
tribution functions) is presented in Table 6.

Table 6. Spearman correlation coefficient between ui, uj (upper triangle) for precipitation marginal
and vi, vj (lower triangle) for runoff marginal cumulative distribution functions (rij = rji).

j
i Spearman′s rij between umod

i and umod
j

1 2 3 4 5 6 7 8 9 10 11 12

Sp
ea

rm
an

’s
r i,

j
be

tw
ee

n
v i

m
od

an
d

v j
m

od

1 0.84 0.70 0.57 0.42 0.28 0.17 0.07 0.00 0.00 0.08 0.19
2 0.87 0.90 0.77 0.64 0.49 0.35 0.24 0.15 0.11 0.16 0.26
3 0.76 0.92 0.92 0.81 0.68 0.53 0.41 0.30 0.24 0.24 0.32
4 0.65 0.83 0.94 0.93 0.83 0.70 0.56 0.44 0.36 0.33 0.35
5 0.53 0.71 0.84 0.94 0.94 0.83 0.71 0.58 0.47 0.41 0.40
6 0.42 0.58 0.72 0.85 0.94 0.94 0.84 0.71 0.58 0.49 0.45
7 0.34 0.48 0.62 0.75 0.86 0.95 0.94 0.83 0.71 0.59 0.51
8 0.28 0.40 0.52 0.65 0.77 0.87 0.95 0.94 0.82 0.70 0.60
9 0.25 0.35 0.46 0.56 0.68 0.79 0.88 0.96 0.93 0.81 0.70

10 0.24 0.33 0.41 0.50 0.61 0.71 0.81 0.90 0.96 0.93 0.82
11 0.26 0.33 0.40 0.47 0.56 0.65 0.74 0.83 0.91 0.97 0.93
12 0.31 0.36 0.41 0.47 0.54 0.62 0.70 0.79 0.86 0.93 0.97

In this table, the values of the Spearman correlation coefficient (rij) are shown in
pairs for the marginal distribution functions SPImod

W and SRImod
W for w = 1, 2, . . . , 12. For

precipitation marginal distributions as shown in Table 5, the short-term marginals umod
1

have a high correlation with umod
2 , which is equal to 0.84. The correlation coefficient

decreases with increasing time window i (when i ≥ 6, the correlation between umod
1 and

umod
i becomes less than 0.13). The long-term margin distribution function umod

12 has a
high correlation with umod

j at j > 5, and the correlation coefficient decreases when the
time window is shorter (less than 5). These findings are consistent with the results of Kao
and Govindaraju [55] for calculating the joint deficit index using precipitation and runoff
data. umod

1 shows last month’s rainfall status (important for identifying ongoing droughts),
and umod

12 shows last year’s rainfall status (important for identifying long-term droughts).
Although not well correlated with each other, none of them can be ignored.

Table 5 also shows that no single umod
1 (vmod

1 ) can represent other time windows alone,
and therefore each umod

1 (vmod
1 ) represents a small fraction of meteorological (hydrological)

drought. Similar observations can be made about runoff. Compared to rainfall marginal
distribution functions, a high level of temporal correlation is observed for runoff, as
expected. However, similar to precipitation, a single time window cannot be used to show
the total drought situation.

3.3. Comparison of Multivariate Indices with Univariate Indices

After examining the correlation between the variables in Section 3.2, JDMI and JDHI
indices were calculated. Figure 5 shows a comparison of the values of SPI, SPImod, and JDMI
for precipitation and SRI, SRImod, and JDHI for runoff in October 1982 as examples. The rate
of change in precipitation during this period (October 1982 in the past 12 months) varies
from 0 mm to 88 mm, and runoff from 0 to 0.392 m3/s. This month was selected because,
in this period, the joint deficit indices (JDHI, JDMI) showed severe and extreme drought,
and thus it is a good example to show the efficiency of hydrometeorological indices.
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Figure 5. Comparison of univariate (SPI, SRI) and multivariate (JDMI, JDHI) drought indices in
October 1982.

As described in the methodology, JDMI (JDHI) is obtained from the combination of
SPImod

1 –SPImod
12 (SRImod

1 –SRImod
12 ) using the empirical Kendall copula function. According

to this figure, the SPI value is 0.39 while the JDMI is −1.57. In this case, the interpretation
of drought in such a situation is more complex. This is because the precipitation rate has
changed greatly over the last 12 months. The univariate index is not able to accurately
define the drought situation. However, the JDMI shows the state of the meteorological
drought based on the structure of the dependence between the precipitation of the last
12 months. In other words, for October 1982, while the precipitation rate was normal for
the last 12 months on the whole, the lack of precipitation in the previous months (w1, w2,
. . . , w9) was so severe that it negatively affected the JDMI index (severe drought). The case
for hydrological drought is similar to that for meteorological drought. Thus, the SRI value
in October 1982 was 0.62, indicating wet conditions, while the calculated JDHI value was
−1.19, indicating drought.

3.4. Hydro-Meteorological Joint Deficit Drought Index

Using the parametric copula function, two indices, JDMI and JDHI, were joined, and
JDHMI was obtained. To compare the reliability of a JDHMI composite index with other
univariate and multivariate indices, the JDHMI time series was compared with JDMI, JDHI,
SRI, and SPI (Figure 6). As shown, JDHMI, unlike SPI and SRI, is based on the common
probability mod of all SPImods and SRImods and provides a comprehensive overview of
drought conditions. JDHMI fluctuations are similar to those of JDMI and JDHI when
these are the same sign, but mediates between them during some transition periods when
they have opposite signs. For JDMI or JDHI individually, which use SPImod or SRImod

alone, a comprehensive view of the prevailing hydro-meteorological situation in the region
cannot be achieved, due to not considering the simultaneous effects of precipitation and
runoff in a drought. Therefore, the composite index is able to reflect the simultaneous
hydrological and meteorological behavior well, and it can be inferred that JDHMI can
present the probability of a common hydrological and meteorological deficit situation more
accurately and realistically than univariate and multivariate precipitation-based indicators
or runoff alone.
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composite index (JDHMI).

In addition, with the aim of comparing the performance of the composite index and
its similarity with the indices derived from it, Figure 7 is presented. Figure 7a shows
that the SPI and SRI time series cumulative values have an uptrend from 1972 to 1980
(wet) and have been lower since 1991, after a severe and prolonged drought in the later
1980s. Multivariate and composite indices derived from empirical and parametric copulas
(Figure 7b) also reflect the behavior of univariate indices. Two multivariate indices (JDMI,
JDHI) show similar behavior to meteorological and hydrological indices, but the composite
index derived from JDMI and JDHI is a combination of hydrological and meteorological
drought behavior in the region, which reflects the effect of two variables.

3.5. Correlation between Composite, Multivariate, and Univariate Indices

The degree of consistency between univariate, multivariate, and composite indices
was assessed using the correlation coefficient (CC). In particular, the CC measures the linear
relationship between two time series. High values of CC indicate a high agreement between
multivariate indicators. According to Table 7, there is high correlation between JDHMI and
SPI, SRI, JDMI, and JDHI, and the correlation range is between 0.51 and 0.86. Univariate
and multivariate indices contain a percentage of hydro-meteorological drought change
information, but the composite index (JDHMI) is based on a fuller set of precipitation and
runoff information of the region and combines the effects of two types of droughts.
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Figure 7. Time series of cumulative of univariate (SPI-12, SRI-12) (a) and composite (JDHMI) and
multivariate (JDHI, JDMI) indices (b) in the study area.

Table 7. Correlation coefficient between indices.

Indices SPI-12 SRI-12 JDMI JDHI JDHMI

SPI-12 1.00 0.52 0.60 0.32 0.51
SRI-12 0.52 1.00 0.28 0.52 0.58
JDMI 0.60 0.28 1.00 0.61 0.89
JDHI 0.32 0.52 0.61 1.00 0.86

JDHMI 0.51 0.58 0.89 0.86 1.00

Generally, correlation coefficients between the JDHMI and single drought indices are
mostly over 0.5, indicating that the JDHMI can reflect the comprehensive meteorological
and hydrological drought properties simultaneously. This suggests that the copulas can
represent the complicated and nonlinear relationship among different drought indices to
yield a satisfactory combined drought index. In addition, the margin-free characteristics are
completely preserved by the copula function when constructing the joint distribution function.

3.6. Correlation Structures of Drought Variables and Fitting of Marginal Functions

Based on the methodology of Section 2.2.1, drought severity, duration, and magnitude
were extracted from JDHMI. Their descriptive characteristics are presented in Table 8.
According to the results, 261 events of hydro-meteorological drought occurred in the
study area, with maximum severity, duration, and magnitude of 65, 45 months, and 1.57,
respectively. The average severity of hydro-meteorological drought in the study area was
10.19, with a duration of 9 months and a magnitude of 0.93. The study area has a minimum
drought duration of 2 months, with a magnitude of 0.88 and a magnitude of 0.41.

Figure 8 shows the chi-plot and Kendall plot of the variables extracted from the JDHMI.
These two graphs are a tool to study the structure of the correlation between two variables.
In the Kendall plot (Figure 8, top), two variables are correlated when the event points
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deviate from the diagonal line. The points above the diagonal line indicate a positive
correlation, and the points below the diagonal line indicate a negative correlation [56].
Based on the results of the Kendall plot, a strong deviation from the diagonal line is seen,
which indicates a positive correlation between the variables of severity, duration, and
magnitude of drought in the study area. The two variables can be considered independent
when most events fall within the chi-plot confidence range (Figure 8) [43,57]. In the chi plot,
a strong deviation from the confidence band was observed for all points, and all points are
far from the chi plot confidence range. In addition, most of the studied variables are higher
than the mean (positive lambda values).

Table 8. Statistical characteristics of hydro-meteorological drought (JDHMI) variables.

Characteristics Value

Number of months less than zero 261

Maximum
severity 65.19
duration 45

magnitude 1.57

Average
severity 10.19
duration 9.65

magnitude 0.93

Minimum
severity 0.88
duration 2

magnitude 0.41
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Table 9 shows the marginal functions of the S-D-M variables, the function parameters,
and the goodness of fit test based on AIC, SBC (Schwarz criterion), and K–S statistics. The
AIC is computed based on the Kullback–Leibler distance from information theory, and
the SBC is based on the integrated likelihood from Bayesian theory, which both impose an
appropriate penalty on the average of the log-likelihood of models estimated given the
number of coefficients estimated. A model with the lowest AIC and SBC values is the one
most likely to be the best [43,44]. In the K–S test, if the p-value was more than 0.05, the null
hypothesis that the drought distribution follows the candidate parametric one is accepted
at 5% level of significance.

Table 9. Goodness of fit test of marginal distribution function on hydro-meteorological drought
characteristics.

Indices Functions Parameters K–S Test Evaluation Index

S p

Severity

Weibull λ = 0.95, k = 9.88 0.05 0.15 AIC = 249.55; BIC = 252.77
Gamma α = 1.05; β = 0.10 0.07 0.17 AIC = 249.72; BIC = 252.94

Log-normal µ = 1.77; σ = 0.99 0.06 0.10 AIC = 239.85; BIC = 243.07
Normal µ = 10.19; σ = 13.80 0.02 0.28 AIC = 303.27; BIC = 306.49
Logistic λ = 7.40; k = 5.40 0.05 0.23 AIC = 285.31; BIC = 288.53

Exponential λ = 0.098 0.08 0.17 AIC = 247.78; BIC = 249.39

Duration

Weibull λ = 1.1, k = 10.30 0.08 0.21 AIC = 243.96; BIC = 247.19
Gamma α = 1.61; β = 0.17 0.06 0.22 AIC = 241.30; BIC = 244.52

Log-normal µ = 1.92; σ = 0.77 0.14 0.17 AIC = 231.80; BIC = 235.02
Normal µ = 9.64; σ = 9.98 0.15 0.31 AIC = 143.86; BIC = 146.38
Logistic λ = 7.52; k = 4.31 0.11 0.22 AIC = 267.30; BIC = 270.52

Exponential λ = 0.10 0.09 0.19 AIC = 243.74; BIC = 245.35

Magnitude

Weibull λ = 2.94, k = 1.04 0.09 0.14 AIC = 28.48; BIC = 31.70
Gamma α = 7.01; β = 7.67 0.091 0.14 AIC = 27.19; BIC = 30.42

Log-normal µ = −0.14; σ = 0.38 0.11 0.14 AIC = 27.32; BIC = 30.54
Normal µ = 0.93; σ = 0.34 0.09 0.14 AIC = 30.36; BIC = 33.58
Logistic λ = 0.90; k = 0.21 0.08 0.15 AIC = 33.42; BIC = 36.65

Exponential λ = 1.08 0.05 0.35 AIC = 70.32; BIC = 71.93

The AIC and SBC values and K–S test results are presented in Table 9. Based on the
results, the normal, log-normal, and gamma functions are the best functions on marginal
distribution of the variables of drought severity, duration, and magnitude, respectively.
Figure 9 shows the CDF of the functions on the variables.
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3.7. Fitting of Copula Functions to a Pair of Hydro-Meteorological Drought Variables

After proving the correlation between the variables and selecting the best marginal dis-
tribution function on S-D-M, parametric copula distribution functions of the Archimedean
and elliptical families were used to construct the three-variable joint distribution functions.
The best Coppola was selected based on Sn and ML statistics. According to Table 10, for
S-D the Gumbel function, S-M and D-M for the Clayton function, and the S-D-M for the
t function were the most suitable. CDF and PDF (Probability density function) of the
appropriate copulas of the variables used are shown in Figure 10.
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Table 10. The results of the optimal copulas and parameters for the S-D-M.

Variables Function Sn Parameter p-Value ML

Severity-Duration

Frank 0.03 13.93 0.76 33.59
Joe 0.022 5.30 0.95 34.83

Clayton 0.060 3.65 0.053 26.25
Normal 0.081 0.94 0.011 38.59

T 0.080 0.94 0.01 38.59
Gumbel 0.048 4.05 0.95 38.63

Severity-Magnitude

Frank 0.064 5.67 0.015 12.3
Joe 0.049 1.64 0.22 4.54

Clayton 0.04 2.19 0.78 17.22
Normal 0.08 0.70 0.019 12.46

T 0.04 0.70 0.08 12.52
Gumbel 0.04 1.66 0.55 8.14

Duration-Magnitude

Frank 0.04 2.51 0.67 3.18
Joe 0.10 1.20 0.01 0.99

Clayton 0.10 0.89 0.461 4.58
Normal 0.032 0.40 0.12 3.30

T 0.038 0.41 0.11 3.40
Gumbel 0.039 1.22 0.29 1.85

Severity-Duration-Magnitude

Frank 0.046 5.30 0.18 25.04
Joe 0.04 1.63 0.27 12.53

Clayton 0.032 1.77 0.83 29.28
Normal 0.02 0.68 0.22 26.28

T 0.050 0.67 0.97 30.42
Gumbel 0.081 1.62 0.03 18.98

In Figure 11, the three-dimensional plot (cloud plot) on the left shows the probability
of the three variables using the t copula, and the diagram on the right shows the cumulative
distribution.
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3.8. Conditional Trivariate Return Period and Risk Analysis

For the conditional trivariate return period, the probability of drought severity was
estimated in four scenarios. Thresholds include m = 0.4, 0.9, 1.3, and 1.9 and d = 6, 10, 20,
and 45, which include the range of values that may occur in the study area. According to
Figure 12, by assuming that the drought duration is constant, the conditional probability of
the drought severity decreases as the magnitude increases from 0.3 to 0.9.
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For example, the conditional probability of S ≤ 50, D ≤ 45 months on M ≥ 0.4, M ≥
0.9 M ≥ 1.3, M ≥ 1.9 are respectively 0.9 (return period = 10 years), 0.85 (6.6 years), 0.81
(5.26 years), and 0.76 (4.16 years). This means that increasing the hydro-meteorological
drought magnitude causes the conditional return period for given severity and duration
to decrease.

The trivariate drought risk value can be obtained with R = 1− (1− 1/T)N . In this
equation, T denotes the trivariate conditional return period in the defined scenarios, and N
represents the period length (number of years) over which we assess the risk. In this study,
we estimated the risk at N = 10 and N = 20 years.

Table 11 shows the multivariate risk based on the four defined scenarios. According
to the results, with increasing magnitude of drought, the return period decreases, and the
risk of drought increases.

Table 11. Conditional return period and risk in defined scenarios.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

S 50.00 50.00 50.00 50.00
D 45.00 45.00 45.00 45.00
M 0.30 0.90 1.30 1.90

Return Period conditional 10.00 6.60 5.26 4.16
Risk conditional (N = 10 years) 0.65 0.81 0.88 0.94
Risk conditional (N = 20 years) 0.88 0.96 0.99 1.00
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We divided the risk into five classes: without risk (0–0.2), low (0.2–0.4), medium
(0.4–0.6), high (0.6–0.8) and very high (>0.8). At N = 10 years, scenario 1 (S = 50, D = 45,
M = 0.3) is in the high risk class and other scenarios are in the very high risk class. But in
N = 20 years, all scenarios are in the very high risk class such that scenario 4 will be the
final risk limit (R close to 1) in the region.

4. Discussion

The basis of drought risk assessment is having sufficient knowledge of this phe-
nomenon. Therefore, due to the different behavior of drought, it is necessary to describe
drought from a multivariate perspective. The aim of this study was to analyze the mul-
tivariate risk of hydro-meteorological drought in the Wadi Ouahrane Basin. To obtain
SPImod and SRImod, the cumulated rainfall and runoff values of 1 to 12 months based on
the moving time window were averaged; then, marginal distribution functions were fitted.
The results showed that the gamma function has the best fit for precipitation and the log
normal function has the best fit on the runoff. Shukla and Wood [35] showed that in small
watersheds, the runoff variable is often a normal function, and in large watersheds, the
gamma function is best. Results of our study are confirmed by Yusof et al. [58], who found
log-normal distribution as the best fitting distribution for drought severity.

The basis of the joint of two variables is their correlation structure. The results of
cross-correlation between SPImod

W and SRImod
W for w = 1, 2, . . . , 12 showed that when the

time window increases, the correlation also increases, indicating the importance of last
year’s rainfall and runoff status compared to rainfall and runoff on a month-to-month basis
to identify long-term droughts.

The results of the study of univariate drought indices and multivariate indices showed
that the interpretation of drought based on univariate indices, such as SPImod

1 or SRImod
1 is

more complex. Because these indicators only check for one month in drought monitoring,
they are not able to accurately detect the time of drought. However, the multivariate
hydrological and meteorological indicators obtained by copula show the drought status
based on the structure of dependence between the precipitation and streamflow of the
last 12 months, thus providing acceptable results for drought monitoring. In addition, the
results of time series of indices showed that multivariate indices follow a similar trend,
with less variability compared to univariate index.

Comparison of the changes in univariate indices (SPI, SRI) and multivariate indices due
to hydrological and meteorological drought (JDMI, JDHI) with the hydro-meteorological
composite index (JDHMI) showed that all have a relatively similar trend, but sometimes,
the behavior of runoff was incompatible and specific. It seems that the most important
factor for runoff incompatibility behavior is snowfall in some years. The results of Azhdari
et al. [53,59] also confirmed runoff incompatibility in arid and semi-arid regions. It seems
that the reason for this incompatibility is the changes in the precipitation regime and the
complexity of the mechanism for converting precipitation to runoff in these areas.

According to Azhdari et al. [53], the composite indices reflected the comprehensive
moisture status of the catchment well and were not affected by a single element. Presented
analysis confirmed the study of Azhdari et al. [53], who found runoff was the main source
of inconsistency in the study region.

The results of the correlation coefficient between the studied indices show that the
correlation of univariate indices is less than 0.5, but for the multivariate and hybrid indices,
the correlation is higher than 0.7. Therefore, the joint of the indicators improves the
recognition of the occurrence of multi-timescale hydro-meteorological droughts. This
statement is supported by Dehghani et al. [60], who found that joint indicators and copula
functions can show relationships between the variables that determine drought that are not
visible from classical analysis. In addition, the calculation of the weighted kappa coefficient
showed that the degree of agreement between the composite indicators is high. Therefore,
it can be concluded that the composite index performs better in drought monitoring and
has a good agreement with rainfall and runoff. The results of comparing JDHMI with other
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univariate and multivariate indices showed that JDHMI can present the possibility of a
common hydrological and meteorological deficit situation more accurately and realistically
than other indices.

The results of three-variable conditional risk analysis with different scenarios showed
that considering different thresholds for variables affecting drought risk has an effective
role in drought warning. Ignoring the simultaneous or conditional effects of these variables
will have negative consequences on water and soil resources.

In bivariate modeling in hydrology and hydrometeorology, the main advantage of
copulas is the modeling of the joint dependency structure without any limitation on the
marginal distributions. Therefore, given this important performance, researchers can
flexibly select marginal and common probability functions. As a result, the choice of
marginal distribution is critical because it strongly affects the copula’s performance in
modeling bivariate variables, and any mistake in their selection leads to overestimation or
underestimation in risk analysis. On the other hand, selecting the appropriate distribution
function from among the candidates is also time consuming. The principle of maximum
entropy provides a more objective way to derive probability distribution functions (PDFs)
with a minimum bias of finite information, in which the PDF has maximum uncertainty,
subject to a set of constraints that can be a good alternative copula method [61]. However,
the proposed method is in the early stages of development, so more research is needed to
prove its superiority over the copula method.

Finally, it can be concluded that composite indices are more suitable for drought
assessment and pre-warning than univariate and multivariate indices, because they show
several types of drought simultaneously. Moreover, according to Chen et al. [62], the
joint probabilities and return periods of drought give important information for water
management and planning. Therefore, due to the variability of climate variables in recent
years, the findings of this research will be useful for reducing the effects of drought
on natural resources, planning for future water resource development, and changing
cultivation patterns in areas with similar conditions.

5. Conclusions

The meteorological and hydrological drought condition in the Wadi Ouahrane Basin,
Algeria, was investigated using copulas for multivariate drought characteristics. The study
was performed in the Mediterranean region of North Africa, which is characterized by a
very dynamic climate, high variability of rainfall and thermal conditions, and high variabil-
ity of the hydrological regime. In this region, water scarcity is common. Meteorological and
hydrological drought were analyzed based on SPI and SRI at different timescales, from 1 to
12 months, and the conditional return period for both types of drought was evaluated by
means of the copula function. The analysis showed that gamma and log-normal distribu-
tion were the best fitted models describing the monthly series of rainfall and runoff drought
indexes. As can be expected, runoff is characterized by a high level of temporal correlation
in comparison to rainfall. This can be the result of higher lag of the river on the rainfall
deficit. Using the copula parametric function, the two joint deficit indices JDMI and JDHI
were combined, and JDHMI was obtained. The composite index JDHMI is able to better
reflect the simultaneous hydrological and meteorological behavior well and can present the
probability of a common hydrological and meteorological deficit situation more accurately
and realistically than univariate and multivariate precipitation-based indicators or runoff
alone. Our study showed that JDMI and JDHI gave different results compared to traditional
SPI and SRI indices, and they are more sensitive to rainfall structure than SPI or SRI at any
one timescale. Finally, based on the composite index JDHMI, it was found that over the
analyzed basin, the average severity of hydro-meteorological drought in the study area
was 10.19, with a duration of 9 months, and its magnitude was 0.93. The achieved results
showed that complex indexes can better reflect drought because they reflect correlations in
hydrological and meteorological drought across a range of timescales, and thus can help
with preparing regional or national strategies and planning for drought mitigation.
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10. Saifullah, M.; Adnan, M.; Zaman, M.; Wałęga, A.; Liu, S.; Khan, M.I.; Gagnon, A.S.; Muhammad, S. Hydrological Response of the
Kunhar River Basin in Pakistan to Climate Change and Anthropogenic Impacts on Runoff Characteristics. Water 2021, 13, 3163.
[CrossRef]

11. De Fries, R.S.; Foley, J.A.; Asner, G.P. Land-Use Choices: Balancing Human Needs and Ecosystem Function. Front. Ecol. Environ.
2004, 2, 249–257. [CrossRef]

12. Wang, F.; Wang, Z.; Yang, H.; Di, D.; Zhao, Y.; Liang, Q.; Hussain, Z. Comprehensive evaluation of hydrological drought and its
relationships with meteorological drought in the Yellow River basin, China. J. Hydrol. 2020, 584, 124751. [CrossRef]

13. Viola, M.R.; Mello, C.R.; Beskow, S.; Norton, L.D. Impacts of land-use changes on the hydrology of the Grande river basin
headwaters, Southeastern Brazil. Water Resour. Manag. 2014, 28, 4537–4550. [CrossRef]

14. Lopes, T.R.; Zolin, C.A.; Mingoti, R.; Vendrusculo, L.G.; Terra de Almeida, F.; de Souza, A.P.; de Oliveira, R.F.; Paulino, J.; Uliana,
E.M. Hydrological regime, water availability and land use/land cover change impact on the water balance in a large agriculture
basin in the Southern Brazilian Amazon. J. S. Am. Earth Sci. 2021, 108, 103224. [CrossRef]

15. Zhang, M.; Liu, N.; Harper, R.; Li, Q.; Liu, K.; Wei, X.; Ning, D.; Hou, Y.; Liu, S. A global review on hydrological responses to
forest change across multiple spatial scales: Importance of scale, climate, forest type and hydrological regime. J. Hydrol. 2017, 546,
44–59. [CrossRef]

16. Dorjsuren, B.; Batsaikhan, N.; Yan, D.; Yadamjav, O.; Qin, T.; Weng, B.; Bi, W.; Demberel, O.; Gombo, O.; Girma, A.; et al. Study
on Relationship of Land Cover Changes and Ecohydrological Processes of the Tuul River Basin. Sustainability 2021, 13, 1153.
[CrossRef]

http://doi.org/10.1029/2019RG000683
http://doi.org/10.1007/s40333-021-0050-0
http://doi.org/10.1016/j.scitotenv.2021.147142
http://www.ncbi.nlm.nih.gov/pubmed/33965826
http://doi.org/10.1016/j.jclepro.2021.129524
http://doi.org/10.1186/s40562-020-00172-6
http://doi.org/10.1016/j.ecoinf.2021.101219
http://doi.org/10.1016/j.scitotenv.2020.140933
http://doi.org/10.1016/j.ejrh.2021.100798
http://doi.org/10.1016/j.scitotenv.2020.144467
http://doi.org/10.3390/w13223163
http://doi.org/10.1890/1540-9295(2004)002[0249:LCBHNA]2.0.CO;2
http://doi.org/10.1016/j.jhydrol.2020.124751
http://doi.org/10.1007/s11269-014-0749-1
http://doi.org/10.1016/j.jsames.2021.103224
http://doi.org/10.1016/j.jhydrol.2016.12.040
http://doi.org/10.3390/su13031153


Water 2022, 14, 653 23 of 24
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