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Abstract: This paper investigated the impact of the spatial distribution of SuDS components on their
flood reduction performance and the underlying mechanisms in a community with high groundwater
levels. The effects of SuDS components’ connectivity, decentralized level, and installation position
along the flow direction on the reduction of total discharge volume (TDV), average discharge flow rate
(ADFR), maximum discharge flow rate (MDFR), inundated area (IA), average inundated depth (AID),
and maximum inundated depth (MID) were studied by coupling of the storm water management
model (SWMM) and high-performance integrated hydrodynamic modelling system (HiPIMS). The
results demonstrate that the connectivity has a positive linear correlation with the reduction of
TDV (R2 > 0.991), ADFR (R2 > 0.992), and MDFR (R2 > 0.958), while the decentralized level of rain
gardens and green roofs present positive one-phase exponential correlation with the reduction of
TDV (R2 > 0.935), ADFR (R2 > 0.934) and MDFR (R2 > 0.967). A better-integrated mitigation of TDV
and ADFR could be achieved by installing SuDS upstream along the flow direction. The connectivity
from green roofs to rain gardens has a positive effect on the reduction of AID and MID but leads to
the increase of IA. The findings of this study may contribute to the development of general spatial
distribution guidelines and strategies to optimize the overall performance of SuDS components,
especially at a community scale.

Keywords: sustainable drainage systems; spatial distribution; flood reduction; community scale

1. Introduction

Flooding is one of the most common hazards in both the natural environment and
urban areas [1,2]. The frequency and severity of floods have increased significantly, leading
to growing concerns about the participation of stakeholders from communities [3], the
effectiveness of traditional urban drainage infrastructure [4], challenges from the complexity
of sustainable technologies [5], and climate change [6]. The recorded floods since 2000 in the
UK have affected 433,933 people and caused damage of over 21 million dollars, according
to the data from EM-DAT [7]. As greater pressure is put on traditional urban water
management systems due to the urbanization process and the increase in human activities,
the water quality of rivers and coastal aquifers tends to deteriorate [8,9]. Rapid urbanization
has brought great landscape changes and land-use adjustment in urban areas [10,11] and
interacts with climate change to increase the risk of urban flooding [12,13]. These changes
include replacement of permeable lands with impervious areas and removal of vegetation,
leading to an increase of peak flow and rainwater runoff [14,15]. On the other hand, climate
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changes are widely believed to increase the risk of urban flooding by aggrandizing the
frequency and duration of heavy rainfall events [16] and increasing the difficulty of flood
forecasting [17–19], causing large economic losses due to house collapse and drainage
system maintenance [16,20]. Unfortunately, it has become increasingly difficult for the
traditional urban drainage system to adapt to these changes. Therefore, more countries
have moved towards risk-based sustainable management to improve the flood resilience of
urban areas [21–23]. Among the terminology used to describe the sustainable management
strategies, Sustainable Drainage System (SuDS) is used in this paper.

The Sustainable Drainage System (SuDS) was designed to minimize the risk of urban
flooding and maximize the opportunities and benefits in terms of water quantity, water
quality, amenity and biodiversity [24,25]. First proposed by the UK government, SuDS
has been proven to be effective in storm water management and flood risk mitigation for
specific precipitation characteristics [26–28]. Zahmatkesh et al. studied the impact of SuDS
implementation on runoff reduction in New York City’s urban catchment for future climate
change prediction and indicated that SuDS has a potential mitigation effect on the runoff
and peak flow [29]. Compared to traditional approaches, SuDS has better performance in
reducing the storm flow, peak discharge and most water quality indicators [30]. The imple-
mentation of SuDS can also mitigate runoff pollutants and heat islands due to urbanization,
having a positive impact on achieving water balance and water reuse [29,31,32].

The spatial distribution of SuDS components within a specific catchment strongly
influences their effectiveness in flood reduction. Recent studies have explored the effect
of spatial distribution patterns on surface runoff, thus providing more general spatial
distribution optimization recommendations for SuDS practices at urban or larger catchment
scales [33,34]. Kim and Park believe that the use of landscape indicators can help the design
of SuDS spatial layouts, especially for urban green infrastructure such as rain gardens and
bio-retentions [35]. They point out that increasing the size, fragmentation and connectivity
of these components can reduce peak runoff on a macro scale [35]. Mejia and Moglen
clarified that when determining the hydrological response of urban watersheds, it is
necessary to consider both the precipitation characteristics and the spatial variability of
impermeability [36]. Similarly, Liang, You and Lee studied the SuDS layout through genetic
algorithm (GA) and hydrological analysis and suggested that SuDS facilities with storage
layers should be concentrated in the middle reaches of drainage trunk lines to efficiently
reduce surface runoff and delay the time to peak flow [37].

Site constraints are important factors in optimizing spatial distribution, as they may
limit the scope of selecting SuDS components and their flood mitigation efficiency. Common
site constraints include land use type, pollution loading, soil type and depth, groundwater
level, topography, available space, drainage system and impervious area [38]. Changes
in land use types often lead to alterations in available space and impervious areas, which
affect the implementation of SuDS and the hydrological response, especially in urban
areas with complex land use types [39]. The research of Zeng, Guo and Dong indicates
that the synergy with urban drainage system can effectively improve the flood reduction
performance of SuDS [40]. Differences in topography and soil conditions will directly
lead to changes in surface runoff and infiltration characteristics, which therefore are other
important factors [41]. Shallow water tables and moisture-saturated soils also often limit the
implementation of SuDS due to the risk of facility failure and groundwater contamination,
especially in coastal areas [42,43]. In this case, SuDS without storage layers may be a more
suitable option, because it normally requires smaller installation depth under the ground.
However, there are few studies focusing on the spatial distribution of SuDS suitable for
areas with high groundwater levels.

Communities are the basic units for urban SuDS planning, and SuDS research at the
community scale has gradually received more attention [44]. Besides the government,
participation and support from different groups and communities are essential to realize
the application of SuDS [45]. Therefore, Latifi et al. proposed a leader–follower game model
to balance the conflicting utility that may exist between various participants [46]. Other
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studies have suggested optimizing the spatial distribution by establishing a multi-standard
evaluation framework based on residents’ willingness [47], site constraints [48], urban
development planning [49] and cost-benefit analysis [50]. However, the custom weights
used in the framework may affect the results of spatial optimization, so its reliability cannot
be guaranteed [38]. In this case, the use of hydrological models to assess SuDS performance
at the community scale is another option [38]. To better evaluate the runoff control of
community-scale SuDS, Yin et al. proposed a SWMM-CADDIES integrated model to
analyze the rainfall runoff process in the community [51]. Chen et al. used the enhanced
L-THIA-LID 2.2 model to study the effectiveness of SuDS in a combined sewer overflow
community and found that the combined implementation of SuDS can reduce runoff and
pollutant load more effectively than individual application [52].

Although SuDS research at the community scale is gaining popularity, existing studies
on the spatial distribution optimization of SuDS at the community scale are limited in
their scope. Some studies have examined the spatial distribution of SuDS components at a
community scale, but few studies specifically analyzed the spatial distribution of suitable
SuDS components in areas with high groundwater levels. Many scholars have conducted
research on the spatial distribution of SuDS at the urban or watershed scales [48,53,54].
However, limited by the diversity of community types and inadequate spatial resolution,
these studies cannot be directly applied to the community scale [53]. Kim and Park
reported the contracting effects of green infrastructure’s connectivity on reducing surface
runoff at different scales [35], highlighting the importance of community-scale study for
SuDS distribution. The lack of such studies hinders the effective design of SuDS spatial
distribution in practice. Only nine urban typologies are provided in the SuDS manual as
design examples to support the specific design of spatial distribution of SuDS components
at the community scale [25]. These typologies cannot cover all the complex patterns seen in
different communities.

To fill these gaps, this study used the SWMM-HiPIMS coupled model to simulate the
impact of SuDS on surface runoff and inundation indicators in different spatial distribution
scenarios of a community with high groundwater level, aiming to reveal the relationship
between the spatial distribution of SuDS components and the flood reduction as well as
the underlying mechanisms from a hydrologic perspective. Green roofs and rain gardens
were chosen as the typical SuDS components without storage layers, which are suitable
for communities with high groundwater levels. The results of the study may help local
designers optimize the spatial distribution of SuDS in communities with high groundwater
levels.

2. Materials and Methods

This study investigated the impact of different spatial distribution scenarios of SuDS
components on flood reduction at the community scale. In this study, SWMM, one of the
most popular rainfall runoff models for urban water resource management, was used to
simulate the response of SuDS components to rainfall with different spatial distributions in
the first stage. Then, the surface runoff data in the SWMM model running results were fed
into the HiPIMS as effective rainfall to simulate the flood inundating process with higher
spatial and temporal resolution. The simulation results give the position and area of flood
inundation.

2.1. Study Area

The study area (51◦30′10”, 0◦12′37”) is a community-scale area located in an urban
catchment. The urban catchment is part of the drainage system in the Royal Borough of
Kensington and Chelsea (RBKC), west London, England (Figure 1). RBKC is the smallest
borough in London and one of the most densely populated administrative areas in Britain,
with more than 150,000 people living on 1213 hectares. It was chosen mainly because of its
relatively high flood risk, according to the 2019 flood risk map for surface water in England
(Figure 2) on the Environment Agency website. As shown in Figure 3, the study area has a
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total size of 28.9 hectares and includes the following four land-use types: buildings, green
land, roads and open space.
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2.2. SWMM Simulation

First developed by the Environmental Protection Agency of the United States (US
EPA) in 1971, the Storm Water Management Model (SWMM) is a dynamic rainfall–runoff
simulation model used for single-event or long-term simulation of runoff quantity and
quality from primarily urban areas [57]. The SuDS components have been included in the
model package since Version 5.0.22 [37]. The SWMM software used in this study is Version
5.1.013.

The setup of the SWMM model was based on the data from various online databases.
Ten subcatchments, numbered from S1 to S10, were defined by the roads in the study area,
under the consensus that drainage pipes are normally laid along the roads. The assumed
drainage pipelines were set up along the roads to estimate the total runoff volume, which
did not affect the surface runoff state. The subcatchments and drainage system set in the
SWMM are shown in Figure 4, with blue arrows showing the flow direction in the pipes.
The junctions that allow the subcatchments S1 to S10 to drain are numbered from J1 to J10.
The aerial image from Google Earth, with a resolution of 1 m, was used to classify land-use
types and identify impermeable areas (buildings, roads and open space) and permeable
areas (green land). The land use map of the study area is shown in Figure 3.

In this paper, the subcatchment components were defined specifically as ‘mini-catchments’,
referring to the land use map. They were set to drain to the corresponding junctions, named
J1 to J10 according to the subcatchments they were located in. The rainwater in the drainage
system discharged to the same downstream outlet, namely the Outfall. In summary, there were
10 subcatchments, including 1348 mini-catchments, 13 junctions, 13 conduits and 1 outlet, in the
study area.
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The surface parameters of the mini-catchments were set up based on the Digital
Surface Model (DSM) and Digital Terrain Model (DTM) data, with a resolution of 1 m,
which were downloaded from the Defra Data Services Platform. Then the DSM and DTM
data were processed to set up the area and average slope for the mini-catchments. The other
parameters of mini-catchments were set up according to the SWMM User’s Manual Version
5.1. The land use map and the field soil condition were obtained from the Cranfield Soil and
Agrifood Institute [58]. Horton’s equation was used to calculate the infiltration of water
into the soil. A summary of the SWMM model parameter settings for the subcatchment
components are listed in Table S1, while the infiltration parameter settings for Horton’s
equation are summarized in Table S2 in the Supplementary Materials.

The pipelines of the drainage system are assumed to be built from concrete. Therefore,
Manning’s roughness coefficient was set to 0.015. It was assumed that every conduit
is equipped with flap gates to prevent the backflow of rainwater. The other assumed
parameters are summarized in Table S3.

The study area consisted of 45.6% green land, 26.8% buildings, 11.3% roads and 16.3%
open space. The large areas of green land had the potential to be converted into rain
gardens (RGs), while the roofs of the buildings were the ideal location for green roofs (GRs).
The rain garden comprised a surface layer and a soil layer, while the green roof comprised
a surface layer, a soil layer and a drainage mat. Both SuDS components included no storage
layers and thus were suitable for the study area, where the groundwater level is relatively
high [58].
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The rainfall runoff on the green roof was to infiltrate into the soil layer and drain
off the roof through the drainage mat, while the rainwater in the rain garden was to
infiltrate through the engineered soil layer quickly and into the natural soil directly [57].
The schematic diagram of the SuDS components in the SWMM model is shown in Figure S1,
and Table S4 summarizes the parameter settings of the SuDS components in the SWMM
model. The porosity of the soil layer was defined according to Table S5 in the Supplementary
Materials [57].

Due to the limited available data, we set up a hypothetical pipeline system based on
data from a similar study [37], as shown in Figure 4 and Table S3 in the Supplementary
Materials. The results of rainwater discharge through the outlet could be used to reflect
the overall situation of the surface runoff in the study area. Considering that the potential
irrationality of the assumed pipeline may be amplified by complex calculations, the rela-
tively simple Kinematic Wave method can not only reduce possible error, but also meet the
research requirements to some extent. Therefore, the Kinematic Wave method was used to
route flows through the conveyance system. A time step length of 5 s was applied to both
the simulations of pipe routing and surface runoff.

2.3. Design Storms

According to the Flood Estimation Handbook (FEH) [59], the depth-duration-frequency
(DDF) model is recommended to design rainfall events in the UK. The calculated design
rainfall data with various return periods and durations in the study area was accessed
on the website of FEH Web Services [60]. As non-riverine urban flooding is generally
caused by short-term heavy rainfall events, 1 h (36.39 mm of precipitation) and 3 h rainfall
events (52.81 mm of precipitation) with a return period of 30 years were selected as the
input rainfall of the SWMM model. The two rainfall events were designed with even
rainfall intensity.

2.4. Flood Simulation Configuration

The flood simulations were performed by a GPU-based flood model, HiPIMS. De-
veloped by Xia, Liang and Ming (2019), the high-performance integrated hydrodynamic
modelling system (HiPIMS) uses state-of-the-art numerical schemes (Godunov-type finite
volume) to solve the 2D shallow water-type equations for flood and landslide simula-
tions [61]. It was developed to predict the full-scale process of fluvial flooding from
the source (rainfall) to impact (inundation) over a large catchment using a single high-
performance hydrodynamic model driven by rainfall inputs [61].

The same DSM data were used to define the topography of the simulation. The
landcover data were utilized to define the Manning’s roughness coefficient of the areas
with different landcover types (Table S6). The rainfall inputs were obtained by processing
the surface runoff data of the SWMM model for the equivalent rainfall intensity.

2.5. SuDS Spatial Distribution Scenarios

To study the relationship between the spatial distribution pattern of SuDS components
and their overall performance of flood reduction at the community scale, 27 types of spatial
distribution scenarios for SuDS and a blank scenario 0 without SuDS were proposed to
simulate the flood reduction performance in the SWMM model. Nine sketch maps of the
key spatial distribution strategies are provided in Figures 5–7. To facilitate the statistics
and analysis, the area of each SuDS unit was set to 20 m2 due to the area limit (20 m2)
of the minimum mini-catchment; all the units can treat the runoff drained from other
subcatchments. Each subcatchment could install more than one SuDS unit as long as
the total SuDS area did not exceed the total area of the subcatchment. According to the
principle of single variable, we set up the combination of multiple SuDS units with an area
of 20 m2 to avoid the interference of the area change of SuDS units when studying the
influence of the decentralized distribution strategy.
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Figure 7. Sketch maps of different position strategies. In scenario 19, RGs are applied in up-
stream mini-catchments along flow direction; scenario 23, RGs are applied in even-numbered mini-
catchments along flow direction; scenario 27, RGs are applied in downstream mini-catchments along
flow direction.

The scenarios were designed from three aspects, as shown in Figures 5–7. Scenarios 1
to 9 were designed to explore the impact of connectivity between SuDS components on
their flood reduction performance. They were followed by scenarios 10 to 18, which were
designed to study the impact of the clustering level of SuDS components. Scenarios 19 to
27 were designed to study the SuDS components’ position along the flow direction. The
detailed descriptions for sketch maps of 27 scenarios can be found in Figures S2–S28 in
the Supplementary Materials. Scenario 0 was also constructed in the SWMM model as
a blank control. The distribution strategies of 27 scenarios were provided in Table 1. To
ensure that only the spatial distribution strategies differ in these scenarios, the number and
types of SuDS units applied in the 27 scenarios were controlled as shown in Table S7 in
Supplementary Materials.

The connectedness (CONNECT), edge density (ED) and the flow distance (FD) among
the outlets and the mini-catchments were chosen as indexes to assess the connectivity,
decentralized level and position along the flow direction of the considered scenarios,
respectively [35].
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Table 1. Summary of the distribution strategies in scenarios 1 to 27.

Scenarios Strategy for Rain Gardens Strategy for Green Roofs

1 527 units decentralized; disconnected 622 units decentralized; disconnected
2 527 units decentralized; disconnected 622 units decentralized; 151 units connected to RG
3 527 units decentralized; disconnected 622 units decentralized; 275 units connected to RG
4 527 units decentralized; disconnected 622 units decentralized; 395 units connected to RG
5 527 units decentralized; disconnected 622 units decentralized; 526 units connected to RG
6 527 units decentralized; 139 units connected 622 units decentralized; 526 units connected to RG
7 527 units decentralized; 235 units connected 622 units decentralized; 526 units connected to RG
8 527 units decentralized; 315 units connected 622 units decentralized; 526 units connected to RG
9 527 units decentralized; 422 units connected 622 units decentralized; 526 units connected to RG
10 527 units clustered; 422 units connected 622 units clustered; 526 units connected to RG
11 527 units clustered; 422 units connected 489 units clustered; 526 units connected to RG
12 527 units clustered; 422 units connected 355 units clustered; 526 units connected to RG
13 527 units clustered; 422 units connected 214 units clustered; 526 units connected to RG
14 527 units clustered; 422 units connected 622 units decentralized; 526 units connected to RG
15 396 units clustered; 422 units connected 622 units clustered; 526 units connected to RG
16 270 units clustered; 422 units connected 622 units clustered; 526 units connected to RG
17 166 units clustered; 422 units connected 622 units clustered; 526 units connected to RG
18 527 units decentralized; 422 units connected 622 units clustered; 526 units connected to RG
19 341 units decentralized; 233 units connected; upstream distributed 622 units clustered; 526 units connected to RG
20 341 units decentralized; 233 units connected; upstream distributed 622 units clustered; 526 units connected to RG
21 341 units decentralized; 233 units connected; upstream distributed 622 units clustered; 526 units connected to RG
22 341 units decentralized; 233 units connected; upstream distributed 622 units clustered; 526 units connected to RG
23 341 units decentralized; 233 units connected; alternately distributed 622 units clustered; 526 units connected to RG
24 341 units decentralized; 233 units connected; downstream distributed 622 units clustered; 526 units connected to RG
25 341 units decentralized; 233 units connected; downstream distributed 622 units clustered; 526 units connected to RG
26 341 units decentralized; 233 units connected; downstream distributed 622 units clustered; 526 units connected to RG
27 341 units decentralized; 233 units connected; downstream distributed 622 units clustered; 526 units connected to RG

The connectedness equals the number of functional joins between mini-catchments of
the same type within the catchment, divided by the total number of possible joins between
all corresponding mini-catchments, multiplied by 100 [33]:

CONNECT =
∑n

j−k Cijk

ni(ni−1)
2

(1)

where
Cijk = number of connections between mini-catchments j and k (0 = disconnected, 1 = connected)

of all corresponding mini-catchments in the study area
ni = number of mini-catchments in the study area
The edge density equals the total length of the edge divided by the area of all mini-

catchments [35]:

ED =
E
A

(2)

where
E = the sum of edges (m)
A = total area (m2)
The flow distance refers to the average distance among the outfall nodes of subcatch-

ments S1 to S10 and the mini-catchments with SuDS components in the study area [37]:

FD =
∑n

i=0 ∑10
j=1

√(
Xj − xi

)2
+
(
Yj − yi

)2

n
(3)

where
Xj = x-coordinate of the outfall nodes in subcatchments S1 to S10 (m)
Yj = y-coordinate of the outfall nodes in subcatchments S1 to S10 (m)
xi = x-coordinate of the SuDS mini-catchments’ drainage locations (m)
yi = y-coordinate of the SuDS mini-catchments’ drainage locations (m)
n = number of mini-catchments in the study area
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The summary of the indexes of the decentralized level, connectivity and the SuDS
components’ position along the flow direction in 27 scenarios is shown in Table S8 in the
Supplementary Materials.

2.6. The Performance Assessment Criteria of Spatial Distribution Scenarios

This SWMM’s summary results report includes the results for each subcatchment,
node, and link in the project through a selectable list of tables [57]. Based on this report, the
maximum discharge flow rate (MDFR), the average discharge flow rate (ADFR) and the
total discharge volume (TDV) of flow drained from the downstream outlet were selected as
the main indicators to evaluate the mitigation of surface runoff.

The simulation results at each reporting time step for various variables of subcatch-
ments, nodes, and links are also available to be plotted and statistically analyzed in
SWMM [57]. To analyze the changes in surface runoff over the process of the design rainfall,
the time series results of the discharge flow rate of downstream outlet were selected as
another perspective to assess the flood mitigation performance of the considered scenarios.

The simulation results of HiPIMS include three types: the water depth and velocities
at predefined moments during a simulated event, the maximum water depth and velocities
throughout the event, and the time series of water depth and velocities, including rainfall
over the model domain and inflow and outflow boundary conditions. In this paper, the
changes of average inundated depth (AID), maximum inundated depth (MID) and the
inundated area (IA) during the rainfall events were selected to study the inundated areas
in 27 scenarios.

The simulation results of HiPIMS also reveal the inundated area distribution in these
scenarios. Detailed flood maps when the maximum inundated depth occurs in 28 con-
sidered scenarios in 1 h and 3 h rainfall events are shown in Figures S29–S84 in the
Supplementary Materials.

The correlation coefficient (R2) was chosen to assess the correlation between SuDS
components’ spatial characteristics and their flood reduction performance:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (4)

where
∑n

i=1(yi − ŷi)
2 = residual sum of squares

∑n
i=1(yi − yi)

2 = total sum of squares

3. Results
3.1. Effectiveness of SuDS in a Single Catchment

In the first step, we simulated the performance of SuDS components under various
rainfall events in a single catchment to determine the physical mechanisms behind the
SuDS performance, which could help to understand the performance of SuDS with various
spatial distributions. The catchment for this part of the study was a hypothetical catchment
that represents the property of the study area. The width of this catchment was estimated
by the GIS data, while the other parameters were set to average values of the subcatchments
in it. In total, 1149 potential sites (22,980 m2) for SuDS installation, among which 622 sites
(12,440 m2) for green roofs and 527 sites (10,540 m2) for rain gardens, were identified and
used. Specifications for the representative catchment and applied SuDS are given in Table 2.
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Table 2. Parameter settings of the hypothetical subcatchment in the SWMM model.

Object Parameter Value Unit

Catchment Area 28.9 ha
Width 200 m
Slope 53.4 %

Percentage of impervious area 54.4 %
Manning’s n value of impervious areas 0.012 none

Manning’s n value of pervious areas 0.389 none
Depression storage of impervious areas 2.54 mm

Depression storage of pervious areas 5.08 mm
Proportion of impervious areas with no

depression storage 0 %

Rain Garden Area 10,540 m2

Percentage of impervious area 100 %
Surface width per unit 0 m
Number of SuDS units 527 none

Green Roof Area 12,440 m2

Percentage of impervious area 0 %
Surface width per unit 5 m
Number of SuDS units 622 none

Detailed reports of the SuDS component from the SWMM are helpful to explicate
their underlying physical mechanisms. The process data of two SuDS components were
compared in 12 rainfall events based on data extracted from SWMM detailed reports. For
1 h and 3 h rainfall events with different return periods, Figures 8 and 9 display the process
data that characterize the performance of rain gardens, while Figures 10 and 11 display the
process data that characterize the performance of green roofs. The blue dotted horizontal
line was added to the figures as an auxiliary line to represent the water storage limit based
on a given berm height of 150 mm.
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SuDS facilities are commonly designed to reduce discharge runoff by increasing the
recharge of subsurface flows and extend the duration of stormwater retention. Rain gardens
are infiltration-based SuDS facilities with an engineered soil layer to reduce stormwater
runoff and peak flow at the site. As shown in Figure 8, the total inflow sequentially
undergoes three processes of infiltration into the soil layer, being stored in the surface space,
and generating outflow after the it enters the rain gardens. When the rainfall intensity
(mm/h) is lower than the maximum infiltration rate (mm/h) of the surface soil, the total
inflow completely infiltrates into the gaps of filler particles in the soil layer and gradually
increases the soil moisture content. It can be observed in 5- and 10-year events that when the
inflow gradually exceeds the soil infiltration rate over time, rainwater begins to accumulate
in the surface storage space formed by the berm, and the surface water level gradually
rises. This means the surface storage space provides the rain gardens with storage capacity,
and the amount of water retained and the delay time of peak runoff mainly depend on
the height of the berms. When the surface water level reaches the berm height after the
peak inflow occurs, rain gardens can simultaneously cause a reduction in surface runoff
and a delay in the appearance of peak runoff, as shown in the results of 30- and 50-year
events. This can be attributed to the accommodation of remaining surface storage space to
the peak flow.
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As the intensity of the rainfall increases, the surface water level will react more quickly
to changes in inflow, thereby reducing the extent of delayed discharge. Regardless of the
return period, the results mentioned above can also be observed in Figure 9. By comparing
the results of 1 h events and 3 h events over the same return period, rain gardens are more
prone to produce surface runoff in the 3 h events. This means that rainfall events with
longer duration consume more surface storage capacity, leaving the rain garden with less
remaining storage capacity to accommodate the inflow.

Compared to the rain garden, the green roof has a thinner soil layer and an extra
drainage mat layer under it to drain rainwater. However, for safety reasons, green roofs
are not equipped with berms to create extra storage capacity on the surface like rain
gardens. Therefore, as retention-based facilities, the main processes in green roofs to
mitigate rainwater are infiltrating into the soil layer, being retained in the soil layer and
discharging from the drainage mat. As shown in the results for 2-, 5-, 10- and 30-year
events in Figure 10, when the rainfall intensity is low, all rainwater can infiltrate into the
soil layer of the green roofs and cause an increase in soil moisture and soil percolation. In
this case, percolation in the soil layer starts when the soil moisture reaches the threshold of
24.9%. When analyzing the results of soil percolation in Figures 10 and 11, we found that
the threshold (24.3–25.0%) is universal and almost unaffected by rainfall events, and its
magnitude is primarily affected by soil characteristics. As shown in the results of 50- and
100-year events, with the gradual increase of soil moisture, the infiltration rate of rainwater
in the rain garden suddenly began to decline rapidly, and it began to produce surface runoff.
This means that in response to events with high rainfall intensity, the retaining capacity of
the soil layer may be quickly exhausted.

Similar results in the rainfall events with a 3 h duration can be observed in Figure 11.
When the soil moisture is relatively low and there is enough capacity to retain the rainwater,
it can temporarily remain in the soil layer instead of percolating to the drainage mat layer.
As the rainfall intensity increases, the time when the rainwater starts to be discharged from
the drainage mat gradually advances, and the discharged flow will reach a higher peak.
When the accumulation of rainwater in the soil layer makes the soil saturated, the buffering
effect of the rain gardens on the peak flow disappears, and the peak flow returns to the
level of total inflow.

Our results demonstrate that the surface storage capacity and the rainwater infiltration
into the soil layer of the rain gardens are the primary mechanisms that affect the reduction of
peak flow and the delayed discharge of surface runoff, while the retention and percolation
of rainwater in the soil layer are the main mechanisms that affect the green roof in reducing
discharge runoff and delaying the appearance of peak flow. By comparing the results
of the two SuDS facilities in 1 h and 3 h events with a 30- to 50-year return period, we
also noticed that rain gardens are more sensitive to the accumulated rainfall, while the
efficiency of the green roofs is primarily affected by the rainfall intensity. This may be
because rain gardens eventually allow infiltration of rainwater into the natural soil to
supplement groundwater, while green roofs can discharge rainwater accumulated in the
soil layer through the drainage mat layer more quickly.

3.2. The Simulation Results of the SWMM Model
3.2.1. The Total Discharge Volume and Discharge Flow Rate

As shown in Figure 12, the reduction rate of total discharge volume (TDV), average
discharge flow rate (ADFR) and maximum discharge flow rate (MDFR) from the down-
stream outlet of 27 considered scenarios are plotted with the connectedness, edge density
and flow distance in scatter diagrams. The solid red line represents the fitting curve of
these results.
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As shown in Figure 12, the connectedness of green roofs (GRs) and rain gardens (RGs)
shows a strong positive linear correlation with TDV, ADFR and MDFR reduction rate in
most cases. The results in Figure 12 also show that an increase in connectedness from GR
to RG leads to a greater reduction of TDV and ADFR than an increase in connectedness
from RG to RG. This suggests that TDV and ADFR reduction rates are more sensitive to
increased connectivity between green roofs and rain gardens than to increased connectivity
among rain gardens. Moreover, the difference was not affected by the duration and
intensity of rainfall events. Based on the analysis of the physical mechanisms of green roofs
and rain gardens in flood reduction mentioned in Section 3.1, we believe that increased
connectedness can enhance the flood reduction efficiency of rain gardens by increasing the
utilization of their remaining surface storage or potential infiltration capacity. As they are
connected, rain gardens that have exhausted storage and infiltration capacity can drain the
outflow to other rainwater gardens that have remaining storage capacity to avoid direct
discharge of rainwater. The connection from green roofs to the rain gardens not only allows
the rainwater discharged from the green roofs to be infiltrated again or temporarily stored
in rain gardens, but also increases the infiltration time of rainwater in rain gardens through
the delayed discharge of the green roofs. This may be one reason why it can achieve better
efficiency in reducing TDV and ADFR than increasing the connection of rain gardens.

As shown in Figure 12, the connectedness from green roofs to rain gardens showed
a strong linear correlation with the reduction rate of MDFR when facing 3 h events. The
reduction of MDFR seems to be more susceptible to connectedness among rain gardens.
This may be due to changes in the number of SuDS, which can buffer rainwater at the MDFR
site. When no SuDS are connected, the peak flow is mainly affected by the infiltration or
temporary storage of rainwater by few SuDS near the MDFR site. When the strategy of
connecting green roofs to rain gardens is adopted, both the few green roofs located near
the MDFR site and their directly connected rain gardens can buffer peak flows. When rain
gardens are also connected, more connected rain gardens can be used to buffer the peak
flow at the MDFR site, even though they may not be near the site. However, there was no
obvious correlation between green roof connectivity and the reduction in MDFR during 1 h
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events. This may be because green roofs in scenarios 1 to 5 have already achieved optimal
performance in reducing MDFR. This suggests that when facing short-term heavy rainfall
events, increased connectedness from green roofs to rain gardens cannot enhance MDFR
reduction at the community scale. Furthermore, increased connectedness has a slightly
greater effect on the reduction rate of TDV, ADFR and MDFR in 1 h rainfall events than in
3 h rainfall events, both for green roofs and rain gardens.

The results in Figure 13 show that increasing the edge density of rain gardens has a
better promoting effect on TDV, ADFR and MDFR reduction than green roofs.
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Obviously, as the green roofs become more decentralized from scenario 11 to 14, they
can receive a wider range of rainwater and temporarily store it in the soil layer. However, in
these scenarios, rain gardens are centrally installed on large green lands, so not all delayed
rainwater discharge from green roofs can flow into the rain gardens and be infiltrated or
stored. In this case, the increase in the dispersion of green roofs only slightly prompts
the reduction rates of TDV, ADFR and MDFR, as shown in the results of increasing GR
edge density in Figure 13. On the other hand, the results of increasing RG edge density
show that the decentralized distribution of rain gardens can lead to a greater reduction of
TDV, ADFR and MDFR. This may be because the decentralized distribution of rain gardens
not only increases the receiving range of rainwater, but also receives surface runoff over a
larger area. In addition, rainwater received by green roofs is likely to be discharged as free
flow for a short period of time, while rainwater received by rain gardens can eventually
be infiltrated into the natural soil instead of becoming surface runoff again. Moreover,
increasing the edge density of the two SuDS components helps reduce TDV, ADFR and
MDFR in 1 h rainfall events slightly more than in 3 h rainfall events. This indicates that the
duration and intensity of precipitation events are related to this difference.

In summary, the results demonstrate that the increase of both connectedness and edge
density would promote the decrease of TDV, ADFR and MDFR, although the performance
of GR and RG is different. For a certain increase in connectedness, GR had greater potential
in reducing TDV and ADFR, while RG reduced MDFR. From the perspective of edge
density, RG presented a more significant effect than GR in reducing TDV, ADFR and MDFR.
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The effect of the enhancement of connectedness and edge density on flood reduction
performance seems to be more noticeable in 1 h events.

From the aspect of flow distance, Figure 14 demonstrates that flow distance has a fair
linear correlation with the reduction of TDV, ADFR and MDFR, except the reduction of
MDFR in 1 h events. The linear fitting result between flow distance and reduction of MDFR
shows a weak positive linear correlation.
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As shown in Figure 14, the reduction rates of TDV and ADFR decrease as rain gardens’
average flow distance increases. This suggests that when rain gardens are installed down-
stream of surface runoff, they can be more effective in reducing TDV and ADFR. Since the
rainfall events in this study are set as spatially uniform precipitation, we believe that the
main reason for this difference is the difference in surface runoff flowing into rain gardens.
When rain gardens are installed downstream, the higher inflow rate can rapidly increase
the rate of rainwater accumulation in the surface storage space of rain gardens and make
them discharge earlier. However, as rain gardens only buffer and attenuate the inflow from
upstream their installation sites, rain gardens installed downstream can receive and treat
inflow from a wider range of surface runoff, resulting in greater TDV and ADFR reduction
rates. The effect of increasing flow distance on reducing TDV and ADFR in 1 h events is
greater than in 3 h events for rain gardens. This means that the flood reduction effect caused
by the location of the rain gardens may be more sensitive to short-term rainfall events.

On the contrary, the fitting results of MDFR reduction rate in Figure 14 present a nega-
tive correlation between flow distance and MDFR. Therefore, the reduction rate of MDFR
decreases as the installation location of rain gardens shifts from upstream to downstream.
As mentioned above, when the rain gardens are installed downstream of surface runoff,
the rainwater acquires a large inflow velocity through the accumulation of gravitational
potential energy before flowing into the rain gardens. This strategy allows rain gardens to
reduce ADFR more effectively, but it also accelerates the depletion of surface storage space.
As shown in Figures 8 and 9, when the storage capacity of rain gardens is exhausted before
peak flow occurs, there is some time for discharge runoff to accumulate kinetic energy and
reach the MDFR. Therefore, the reduction rate of MDFR will decrease as the time to speed
up the discharge flow rate increases.

Among these 27 scenarios, the SuDS components in scenario 18 achieved the greatest
reduction of TDV, ADFR and MDFR, except scenario 17 achieved the greatest reduction of
MDFR in a 3 h rainfall event.

3.2.2. The Changes of Discharge Flow Rate in Downstream Outlet Versus Time

According to the time series results reported by SWMM, the scatter charts are plotted
to illustrate the variation trend of discharge flow rate (DFR) in the considered simulation
process, as shown in Figures 15 and 16.
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As shown in Figure 15a,b and Figure 16a,b, the flow rate curve of Sc-0 and Sc-1 share a
similar variation trend, but with different values. The discharge flow rate in both scenarios
increases sharply as the rainfall event starts and then climbs to the maximum DFR. This
means that installing unconnected SuDS at the community scale can reduce the discharge
flow rate but has limited buffering effect on the rapid rising of DFR at the beginning of the
rainfall event. As the connectivity of SuDS components in Sc-2 to Sc-9 increases, the sharp
increasing trend of DFR at the beginning of 1 h events becomes a slower increasing trend.
The results in Figure 15a,b show that GR connectivity could mitigate the increasing trend
of DFR from 6 to 40 min since the beginning of rainfall, while RG connectivity tends to
mitigate the increasing trend of DFR from 40 to 60 min. As shown in the results of scenario 9
in Figure 15, when all rain gardens and green roofs were connected, SuDS achieved the best
DFR reduction among Sc-1 to Sc-9. Similar results can also be observed in scatter graphs
in Figure 16a,b. When facing 3 h events, GR connectivity can reduce the increasing trend
of DFR from 10 to 80 min since the beginning of the rainfall, while RG connectivity tends
to reduce the increasing trend of DFR from 50 to 180 min. Compared to the green roofs,
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the rain garden’s surface storage capacity composed of berms helps to buffer the inflow
during high flow rates and increases the infiltration time. This suggests that increasing GR
connectivity can improve the mitigation efficiency of SuDS against runoff with a low flow
rate, while increasing RG connectivity can help reduce inflow with a high flow rate.

Comparing the results in Figure 15c,d and Figure 16c,d, respectively, the edge density
of rain gardens has a more significant effect on slowing down the rise of DFR than that
of green roofs. In 1 h events, the increase of the edge density of RG can more effectively
reduce the DFR during rainfall, including the peak discharge flow rate. In the 3 h event, the
increase in the edge density of RG obviously leads to a less significant reduction of the peak
discharge flow rate. This may be due to the exhausted infiltration and storage capacity of
rain gardens before the peak flow appears, caused by the longer rainfall duration. Although
the mitigation effect of flow distance is not as notable as for connectedness and edge density,
its increase changes the upper concave, increasing the curve to a lower concave one, as
shown in Figure 15e. Similar variation trends can also be seen in the 3 h rainfall event,
as shown in Figure 16. This can be attributed to the fact that the rain gardens installed
downstream can receive more runoff from the upstream region, thus increasing their
chances of storing and absorbing surface runoff. The maximum discharge flow rate in the
whole rainfall event in 28 scenarios including Sc-0 appears after the rain stops for 1 min.
However, the delay in maximum flow rate is not observed.

3.3. The Simulation Results of the HiPIMS Model
3.3.1. The Proportion of the Inundated Areas

According to the time series results reported by Hi-PIMS, the line graphs are plotted
to illustrate the variation trend of the inundated area (IA) in the considered simulation
process, as shown in Figures 17 and 18.
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As shown in Figure 17a–e, the increase of connectivity between SuDS components
can lead to the increase of the inundated percentage, while the edge density and flow
distance have almost no effect on it. The results of Sc-0 in Figure 17 show the variation
trend of the inundated area without SuDS. With the beginning of the rainfall, the inundated
percentage in the study area first increases rapidly and then decreases gradually, because
surface runoff under the influence of gravity will converge to lower places and cause the
decrease of the inundated area. The rainwater convergence is also accompanied by an
increase in the inundated depth at the converging sites. Thus, despite causing an expansion
of the inundated area, the implementation of SuDS can delay and slow the convergence
of surface runoff and the formation of deep inundated sites, which is also supported by
the results shown in Figures 19 and 20. Moreover, the results in Figure 17a,b indicate that
the inundated area in the study area gradually expands with the increase of connectivity
from green roofs to rain gardens. However, increasing the connectivity among rain gardens
on this basis has no effect on the change of the inundated area. Similar results can also
be observed in Figure 18. Interestingly, as green roofs are increasingly connected to rain
gardens, we observe less inundated area between 0 and 90 min in Sc-5 than in Sc-0 in 3 h
events. This means that in the low-intensity rainfall events, improved connectivity has the
potential to reduce the inundated area for a certain time since the beginning of rainfall.

3.3.2. The Inundation Depth of the Study Area

According to the time series results reported by HiPIMS, the line graphs are plotted to
illustrate the variation trend of average inundated depth (AID) and maximum inundated
depth (MID) in the considered simulation process, as shown in Figure 19.

The results in Figure 19a,b and Figure 20a,b show that increased connectedness from
green roofs to rain gardens significantly results in a decrease in the average inundated depth,
while increased connectedness among rain gardens hardly reduces the average inundated
depth. This means that connecting green roofs to rain gardens is a more efficient way to
reduce the average inundated depth than increasing connectivity among rain gardens.



Water 2022, 14, 1367 22 of 30

Water 2022, 14, x FOR PEER REVIEW 22 of 31 
 

 

connectivity has the potential to reduce the inundated area for a certain time since the 
beginning of rainfall. 

3.3.2. The Inundation Depth of the Study Area 
According to the time series results reported by HiPIMS, the line graphs are plotted 

to illustrate the variation trend of average inundated depth (AID) and maximum inun-
dated depth (MID) in the considered simulation process, as shown in Figures 19–22. 

 
Figure 19. The time series plot of AID in 3 h event in considered scenarios of (a) connectedness of 
GR; (b) connectedness of RG; (c) edge density of GR; (d) edge density of RG; (e) flow distance of 
RG. 

 
Figure 20. The time series plot of AID in 3 h event in considered scenarios of (a) connectedness of 
GR; (b) connectedness of RG; (c) edge density of GR; (d) edge density of RG; (e) flow distance of 
RG. 

The results in Figures 19a,b and 20a,b show that increased connectedness from green 
roofs to rain gardens significantly results in a decrease in the average inundated depth, 
while increased connectedness among rain gardens hardly reduces the average inundated 
depth. This means that connecting green roofs to rain gardens is a more efficient way to 
reduce the average inundated depth than increasing connectivity among rain gardens. 

As shown in Figures 19c,d and 20c,d, the increase of green roofs’ edge density has a 
slight contribution to the decrease of AID. This means that decentralized green roofs can 

Figure 19. The time series plot of AID in 3 h event in considered scenarios of (a) connectedness of
GR; (b) connectedness of RG; (c) edge density of GR; (d) edge density of RG; (e) flow distance of RG.

Water 2022, 14, x FOR PEER REVIEW 22 of 31 
 

 

connectivity has the potential to reduce the inundated area for a certain time since the 
beginning of rainfall. 

3.3.2. The Inundation Depth of the Study Area 
According to the time series results reported by HiPIMS, the line graphs are plotted 

to illustrate the variation trend of average inundated depth (AID) and maximum inun-
dated depth (MID) in the considered simulation process, as shown in Figures 19–22. 

 
Figure 19. The time series plot of AID in 3 h event in considered scenarios of (a) connectedness of 
GR; (b) connectedness of RG; (c) edge density of GR; (d) edge density of RG; (e) flow distance of 
RG. 

 
Figure 20. The time series plot of AID in 3 h event in considered scenarios of (a) connectedness of 
GR; (b) connectedness of RG; (c) edge density of GR; (d) edge density of RG; (e) flow distance of 
RG. 

The results in Figures 19a,b and 20a,b show that increased connectedness from green 
roofs to rain gardens significantly results in a decrease in the average inundated depth, 
while increased connectedness among rain gardens hardly reduces the average inundated 
depth. This means that connecting green roofs to rain gardens is a more efficient way to 
reduce the average inundated depth than increasing connectivity among rain gardens. 

As shown in Figures 19c,d and 20c,d, the increase of green roofs’ edge density has a 
slight contribution to the decrease of AID. This means that decentralized green roofs can 

Figure 20. The time series plot of AID in 3 h event in considered scenarios of (a) connectedness of
GR; (b) connectedness of RG; (c) edge density of GR; (d) edge density of RG; (e) flow distance of RG.

As shown in Figure 19c,d and Figure 20c,d, the increase of green roofs’ edge density
has a slight contribution to the decrease of AID. This means that decentralized green roofs
can reduce the average inundated depth better at the community scale. Interestingly, the
increase in the edge density of the rain garden can slightly contribute to the decrease in the
AID during the 1 h event, but may cause a slight increase in the AID during the 3 h event.
These results suggest that the effect of decentralized rain gardens on AID may be reversed
with increasing duration of rainfall events. Moreover, the results in Figures 19e and 20e
show that flow distance has no effect on the efficiency of the rain gardens in reducing AID.

The results in Figure 21a,b show that with the increase of connectedness from green
roofs to rain gardens, the maximum inundation depth in the study area shows a decreasing
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trend between 0 and 45 min in 1 h rainfall events. However, GR connectivity has little
correlation with the MID from 45 to 120 min of the rainfall event. By examining the map
of inundated depth distribution for 1 h events as reported by HI-PIMS, we found that
the location and depth of the MID after 45 min changed with the progress of the rainfall.
Therefore, we speculate that the variation of MID after 45 min may be more affected by
its location and topographic conditions. This indicates that when the rainfall intensity is
high, due to the impact of topographic factors, increasing the connectivity of rain gardens
may not always achieve a stable effect of MID reduction. Similar results are observed in
Figure 22. The results of graphs (a)–(c) show that the MID decreases significantly with
the increase of green roof connectivity during 0–120 min of a 3 h rainfall event, and its
correlation with green roof connectivity begins to weaken after 120 min. This difference
may be related to the saturation of green roofs’ soil layer and the depletion of rain gardens’
surface storage. By examining the map of inundated depth distribution, we also find that
the MID in 3 h events always appears at a certain location in the sub-catchment S10 during
the rainfall process. This indicates that the connectivity from green roofs to rain gardens
is positively correlated with the decrease of MID when its appearance location is steady.
However, in both 1 h and 3 h events, increased connectivity among rain gardens cannot
reduce the maximum inundated depth.
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As shown in Figure 21c,d and Figure 22c,d, although the effect of the increase of GR
edge density on the reduction of MID is not obvious in 1 h rainfall events, this effect was
clearly observed in the results of 3 h rainfall events. This indicates that when the location of
the maximum inundation depth does not change with the rainfall process, the increase of
the GR edge density contributes to the decrease of the MID. However, the increased edge
density of rain gardens does not affect the MID of the study area in both 1 h and 3 h events.
Meanwhile, the results in Figures 21e and 22e also indicate that the flow distance of the rain
gardens has no effect on reducing the maximum inundation depth. Interestingly, we find
that the spatial distribution of rain gardens (indicated by connectedness, edge density and
flow distance) does not seem to affect the inundated depth. However, this does not mean
that changing the spatial distribution of green roofs is a more effective way of reducing the
MID than changing the spatial distribution of rain gardens. Considering that the location
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where the MID appears is always in the sub-catchment S10, the inconspicuous effect of rain
gardens on MID may be due to the small area of sub-catchment S10. The lack of potential
installation location for rain gardens could be the main reason why MID is not sensitive to
the change of their connectivity, edge density and flow distance.
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4. Discussion

In terms of the impact of the spatial distribution of SuDS components on their flood
reduction performance, there is currently a lack of a general guide and recommendations to
support the spatial distribution design of SuDS components, especially at the community
scale. According to the SuDS design process provided in the SuDS manual, the spatial
distribution design of SuDS components should proceed in the outline design stage [25].
However, as for the specific design of the spatial distribution of SuDS components at
the community scale, only nine urban typologies are provided in the SuDS manual as
design examples [25]. These typologies cannot cover all the complex contexts in different
communities, especially old ones.

Based on the understanding of the primary flood reduction mechanisms of green roofs
and rain gardens, we analyzed the effect of spatial distribution characteristics (connectivity,
decentralization and position along flow direction) of green roofs and rain gardens at the
community scale on flood reduction performance (TDV, ADFR, MDFR, and increasing
trend of DFR, IA, AID and MID) of SuDS systems. Increased connectivity can effectively
increase the reduction rates of TDV, ADFR and MDFR, mainly because the delayed dis-
charge of rainwater from green roofs and the sharing of surface storage capacity among
rain gardens helps to increase the time for rainwater to be retained and infiltrate, thus
increasing the infiltration and reducing runoff flow rate. Previous studies have shown that
connectivity between SuDS components can effectively reduce peak runoff in mesoscale
and macroscale catchments such as cities and watersheds [33,35], while our results suggest
that increased connectivity can also improve the flood reduction performance of SuDS at
the community scale. In our study, the decentralized level is increased under the premise
that SuDS is connected. So, as the decentralized level of SuDS components increases, they
can receive surface runoff inflows from a larger area of subcatchments, thus more effectively
buffering and reducing TDV, ADFR and MDFR at the community scale. Previous studies
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have indicated that decentralized SuDS can better reduce peak runoff when facing small
rainfall events (total precipitation <27 mm) at the urban scale than clustered SuDS, while
the clustered SuDS performs better in large rainfall events (total precipitation >27 mm) [34].
Therefore, decentralized distribution strategies can promote the flood reduction perfor-
mance of SuDS at both urban and community scales in small rainfall events. The results of
our study further indicate that at the community scale, decentralized SuDS components
still have better performance than clustered SuDS when faced with large rainfall events
with total precipitation of 36.39 mm and 52.81 mm. Our study demonstrates that the
effect of location of rain gardens along the flow direction on their flood reduction at the
community scale is mainly attributed to the difference of inflow. When rain gardens are
installed downstream, their flood reduction potential can be better exploited to reduce
TDV and ADFR, because surface runoff from a larger area can be received. However,
downstream installation also means that it will receive inflows with greater flow rates,
which may cause the rain garden’s infiltration capacity and surface storage to saturate
before the peak flow occurs, resulting in an increase in MDFR. However, a previous study
showed that concentrated retention ponds and permeable pavements in the middle stream
can better reduce peak runoff at the community scale [37]. The different results may be
due to the use of different SuDS components. Since the selected SuDS components in our
study (rain garden and green roof) do not depend on underground storage layers, our
results can better provide theoretical support for the design of SuDS spatial distribution in
communities with high groundwater levels.

Previous studies mostly used peak runoff and discharge volume as the main indicators
to study SuDS performance [36,37], while our study also focused on the response of
inundated depth and inundated area to different spatial distribution strategies of SuDS,
providing a more comprehensive evaluation. As shown in the time series diagram of DFR
under different scenarios, the increase of GR connectivity contributes to the reduction of
DFR at the beginning of rainfall, while the reduction of DFR in the middle and late of
rainfall is mainly affected by RG connectivity. This may be because rainwater entering
green roofs could be temporarily retained and the discharge delayed. Then, the discharged
rainwater begins to infiltrate into the soil layers of rain gardens. Furthermore, the IA
is positively affected by the connectivity from GR to RG when facing rainfall events,
whereas the AID will decrease as the connectivity increases. The reason is that increased
connectivity from GR to RG can facilitate rainwater retention and infiltration in both
SuDS components to reduce the AID more efficiently. By examining the flood maps
in the Supplementary Materials, we find that the MID in 1 h events does not decrease
as the connectivity increases, which may be due to the irregularly change of the MID
occurrence location. In the simulations of 3 h events where MID location does not change,
the obvious positive correlation between increased connectivity and reduced MID can
also prove this point. However, it is not clear why IA, AID and MID are not sensitive to
the changes of connectivity, decentralized level and flow distance of rain gardens. One
possible hypothesis is that areas that remain inundated after SuDS are implemented may
lack potential installation sites for rain gardens.

5. Conclusions

This study aims to explore the relationship between different spatial distribution
scenarios of sustainable urban drainage systems (SuDS) and the flood reduction perfor-
mance at a community scale. Using the stormwater management model (SWMM) and
the high-performance integrated hydrodynamic modelling system (HI-PIMS), different
spatial distributions scenarios of rain gardens and green roofs at the community scale were
simulated in a community in the Kensington and Chelsea Royal District (RBKC), west
London, UK. The 27 design scenarios consider different connectivity, decentralized level,
and SuDS component locations along the flow direction. Each scenario was simulated in
1 h and 3 h rainfall events with a 30-year return period.
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The total discharge volume (TDV), average discharge flow rate (ADFR) and maximum
discharge flow rate (MDFR) of the 27 considered scenarios were plotted and fitted with
the connectedness, edge density and flow distance. We also plotted the scatter charts
and line graphs to illustrate the variation trend of discharge flow rate (DFR), inundated
area (IA), average inundated depth (AID) and maximum inundated depth (MID) in the
considered simulation process. These results demonstrate that SuDS would have the best
comprehensive performance in the studied community-scale catchment when applying
connected and decentralized distribution strategies.

Specifically, the connectivity between SuDS components had a positive correlation
with the TDV, ADFR, and MDFR in short-term rainfall events. It was also revealed that the
positive correlation only existed between the connectivity from green roofs to rain gardens
and the reduction of AID and MID. The connectivity of green roofs to rain gardens also
had a negative effect on the reduction of IA. However, the connectivity of rain gardens
had no correlation with IA, AID and MID. The increased connectivity of GR could slow
down the increasing trend of DFR at the beginning of the rainfall event, while the increased
connectivity of RG could mitigate the increasing trend of DFR at the middle and late periods.

On the other hand, the decentralized level of SuDS components had a positive correla-
tion with the reduction of TDV, ADFR and MDFR in short-term rainfall events. However,
the positive correlation only existed between the decentralized level of green roofs and the
mitigation of AID and MID, while the decentralized level of rain gardens had no correlation
with IA, AID and MID. The increase of the decentralized level of green roofs had no effect
on the inundated area. The increase of the decentralized level of rain gardens could slow
down the increasing trend of DFR more efficiently than that of green roofs during the
rainfall events.

As for the position of rain gardens along the flow direction, opposite effects on the
indicators of flood events were observed in the simulation results. The upstream installation
of rain gardens along the flow direction had the best performance on the reduction of TDV
and ADFR at community scale, whereas the downstream installation strategy had the best
performance on the reduction of MDFR and the mitigation of the increasing trend of DFR.
The flow distance of SuDS components presented no correlation with IA, AID and MID.

This paper will contribute to the improvement of the spatial distribution design
process of SuDS at a community scale by contributing to the general design guidelines.
Our findings demonstrate the effect of SuDS components’ connectivity, decentralized level
and position along the flow direction on their flood reduction performance through seven
indicators (the reduction rate of TDV, ADFR, MDFR, IA, AID, MID, and the mitigation of
the increasing trend of DFR). These findings will improve the guidelines and support the
work of designers in a more universal way, especially when the local contexts do not match
the nine typologies of the SuDS manual very well.

This paper also reveals the possible mechanisms of spatial distribution affecting the
flood reduction performance of SuDS components based on the analysis of hydrological
processes. We believe that connectivity improves the efficiency of buffering and mitigating
the effects of heavy rain primarily through the coupling of green roofs with rain gardens and
sharing of surface storage capacity among rain gardens. The contribution of decentralized
level to flood reduction performance can be attributed to the fact that the decentralized
SuDS components can receive rainwater and surface runoff from a larger area. The different
locations of rain gardens along the flow direction mainly affect the inflow characteristics of
surface runoff. For example, rain gardens located downstream receive inflow with high flow
rate, while rain gardens located upstream receive runoff flow with low flow rate. However,
further research is needed to explore the principles of spatial distribution affecting the
performance of SuDS components through the combined use of model simulation and in
situ experiments.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14091367/s1, Table S1: Parameter settings of subcatchment
components in the SWMM model; Table S2: Infiltration parameter settings in the SWMM model;
Table S3: Parameter settings of junctions and conduits in the SWMM model; Table S4: Parameter
settings of the SuDS components in the SWMM model; Table S5: Summary of Manning’s n in the
SWMM user’s manual; Table S6: Summary of soil characteristics in the SWMM user’s manual;
Table S7: Summary of types and number of SuDS components applied in the 27 scenarios; Table S8.
Summary of the spatial characteristics in the considered scenarios; Figure S1: Schematic diagram
of the rain garden and green roof; Figure S2: The sketch map of Scenario 1; Figure S3: The sketch
map of Scenario 2; Figure S4: The sketch map of Scenario 3; Figure S5: The sketch map of Scenario
4; Figure S6: The sketch map of Scenario 5; Figure S7: The sketch map of Scenario 6; Figure S8: The
sketch map of Scenario 7; Figure S9: The sketch map of Scenario 8; Figure S10: The sketch map of
Scenario 9; Figure S11: The sketch map of Scenario 10; Figure S12: The sketch map of Scenario 11;
Figure S13: The sketch map of Scenario 12; Figure S14: The sketch map of Scenario 13; Figure S15: The
sketch map of Scenario 14; Figure S16: The sketch map of Scenario 15; Figure S17: The sketch map of
Scenario 16; Figure S18: The sketch map of Scenario 17; Figure S19: The sketch map of Scenario 18;
Figure S20: The sketch map of Scenario 19; Figure S21: The sketch map of Scenario 20; Figure S22:
The sketch map of Scenario 21; Figure S23: The sketch map of Scenario 22; Figure S24: The sketch map
of Scenario 23; Figure S25: The sketch map of Scenario 24; Figure S26: The sketch map of Scenario 25;
Figure S27: The sketch map of Scenario 26; Figure S28: The sketch map of Scenario 27; Figure S29:
Flood map of scenario 0 at the time of 2 h (1-h rainfall event); Figure S30: Flood map of scenario 1 at
the time of 2 h (1-h rainfall event); Figure S31: Flood map of scenario 2 at the time of 2 h (1-h rainfall
event); Figure S32: Flood map of scenario 3 at the time of 2 h (1-h rainfall event); Figure S33: Flood
map of scenario 4 at the time of 2 h (1-h rainfall event); Figure S34: Flood map of scenario 5 at the
time of 2 h (1-h rainfall event); Figure S35: Flood map of scenario 6 at the time of 2 h (1-h rainfall
event); Figure S36: Flood map of scenario 7 at the time of 2 h (1-h rainfall event); Figure S37: Flood
map of scenario 8 at the time of 2 h (1-h rainfall event); Figure S38: Flood map of scenario 9 at the
time of 2 h (1-h rainfall event); Figure S39: Flood map of scenario 10 at the time of 2 h (1-h rainfall
event); Figure S40: Flood map of scenario 11 at the time of 2 h (1-h rainfall event); Figure S41: Flood
map of scenario 12 at the time of 2 h (1-h rainfall event); Figure S42: Flood map of scenario 13 at the
time of 2 h (1-h rainfall event); Figure S43: Flood map of scenario 14 at the time of 2 h (1-h rainfall
event); Figure S44: Flood map of scenario 15 at the time of 2 h (1-h rainfall event); Figure S45: Flood
map of scenario 16 at the time of 2 h (1-h rainfall event); Figure S46: Flood map of scenario 17 at the
time of 2 h (1-h rainfall event); Figure S47: Flood map of scenario 18 at the time of 2 h (1-h rainfall
event); Figure S48: Flood map of scenario 19 at the time of 2 h (1-h rainfall event); Figure S49: Flood
map of scenario 20 at the time of 2 h (1-h rainfall event); Figure S50: Flood map of scenario 21 at the
time of 2 h (1-h rainfall event); Figure S51: Flood map of scenario 22 at the time of 2 h (1-h rainfall
event); Figure S52: Flood map of scenario 23 at the time of 2 h (1-h rainfall event); Figure S53: Flood
map of scenario 24 at the time of 2 h (1-h rainfall event); Figure S54: Flood map of scenario 25 at the
time of 2 h (1-h rainfall event); Figure S55: Flood map of scenario 26 at the time of 2 h (1-h rainfall
event); Figure S56: Flood map of scenario 27 at the time of 2 h (1-h rainfall event); Figure S57: Flood
map of scenario 0 at the time of 4 h (3-h rainfall event); Figure S58: Flood map of scenario 1 at the
time of 4 h (3-h rainfall event); Figure S59: Flood map of scenario 2 at the time of 4 h (3-h rainfall
event); Figure S60: Flood map of scenario 3 at the time of 4 h (3-h rainfall event); Figure S61: Flood
map of scenario 4 at the time of 4 h (3-h rainfall event); Figure S62: Flood map of scenario 5 at the
time of 4 h (3-h rainfall event); Figure S63: Flood map of scenario 6 at the time of 4 h (3-h rainfall
event); Figure S64: Flood map of scenario 7 at the time of 4 h (3-h rainfall event); Figure S65: Flood
map of scenario 8 at the time of 4 h (3-h rainfall event); Figure S66: Flood map of scenario 9 at the
time of 4 h (3-h rainfall event); Figure S67: Flood map of scenario 10 at the time of 4 h (3-h rainfall
event); Figure S68: Flood map of scenario 11 at the time of 4 h (3-h rainfall event); Figure S69: Flood
map of scenario 12 at the time of 4 h (3-h rainfall event); Figure S70: Flood map of scenario 13 at the
time of 4 h (3-h rainfall event); Figure S71: Flood map of scenario 14 at the time of 4 h (3-h rainfall
event); Figure S72: Flood map of scenario 15 at the time of 4 h (3-h rainfall event); Figure S73: Flood
map of scenario 16 at the time of 4 h (3-h rainfall event); Figure S74: Flood map of scenario 17 at the
time of 4 h (3-h rainfall event); Figure S75: Flood map of scenario 18 at the time of 4 h (3-h rainfall
event); Figure S76: Flood map of scenario 19 at the time of 4 h (3-h rainfall event); Figure S77: Flood
map of scenario 20 at the time of 4 h (3-h rainfall event); Figure S78: Flood map of scenario 21 at the
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time of 4 h (3-h rainfall event); Figure S79: Flood map of scenario 22 at the time of 4 h (3-h rainfall
event); Figure S80: Flood map of scenario 23 at the time of 4 h (3-h rainfall event); Figure S81: Flood
map of scenario 24 at the time of 4 h (3-h rainfall event); Figure S82: Flood map of scenario 25 at the
time of 4 h (3-h rainfall event); Figure S83: Flood map of scenario 26 at the time of 4 h (3-h rainfall
event); Figure S84: Flood map of scenario 27 at the time of 4 h (3-h rainfall event).
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