
Citation: Adytia, D.; Saepudin, D.;

Tarwidi, D.; Pudjaprasetya, S.R.;

Husrin, S.; Sopaheluwakan, A.;

Prasetya, G. Modelling of Deep

Learning-Based Downscaling for

Wave Forecasting in Coastal Area.

Water 2023, 15, 204. https://doi.org/

10.3390/w15010204

Academic Editors: Giuseppe

Pezzinga and Rafael J. Bergillos

Received: 19 November 2022

Revised: 19 December 2022

Accepted: 29 December 2022

Published: 3 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Modelling of Deep Learning-Based Downscaling for Wave
Forecasting in Coastal Area
Didit Adytia 1,* , Deni Saepudin 1, Dede Tarwidi 1 , Sri Redjeki Pudjaprasetya 2, Semeidi Husrin 3,
Ardhasena Sopaheluwakan 4 and Gegar Prasetya 5

1 School of Computing, Telkom University, Jalan Telekomunikasi No. 1 Terusan Buah Batu,
Bandung 40257, Indonesia

2 Industrial and Financial Mathematics Research Group, Faculty of Mathematics and Natural Sciences,
Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia

3 Marine Research Centre, Ministry of Marine Affairs and Fisheries of Indonesia, Jakarta 14430, Indonesia
4 Center for Applied Climate Services, Agency for Meteorology, Climatology, and Geophysics,

Jakarta 10720, Indonesia
5 Indonesian Tsunami Scientific Community (IATsI), Jakarta 10110, Indonesia
* Correspondence: adytia@telkomuniversity.ac.id

Abstract: Wave prediction in a coastal area, especially with complex geometry, requires a numerical
simulation with a high-resolution grid to capture wave propagation accurately. The resolution of
the grid from global wave forecasting systems is usually too coarse to capture wave propagation
in the coastal area. This problem is usually resolved by performing dynamic downscaling that
simulates the global wave condition into a smaller domain with a high-resolution grid, which
requires a high computational cost. This paper proposes a deep learning-based downscaling method
for predicting a significant wave height in the coastal area from global wave forecasting data. We
obtain high-resolution wave data by performing a continuous wave simulation using the SWAN
model via nested simulations. The dataset is then used as the training data for the deep learning
model. Here, we use the Long Short-Term Memory (LSTM) and Bidirectional LSTM (BiLSTM) as the
deep learning models. We choose two study areas, an open sea with a swell-dominated area and a
rather close sea with a wind-wave-dominated area. We validate the results of the downscaling with a
wave observation, which shows good results.

Keywords: wave forecasting; downscaling; LSTM; BiLSTM

1. Introduction

Waves are a frequent natural occurrence in the ocean. The wave height analysis is
required to ensure safety in offshore and coastal areas. Shipping and other maritime opera-
tions are heavily dependent on wave conditions. Numerous methodologies, algorithms,
and historical data are utilised to forecast future wave conditions [1]. High-sea waves can
cause significant damage to ships and fatalities. Wave forecasting can also help optimise
ship scheduling and route optimisation. Predicting wave height can boost productivity,
save fuel, and prevent dangerous circumstances [2]. Those who operate in the middle of the
ocean and coastal communities could benefit from creating a system capable of predicting
waves in time series. However, the random and nonlinear character of ocean waves makes
it challenging to estimate their height [3].

Especially in a coastal area with complex geometry, wave prediction requires a nu-
merical simulation with a high-resolution grid to capture wave propagation accurately.
The resolution of the global wave forecasting system grid is usually too coarse to capture
wave propagation in coastal areas. The spatial resolution of global wave forecasting sys-
tems such as the GFS of the NOAA [4] and ERA5 of the ECMWF [5] are 0.25◦, see Figure 1
as an illustration of the GFS global grid. This global grid is too coarse to predict the wave
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information in intricate coastal regions accurately. This problem is usually resolved by
performing dynamic downscaling that simulates the global wave condition into a smaller
domain with a high-resolution grid. By performing dynamic downscaling, it is possible
to produce high-resolution wave simulations in a coastal region. This method uses the
global domain wave information for a high-resolution grid local simulation as the initial
and boundary conditions.

Figure 1. Snapshot of significant wave height from global forecast model GFS, with grid size of 0.25◦.

High-resolution wave prediction systems rely on detailed wind fields to run accurately.
Boundary conditions for the high-resolution model are taken from a coarser wave model,
which provides a complete two-dimensional wave spectrum. The dynamical downscaling
refers to this nested configuration, which includes complete two-dimensional wave spec-
trum information on the open boundaries. The downscaling approach for waves is similar
to the nested method used in climate modelling. The key distinction is that the wave field
utilised here is simply dependent on open boundaries, wind fields, and bathymetry [6].
Statistical downscaling is another method to predict high-resolution waves. Statistical
downscaling for wave forecasting uses statistical techniques to adjust data from a coarser
resolution or global models to a finer resolution or regional areas. It is used to enhance
wave forecasts in areas where observational data are sparse. This is performed by applying
statistical relationships between the coarse model data and observed wave data to adjust
the coarse model forecasts to a finer resolution or regional area [7]. Both the dynamical and
statistical downscaling of wave forecasts can provide more detailed information, which
can be used to make more reliable decisions.

A machine learning approach is an alternative to numerical-based dynamical and
statistical downscaling. Machine learning has gained increasing traction in coastal and
ocean engineering in recent years as the need for high-resolution wave data has grown [8].
Downscaling techniques are thus utilised to compensate for the limited spatial resolution.
Machine learning techniques can be used to perform downscaling. However, only a few
researchers still employ this approach for wave forecasting. Michel [9] used convolutional
neural network (CNN)-based deep learning for the statistical downscaling of significant
wave height prediction. Their observed results were better than those of the other statis-
tical downscaling approaches investigated but not as good as the physical models. This
method’s strength lies in its cheap computing cost and simple implementation. Recently,
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Adytia [10] developed a significant wave height forecasting system in an environment with
a complex geometry based on a combined high-resolution numerical wave simulation and
Bidirectional Long Short-Term Memory (BiLSTM) deep learning method. The forecasting
results using the BiLSTM had a correlation coefficient of 0.96 and a root mean squared error
of 0.06.

This paper proposes a deep learning-based downscaling method for predicting sig-
nificant wave height in the coastal area from global wave forecasting data. First, we
obtain high-resolution wave data by performing a continuous wave simulation using the
phase-averaged wave model SWAN [11] via nested simulations. The dataset is then used as
the training data for the deep learning model. Here, we use the Long Short-Term Memory
(LSTM) and Bidirectional LSTM (BiLSTM) as the deep learning models. We selected two
study areas, an open sea with a swell-dominated area in Meulaboh, Aceh, Indonesia, and a
relatively close sea with a wind-wave-dominated area in Jakarta Bay, Indonesia. As a
feature selection method for the deep learning model, we selected the best locations of
global wave data that have high spatially correlated with targeted local wave data to be
input for the machine learning model. To test the performance of the machine learning
model, we compare the prediction results with the wave observation data in Jakarta Bay
and offshore Meulaboh.

The following sections are included in the core of this paper. In Section 2, we briefly
present the literature review on downscaling, the wave model SWAN, and briefly, the ar-
chitecture of the LSTM and BiLSTM, as they directly contribute to the wave forecasting
problem. The details of the research technique, including the data generation and deep
learning-based downscaling of wave data, are presented in Section 3. Section 4 compares
the results of the significant wave height (Hs) in Jakarta Bay and offshore Meulaboh, Aceh,
with observation data. In addition, we test the sensitivity of the training data and vary the
length of the day to forecast, concerning our deep learning model’s forecasting. In addition,
we provide an exhaustive analysis of the experiments. Finally, Section 5 concludes the
research and analyses the potential development directions.

2. Literature Review
2.1. Downscaling

In general, downscaling techniques are used to calibrate a large grid scale into a small
space that is more specific to the research area. Downscaling techniques are thus utilised
to compensate for the limited spatial resolution. The process of converting low-resolution
meteorological data, for a given area, into high-resolution data is known as “downscal-
ing” [12]. For example, the future local wave trend was produced using the downscaling
technique. In addition, the downscaling method has been frequently employed to capture
physical characteristics that require higher-resolution modelling.

Scaling methods can often be divided into statistical and dynamic scaling [13]. Statisti-
cal scaling is known to use empirical models to predict resolution variables from coarser
resolution data with more precision. Artificial neural networks have recently demonstrated
tremendous potential in this area due to their ability to simulate nonlinear connections [14].
Furthermore, dynamic scaling [15] uses high-resolution regional simulations to dynamically
model relevant local or regional physical processes. Of course, both widely used strategies,
statistical downscaling and dynamical downscaling, have advantages and disadvantages.
Machine learning techniques can be used to perform downscaling.

The general flow diagram for dynamic and statistical downscaling from the global
wave model (GWM) [16] is shown in Figure 2. Here, the GWM and historical data are the
two inputs for the statistical downscaling. The bias correction and statistical downscaler
are the main process (code) for performing the statistical downscaling. For dynamical
downscaling, the output from the GWM is the only boundary condition, and the main part
is to perform the local wave model (LWM). However, running an LWM is computationally
expensive. In this paper, we propose deep learning-based downscaling for wave forecasting.
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We use spatially correlated global wave data as the input to predict the wave conditions in
the coastal area.

Figure 2. Flowchart of statistical downscaling (left) and dynamical downscaling (right).

2.2. Wave Model SWAN

To obtain high-resolution wave data for the deep learning model, we choose a wave
model that can accurately simulate wave propagation in deep and shallow water. We can
use the so-called phase-averaged wave model to simulate wave generation and propagation
in large-scale areas, such as the open sea and coastal regions. Here, each individual
wave, with its phases, is calculated in an “averaged” way. The most commonly used
phase-averaged wave models are wave models, which are called the third-generation wave
models. Three models are widely used around the world, i.e., Wave Watch III (WW3)
by [17], the WAM model [18], and SWAN [11]. The third-generation wave model describes
the propagation of the spatial–temporal wave spectrum using the wave energy density in
the conservation balance equation, including the wave generation process by the wind.
Among these three models, the SWAN model is the only one specifically designed to capture
wave propagation in deep and shallow water, especially for coastal areas. In addition,
the model takes into account physical phenomena such as the dissipation by bottom friction,
white capping, wave breaking, and nonlinear wave–wave interactions.

As described in [11], the SWAN model is based on the action-balanced equation that
can be described briefly in the following equation:

∂N
∂t

+
∂cx N

∂x
+

∂cyN
∂y

+
∂cσ N

∂σ
+

∂cθ N
∂θ

=
S
σ

(1)

Here, t represents time, and x and y represent the horizontal and vertical coordinates,
respectively. N represents the action density. The first three terms on the left-hand side
reflect the N propagation/evolution in time t and the propagation in horizontal x- and
y-directions, respectively. The other three terms on the left-hand side denote the relative fre-
quency shift due to the depth and current, and the depth- and current-induced refraction in
θ space, respectively. Finally, on the right-hand side, the source term S represents the entire
source and sink terms for the governing equation, which is given by the following formula:

S = Sin + Snl3 + Snl4 + Sds,w + Sds,b + Sds,br (2)

Here, Sin is the source term from the wind input, which acts as the primary driving factor
of the governing equation. Sln3 and Sln4 are nonlinear triad (three waves) and quadruplet
(four waves) wave interactions in shallow and deep water, respectively. Sds,w, Sds,b, and
Sds,br denote sink terms by dissipation as a result of white capping, bottom roughness,
and depth-induced wave breaking, see [11] for a more detailed description.

This paper uses the SWAN model to generate wave data by performing a continuous
hindcasting wave simulation from the global domain to a nested local domain using
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nested techniques. The wave simulation results are then used as the training data for
the machine learning model, i.e., the Long Short-Term Memory (LSTM) and Bidirectional
LSTM (BiLSTM). We briefly describe these two deep learning models’ basic ideas in the
following subsection.

2.3. Long Short-Term Memory

The Long Short-Term Memory, or LSTM, is a modified version of the recurrent neural
network (RNN) introduced by Hochreiter and Schmidhuber [19] by adding a memory cell
that can store information for a long time. For example, the vanishing gradient is a problem
in the RNN model that fails to capture long-term dependencies, thereby reducing the
accuracy of a prediction in an RNN [20]. The LSTM solved the vanishing-gradient problem
because its architecture could store or discard data because each neuron has several gates
regulating each neuron’s memory. Figure 3 shows the gates’ structure of the LSTM.

Figure 3. Illustration of Long Short-Term Memory’s architecture.

The Long Short-Term Memory, or LSTM, gained its popularity because of its capability
to deal with sequential data. The LSTM is used in many applications, including wave
forecasting. The LSTM models can capture long-term dependencies in sequence data,
making them suitable for a time-series analysis. Because LSTM models can remember
information for extended periods of time, they are well-suited for tasks such as wave
prediction. The LSTM models are capable of learning complicated data patterns, making
them suitable for anomaly detection and forecasting [21].

In the LSTM, there are three gates, namely ft, it, and ot, as shown in Figure 3. Gate ft is
the forget gate, it is the input gate, and ot is the output gate. The first step in assembling the
LSTM is to differentiate the necessary and unnecessary data. A sigmoid function defines
this process. This step is followed by saving and updating the data in cells from new inputs.
There are two procedures in this step: the sigmoid function, which decides whether new
information should be updated or discarded in the numerical value forms 0 and 1, and
the tanh function, which assigns a value to each passed data, determines the value of the
data in the numbers −1 to 1 [22]. The equations for each gate are given by Equations (4)–(7).

it = σ(WixXt + WisSt−1 + bi) (3)

ft = σ(WfxXt + WfsSt−1 + bf ) (4)

ct = f t × ct−1 + it × c̃t (5)

c̃t = tanh(WcxXt + WcsSt−1 + bc) (6)

st = ot × tanh(ct). (7)

ot = σ(WoxXt + WosSt−1 + bo) (8)
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Symbol Wfx, Wfs, Wix, Wis, Wcx, Wcs, Wox, Wos is the weight; bf , bi, bc, bo is the bias;
Xt is the input; St−1 is the previous state; ct is the cell state or memory cell; and σ is the
activation function sigmoid. The forget gate determines the information stored or discarded
in the previous state. The input gate regulates how many states the current input passes
through. The output gate decides the internal state to forward and the cell state or memory
cell to forward old information with additional new information to the next cell state.

2.4. Bidirectional Long Short-Term Memory

The Bidirectional Long Short-Term Memory, or BiLSTM, is a variant of the LSTM
developed by Alex Graves and Jurgen Schmidhuber [23]. The fundamental principle of
the BiLSTM is that the performance is determined not only by the previous state (t − 1)
but also by the following state (t + 1). This process implies that there are forward and
backward states in the BiLSTM, as seen in Figure 4; therefore, the BiLSTM can improve the
model’s accuracy.

Figure 4. Illustration of the architecture of Bidirectional Long Short-Term Memory.

The advantage of the BiLSTM models is that they capture the long-term dependencies.
As the model analyses the sequence in both directions, it may capture both past and future
information. This enables the model to discover more intricate correlations between input
and output sequences. BiLSTM models are more robust to noise and can detect subtle data
patterns. Because the model processes the sequence in both directions, it is less susceptible
to noise and outliers. BiLSTM models provide more precision than conventional recurrent
neural networks. The model can capture more intricate links between the input and
output sequences because it processes the sequence in both ways. This results in increased
precision and an enhanced performance [24].

Note that, as a result of these two directions (forward and backward), the compu-
tational time for the BiLSTM may be at least twice that of the LSTM. This paper uses
these two deep learning models to perform the deep learning-based downscaling for
wave forecasting.

3. Methodology

In this research, we aim to create a high-resolution wave forecasting system that
is accurate for wave prediction in coastal areas with complex geometry. We propose a
machine learning-based procedure to downscale global wave forecasting data to local
high-resolution wave data in a coastal area. We first build a high-resolution wave dataset
to train the machine learning model by performing nested numerical wave simulations
that simulate wave propagation from the global domain to the intermediate and local
(high-resolution) domains. The wave dataset obtained is then used to train the machine



Water 2023, 15, 204 7 of 19

learning model. The trained machine learning algorithm is designed to mimic the down-
scaling process from global wave data to local high-resolution wave data.

In this paper, we use the LSTM and BiLSTM models. In the design of machine learning-
based downscaling, we propose to use global wave data as a feature for machine learning
to forecast wave conditions in the local coastal area. Here, we solve a supervised learning
problem, a regression problem, in which machine learning calculates high-resolution local
wave data from global wave data. This paper proposes two main steps to develop machine
learning-based downscaling for wave forecasting. The first step is to develop a wave
dataset via wave simulation in nested numerical simulations to obtain global wave data
and local (high-resolution) wave data. The second step is to use the wave data obtained as
features and training data to optimise machine learning for wave forecasting. The details
of these two steps are described in the following subsections.

3.1. Wave Data Generation

Here, we build a high-resolution wave dataset by performing high-resolution nested
wave simulation using a numerical wave model SWAN. To obtain high-resolution wave
simulation in a coastal area, we perform three nested domains that simulate wave prop-
agation from global to intermediate and finally to the local domain. As input for wave
simulation, we use the ERA5 wind dataset from the European Centre for Medium-Range
Weather Forecasts (ECMWF) with a resolution of 0.25◦ [5]. Using the SWAN model, we
perform continuous wave simulation for 40 years (1980–2020). The flow chart for this step
is illustrated in Figure 5.

Figure 5. Flowchart of wave data generation. The wave dataset is obtained by performing continuous
wave simulation using phase-averaged wave model SWAN.

To test our proposed machine learning-based wave downscaling methodology, we
selected two locations of coastal areas with two different wave characteristics. The first
location is in Jakarta Bay, Indonesia, a rather closed coastal area in the Java Sea, where
wind-generated waves mostly dominate its waves. The other location is offshore of Meula-
boh, West Aceh Regency, Indonesia. Here, waves are mostly generated by swell-dominated
swells because they are directly connected to the Indian Ocean. For both areas, we describe
the numerical setting for the SWAN model and wave data observation to validate the result
of the SWAN simulation, as follows.

3.1.1. Data Generation for Jakarta Bay Case

As mentioned previously, wave simulation is performed in three nested domains,
namely the global domain (domain I), the intermediate domain (domain II), and the local
domain (domain III). This nested simulation aims to capture the wave transformation from
the global grid in domain I to the local high-resolution grid in domain III. Simulation from
the global domain is also necessary to capture accurate generation and propagation of
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swell. The snapshot of the significant wave height Hs resulting from the Jakarta Bay case is
shown in Figure 6 for domain I and Figure 7 for domains II and III.

The SWAN model’s numerical configuration for the Jakarta Bay simulation is described
in Table 1 for domains I, II, and III. Here, ∆x and ∆y denote the spatial grid in the horizontal
and vertical directions, respectively. Nx and Ny represent the number of grid partitions in
the horizontal and vertical directions, respectively. Note that we set the spatial grid size of
domain II the same as that of global wave forecasting, such as GFS by NOAA and ERA5 by
ECMWF. For domain III, we set the spatial grid size to 0.0027◦ ≈ 299 m, which means we
perform downscaling from 0.25◦ to 0.0027◦ or 92.5 times.

Figure 6. Snapshot of significant wave height on 6 December 2020, at 06:00 UTC, from SWAN
simulation in domain I.

Figure 7. As in Figure 6, for domains II (left plot) and III (right plot) for Jakarta Bay area.

Table 1. Numerical configuration for SWAN model for the Jakarta Bay case.

Domain Lon (◦) Lat (◦)
∆x ∆y Nx NyWest East South North

1 0.5 175.5 −69.5 30.5 1.4957 1.4925 117 67
2 100 132 −15 5 0.25 0.25 128 80
3 106.65 107.05 −6.122 −5.858 0.0027 0.0027 150 99



Water 2023, 15, 204 9 of 19

3.1.2. Data Generation for Meulaboh Case

We chose the second study area offshore of Meulaboh, West Aceh Regency, Indonesia.
Here, the waves are mainly dominated by swells generated from the Indian Ocean. As in
the Jakarta Bay case, we perform nested simulations in three domains. Domain I, or global
domain, is as in the case of Jakarta Bay, as shown in Figure 6. Domains II and III of
Meulaboh’s case are shown in Figure 8.

The SWAN model’s numerical configuration for the simulation in the Meulaboh is
described in Table 2, for domains I, II, and III. As in the Jakarta Bay case, we also set the
spatial grid size of domain II the same as the grid size of global wave forecasting GFS and
ERA5. For domain III, we set the spatial grid size to be 0.002◦ ≈ 222 m, which means that
we perform downscaling from 0.25◦ to 0.002◦ or 125 times finer grid.

Figure 8. Snapshot of significant wave height on 1 March 2020, at 00:00 UTC, from wave simulation
using SWAN model for domains II (left plot) and III (right plot) for Meulaboh area.

Table 2. Numerical configuration for the SWAN model for the Meulaboh case.

Domain Lon (◦) Lat (◦)
∆x ∆y Nx NyWest East South North

1 0.5 175.5 −69.5 30.5 1.4957 1.4925 117 67
2 85 107 −14 14 0.25 0.25 88 112
3 96 96.25 4 4.15 0.002 0.002 125 75

3.2. Deep Learning Approach for Wave Downscaling

In this second main step, we design machine learning based on the downscaling
process that calculates local (high-resolution) wave data from global (low-resolution) wave
datasets. In this step, we used the calculated high-resolution wave dataset obtained in the
previous subsection as feature and training data for machine learning models. The main
aim of machine learning here is to mimic the downscaling process performed by numerical
simulation, especially from domain II to domain III. In this case, the machine learning
algorithm solves the supervised problem of performing regression from a global to a local
(high-resolution) grid.

In this paper, we use two machine learning models, i.e., the Long Short-Term Memory
(LSTM) and Bidirectional LSTM (BiLSTM). These two models are chosen because they per-
form better for sequential data, such as time-series data, as in this research. The procedure
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for this second main step is illustrated in the flow chart in Figure 9. The wave dataset we
obtained from the previous step analyses the best feature of the machine learning input.
In Figure 9, we perform feature engineering by selecting the best locations of global wave
data that are highly correlated with the targeted wave data in the local domain. To this end,
we calculate the correlation coefficient (CC) between each global wave data grid location
and with corresponding target wave data in the local domain. The machine learning
algorithm will take only the global location of the grid with a high CC value as input.

Figure 9. Flowchart of machine learning optimisation. The wave dataset from the previous step is
used as training data for machine learning.

The correlation coefficient (CC) is defined as follows:

CC =
1
n ∑n

i=1(xi − x)(yi − y)√
1
n ∑n

i=1(xi − x)2
√

1
n ∑n

i=1(yi − y)2
(9)

where n denotes the amount of data to be compared, xi is the values of the first variable,
and x is the average of the values of the first variable. At the same time, yi is the value
of the second variable, and y is the average of the values of the second variable. The CC
evaluates how well the predicted values correspond to the actual values.

We also perform hyperparameter tuning in optimising machine learning models to
obtain the best results. The performance evaluation of both machine learning models is
evaluated by calculating the CC, the root mean square error (RMSE), and the mean averaged
percent error (MAPE). The RMSE is the square root of the average squared error between
observed xi and predicted values yi while the MAPE is the mean of absolute percentage
deviations between predicted and observed values, which are defined as follows:

RMSE =

(
1
n

n

∑
i=1

(xi − yi)
2

)2

, (10)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ xi − yi
xi

∣∣∣∣. (11)

4. Results and Discussion

As mentioned in the previous section, we study the implementation of our proposed
deep learning-based downscaling for wave forecasting in two locations, i.e., in Jakarta Bay
and the Meulaboh offshore area. In this section, we first discuss the wave prediction results
in Jakarta Bay, followed by the prediction results in the offshore Meulaboh region. For each
case, as illustrated in Figure 9, we performed the feature selection step, selecting the best
feature to be taken as the input for the machine learning models.
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4.1. Wave Downscaling in Jakarta Bay

Jakarta Bay is located in the Java Sea, a relatively closed sea surrounded by the Java,
Sumatra, and Borneo islands. Wind waves mostly dominate the location. As described
in Section 3.1.1, we generate the wave datasets by performing the simulations in nested
domains. We perform continuous hindcasting simulations for the Jakarta Bay case for
20 years (2001–2020).

Note that, as described in Section 3.1.1, in Table 1, the spatial grid resolution of domain
II is 0.25◦, which is chosen to be the same as the global grid wave forecasting, such as the
GFS by the NOAA and ERA5 by the ECMWF. Our proposed method here aims to mimic the
downscaling process by numerical simulation into a deep learning algorithm. In this case,
the downscaling approach is applied from domain II to the location domain, or domain III.

To perform the downscaling, we first select which locations of the global wave data
(domain II) are to be chosen as the input to predict the wave-targeted location in the local
domain (domain III). We calculate the spatially correlated wave data in domain II with a
target wave location in domain III. This step is performed by calculating the correlation
coefficient (CC) between the significant wave height (Hs) at each grid in domain II and the
Hs at a targeted location in the local domain.

For the Jakarta Bay case, we chose a target wave location located in the western part of
Jakarta Bay, 106.7654◦ E, 6.0108◦ S, as shown in Figure 10. We also have a wave observation
at this location that measures the significant wave height. As a part of the feature selection
process, we select the locations of the global significant wave height Hs data in domain
II that have a high correlation with the Hs in the observation data by using a spatial
correlation as introduced in [10]. The spatial correlation here is simply by calculating the
correlation coefficient (CC) defined in Equation (9) between the Hs at all the locations in
domain II and the targeted Hs at domain III. The locations with high CC values correlate
highly with the targeted Hs in the local domain.

Figure 10. Location of wave observation at Jakarta Bay.

The spatial correlation results between the Hs from the global wave data (or domain
II) with the Hs at the observation location in Figure 10 are shown in Figure 11. We use
one-year Hs time-series data to calculate the spatial correlation map. On the left plot of
Figure 11 is the spatial correlation map, with the big dots denoting the CC values ≥ 0.70,
while the right plot is for the CC values ≥ 0.80, and the lower plot for the CC values ≥ 0.90.
For the case of Jakarta Bay, it turns out that only six locations of the global wave data grid
have a correlation coefficient value ≥ 0.90.
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Using the spatial correlation map results as shown in Figure 11, we performed a
sensitivity test to determine which spatial correlation map (with corresponding locations)
gives the best result. In Table 3, we show the results of the downscaling performance of the
BiLSTM model with the selected CC in the spatial correlation, in terms of the correlation
coefficient and RMSE, for predicting 14 days. Here, the spatial correlation with a CC ≥ 0.90
gives the best results, with a CC of 0.87 and an RMSE of 0.07. The spatial correlation
with a CC ≥ 0.90 gives only six point locations in the global wave data as input for the
BiLSTM model. This number is significantly small compared to the spatial correlation with
a CC ≥ 0.80, which has 23 points. From this table, we conclude that the downscaling model
with the spatial correlations of a CC ≥ 0.90 gives the best result.

Figure 11. The spatial correlation map at Jakarta Bay was obtained by calculating the correlation
coefficient (CC) between Hs at the global grid and Hs at the targeted local domain. Big dots denote
CC values: upper left plot for CC values ≥0.70, upper right plot for ≥0.80, and lower plot for ≥0.90.
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Table 3. Comparison between selected spatial correlation with results of downscaling performance
for prediction 14 days ahead in Jakarta Bay area.

Area Selected Spatial Number of CC RMSECorrelation Wave Point Input

Jakarta Bay

CC > 0.70 32 0.84 0.07

CC > 0.80 23 0.85 0.08

CC > 0.90 6 0.87 0.07

Based on the spatial correlation map in Figure 10 and Table 3, we use the spatial
correlation map with a CC > 0.90 to perform the comparison test with the observation
data in Jakarta Bay. We use six grid locations in the global wave data as the input for the
machine learning models. We compare the results of our deep learning-based downscaling
with the wave observation in Figure 10. A qualitative comparison of the significant wave
height of the wave observation with the prediction using the BiLSTM is shown in Figure 12,
indicating a relatively good agreement. From the figure, the results from the BiLSTM model
provide a relatively close prediction before 26 January. However, after that, it remains steady
at approximately 0.5 m, whereas the observation data are slightly increasing. Moreover, it
is also noticeable that the observation data oscillate for 12 h, or half a day. We suspect that
is a frequency that is tidal related that cannot be captured by the BiLSTM model with input
only from the global wave data.

Figure 12. Comparison of significant wave height from wave observation with result of prediction by
using BiLSTM at Jakarta Bay.

In Table 4, we compare the error quantitatively, in terms of the RMSE, between the
Hs from the observation with the results of the NOAA GFS Forecast, downscaling using
the LSTM and the BiLSTM. The prediction using the BiLSTM shows the best result. From
the table, there are improvements in the accuracy from the downscaling method by the
BiLSTM model of 26.3% compared to the global wave model, the GFS Forecast.

Table 4. Comparison between the significant wave height Hs from wave observation at Jakarta Bay
with the results of GFS Forecast, downscaling using LSTM and BiLSTM.

Model RMSE

LSTM 0.15
BiLSTM 0.14

GFS Forecast 0.19
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4.2. Wave Downscaling in Meulaboh

Meulaboh is located in the West Aceh Region on Sumatra Island, Indonesia. The off-
shore of Meulaboh, located at 96.1831◦ E, 4.1019◦ N, directly faces an open sea, the Indian
Ocean. Therefore, the offshore of Meulaboh is dominated by swells generated from the
Indian Ocean. In this subsection, we test the validity of our proposed downscaling method
against the wave observation in the Meulaboh offshore.

As in the Jakarta Bay case, we perform a continuous wave simulation in nested
domains as described in Section 3.1.2. For this case, we perform 40 years of continuous
wave simulations (1981–2020). Just as in the Jakarta Bay case, in Table 2, the spatial grid
resolution of domain II is 0.25◦, which is chosen to be the same as the global grid wave
forecasting, such as the GFS by the NOAA and ERA5 by the ECMWF. In this case, we also
aim to decrease the downscaling process by the machine learning algorithm by downscaling
from domain II (with a grid size of 0.25◦) to domain III, with a grid size of 0.002◦.

After performing a continuous hindcasting wave simulation for 40 years, we built a
spatial correlation map, as we did in the Jakarta Bay case. To this aim, we calculate the
spatially correlated wave data in domain II of Meulaboh with a targeted wave location in
domain III. For the Meulaboh case, we chose a target wave location offshore of Meulaboh,
located at 96.1831◦ E, 4.1019◦ N. Moreover, at this location, we have wave observation data
to compare with the results of the wave downscaling. The location of the observation point
at Meulaboh is shown in Figure 13.

Figure 13. Location of wave observation at Meulaboh, West Aceh Regency, Indonesia.

The spatial correlation results for the Meulaboh case, between the Hs from the global
wave data (or domain II) with the Hs at the observation location in Figure 13, are shown
in Figure 14. We use one-year (during 2020) Hs time-series data to calculate the spatial
correlation map. On the upper left plot of Figure 14 is the spatial correlation maps, where
the big dots represent the CC values ≥ 0.70, while on the upper right plot is for the CC
values ≥ 0.80 and in the lower plot for the CC values ≥ 0.90. Just as in the Jakarta Bay case,
by using the results of the spatial correlation map as shown in Figure 14, we performed a
sensitivity test to determine which spatial correlation map (with corresponding locations)
gives the best result. Here, we performed the downscaling by using the BiLSTM to calculate
a 14-days prediction.

In Table 5, we show the results of the downscaling performance of the BiLSTM model
with the selected CC in the spatial correlation, in terms of the correlation coefficient and
RMSE, for predicting 14 days. As expected, the spatial correlation with a CC ≥ 0.90 gives
the best results, with a CC of 0.97 and an RMSE of 0.15. The spatial correlation with a
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CC ≥ 0.90 gives only four point locations in the global wave data as the input for the
BiLSTM model. As in the Jakarta bay case, this number is significantly small compared to
the spatial correlation with a CC ≥ 0.80, which has 50 points. From this table, we conclude
that the downscaling model with the spatial correlations of a CC ≥ 0.90 gives the best result.

Figure 14. Spatial correlation maps at Meulaboh offshore, obtained by calculating the correlation
coefficient (CC) between Hs at the global grid with Hs at a targeted local domain. Big dots denote CC
values: in the upper plot for CC values ≥ 0.70, the lower plot for CC values ≥ 0.80, and the lower
plot for CC values ≥ 0.90.

Table 5. Comparison between selected spatial correlation with results of downscaling performance
for prediction 14 days ahead in Meulaboh area.

Area Selected Spatial Number of CC RMSECorrelation Wave Point Input

Meulaboh

CC > 0.70 52 0.95 0.16

CC > 0.80 50 0.96 0.16

CC > 0.90 4 0.97 0.15

For the case of Meulaboh, based on Figure 14 and Table 5, we use only four locations in
the global wave data grid, which have correlation coefficient values ≥ 0.90, as the features
for our deep learning model. Before we compare the simulation results with the wave
observation, we will investigate the sensitivity of the training data length with the resulting
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downscaling accuracy. Moreover, we also investigate the sensitivity of the downscaling
prediction length with the resulting downscaling accuracy.

4.2.1. Sensitivity of Length of Training Data

In the Meulaboh case, we obtain 40 years of continuous hindcasting wave simulations
for the dataset to train the machine learning algorithm. Indeed, for a practical application,
this may not be efficient for the designer of a wave forecasting system that will use this
methodology. In this subsection, we investigate the sensitivity of the training data with
the resulting downscaling accuracy. Here, we set several scenarios of training data lengths,
i.e., 1, 5, 10, 15, 20, 30, and 40 years, to test the LSTM and BiLSTM models’ performances in
downscaling. In Table 6, we show the downscaling results using the LSTM and BiLSTM
to perform the downscaling 14 days ahead. In general, the BiLSTM performs better than
the LSTM. For the length of the training data, there are two best results, namely 15 and
40 years, which give good and relatively similar results, with a correlation coefficient of 0.97
and an RMSE of 0.15. Furthermore, the training data over 15 years does not significantly
increase the downscaling results.

Table 6. Sensitivity of the training data length with the accuracy of the prediction using LSTM
and BiLSTM.

Length (Year)
LSTM BILSTM

CC RMSE MAPE CC RMSE MAPE

1 0.91 0.22 15.06 0.93 0.21 14.53
5 0.95 0.17 13.77 0.95 0.19 13.70
10 0.96 0.18 12.9 0.96 0.17 12.11
15 0.97 0.17 12.41 0.97 0.16 11.79
20 0.96 0.18 12.23 0.97 0.17 12.46
25 0.96 0.18 12.13 0.97 0.17 11.44
30 0.96 0.16 11.29 0.97 0.16 10.65
40 0.97 0.17 11.8 0.97 0.15 11.40

4.2.2. Sensitivity of Length of Downscaling

In this subsection, we investigate the sensitivity of the length of the downscaling. The
global wave forecasting system GFS by the NOAA produces up to 16 days of prediction,
which is available four times a day, or every 6 h. In forecasting, the length of prediction
indeed affects the prediction’s accuracy. In this paper, we performed downscaling from
global wave forecasting data to local wave data. To see the performance of the resulting
downscaling, we propose scenarios for a downscaling length of 1, 3, 5, 7, and 14 days.
In Table 7, we show the results using the BiLSTM to calculate the downscaling durations
of 1, 3, 5, 7, and 14 days in terms of the correlation coefficient (CC), RMSE, and MAPE.
The table shows that the longer prediction horizon results in a lower accuracy. Note that
the one-day downscaling gives an almost perfect prediction with a correlation coefficient
of 0.99 and an RMSE value of 0.01.

Table 7. Sensitivity of the downscaling prediction length with the resulting accuracy of downscaling.

Downscaling
Length (Day) CC RMSE MAPE

1 0.99 0.01 0.72
3 0.99 0.06 8.46
5 0.99 0.09 13.42
7 0.99 0.08 10.47
14 0.97 0.16 11.79
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4.2.3. Comparison with Wave Observation

To validate our deep learning-based downscaling model, we compare the result of
the downscaling by using the LSTM and BiLSTM with the wave observation data in the
Meulaboh offshore area. To perform the downscaling by using deep learning, we use the
global GFS forecast wave data as an input for our deep learning-based downscaling models,
i.e., the LSTM and BiLSTM. As mentioned, the wave observation is located on the west
coast of Meulaboh, as shown in Figure 13. The wave observation data are available for
30 days. We compare the Hs from the observation with the results of the Hs prediction
using the BiLSM model as shown in Figure 15. As shown in the figure, the results of
the BiLSTM downscaling can follow relatively accurate observation data. In Table 8, we
compare the quantitative errors, in terms of the RMSE, between the Hs from the observation
with the global forecast model, the GFS forecast model by the NOAA, and the results of
the prediction obtained by using the LSTM and BiLSTM models. Here, it shows that
the BiLSTM gives the best results compared to the LSTM and GFS forecast (global wave
forecasting model), even for a wave prediction of 30 days.

Figure 15. Comparison of significant wave height from wave observation with result of prediction by
using BiLSTM at offshore of Meulaboh.

Table 8. Comparison between the significant wave height Hs from wave observation at Meulaboh
with GFS forecast results, downscaling using LSTM and BiLSTM.

Model RMSE

LSTM 0.19
BiLSTM 0.16

GFS Forecast 0.23

5. Conclusions

In coastal areas, especially with complex geometry, wave prediction requires a high-
resolution grid simulation to capture the wave propagation accurately. Global wave
forecasters, such as the GFS by the NOAA and ERA5 by the ECMWF, provide relatively
low-resolution wave forecasting. This paper proposes an alternative way to perform
downscaling using a deep learning approach, especially for wave forecasting. We approach
this idea by constructing a high-resolution wave dataset using a numerical simulation with
the SWAN model in nested simulations. As input for the deep learning models to perform
the downscaling, the selection of grid locations of the global wave data to be downscaled
is made by calculating the spatially correlated wave data in the global wave data with a
targeted wave location. Here, machine learning takes only highly correlated grid locations
as the input. In this paper, we study two coastal locations, i.e., Jakarta Bay and the Meulaboh
offshore area. Based on these two study areas, the BiLSTM performed better than the LSTM.
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From the Meulaboh case, we found that the length of the training data affects the accuracy
of the downscaling prediction, especially for the length of training data of 1 to 15 years.
Increasing the length of training by more than 15 years only slightly increases the accuracy
of the prediction. We also investigated whether the downscaling prediction horizon for
the downscaling greatly affects the accuracy of the prediction. To predict 14 days, the
BiLSTM results in an accuracy with a CC value of 0.97, an RMSE value of 0.16, and a MAPE
value of 11.79, while for predicting 1 day, the model can produce almost perfect accuracy,
with a CC value of 0.99, an RMSE of 0.01, and a MAPE value of 0.72. The comparison
between the wave observation with the prediction results using the BiLSTM in Jakarta Bay
and Meulaboh’s offshore shows that our deep learning-based downscaling improves the
prediction of the global wave forecasting GFS.

We conclude that this paper’s proposed deep learning-based downscaling method
is more suitable for downscaling waves in an open area, such as in Meulaboh, than in a
closed area, such as Jakarta Bay. By analysing the results from the comparison with the
observation data, especially in the Jakarta Bay area, the global wave prediction such as the
GFS forecast by the NOAA may not be accurate because the area is a relatively closed area
with a wind-wave-dominated area. As a result, because the downscaling model takes the
GFS forecast as input, the downscaling may inherit the errors from the global wave model.
For the Jakarta case, there are improvements in the accuracy from the downscaling method
of 26.3% compared to the global wave model. From a comparison with the observation
data in the Meulaboh case, the results of the BiLSTM overestimated the wave peaks of
the observation data. In contrast, at other times, the downscaling results can follow the
observation data relatively well. These overestimated peaks may also be inherited from
the global wave data input. Here, there are two possible errors, i.e., the errors from the
GFS forecast that are taken as the input from the deep learning model and possible errors
from the SWAN model. Nevertheless, the results of the prediction using the BiLSTM
show relatively good results. For the case of Meulaboh, the BiLSTM results in a 30.4%
improvement over the GFS in the RMSE.
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