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Abstract: This article investigates the snow albedo changes in Colombian tropical glaciers, namely,
Sierra Nevada de Santa Marta (SNSM), Sierra Nevada del Cocuy (NSC), Nevado del Ruíz (NDR),
Nevado Santa Isabel (NDS), Nevado del Tolima (NDT), and Nevado del Huila (NDH). They are
associated with the possible mineral dust deposition from the Sahara Desert during the June and
July months using snow albedo (SA), snow cover (SC), and land surface temperature (LST) from
the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra and Aqua
satellites. And mineral dust (MD) from The Modern-Era Retrospective Analysis for Research and
Applications, version 2 (MERRA-2), both of them during 2000–2020. Results show the largest snow
albedo reductions were observed at 39.39%, 32.1%, and 30.58% in SNC, SNSM, and NDR, respectively.
Meanwhile, a multiple correlation showed that the glaciers where MD contributed the most to SA
behavior were 35.4%, 24%, and 21.4% in NDS, NDC, and NDR. Results also display an increasing
trend of dust deposition on Colombian tropical glaciers between 2.81 × 10−3 µg·m−2·year−1 and
6.58 × 10−3 µg·m−2·year−1. The results may help recognize the influence of Saharan dust on
reducing snow albedo in tropical glaciers in Colombia. The findings from this study also have the
potential to be utilized as input for both regional and global climate models. This could enhance our
comprehension of how tropical glaciers are impacted by climate change.

Keywords: snow albedo; MODIS; MERRA-2; light-absorbing particles; mineral dust; tropical glaciers;
albedo reduction; cryosphere; snowpack

1. Introduction

Atmospheric mineral dust is a vital component of the Earth’s climate system [1]. It
is an important source of trace metals, nutrients, and biological material for mountain
ecosystems [2] and is mobilized and transported under specific climatic regimes [3]. Mineral
dust can absorb and scatter incoming solar radiation and outgoing thermal radiation, which
is known as direct radiative forcing of dust [4,5]. A positive radiative forcing causes a
warming of the atmosphere; a negative radiative forcing, a cooling of the atmosphere [6].
However, dust radiative forcing causes a faster and earlier peak outflow of melted snow [7].

Glaciers, as the largest component of the cryosphere, are currently experiencing dra-
matic melting attributed to increasing temperatures and decreasing snow accumulation [8].
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Aeolian dust is one of the key factors for accelerated glacier melting [9], dust loading signif-
icantly reduces albedo [8,10,11], what influences the magnitude and timing of snowmelt
runoff [12], and ferric oxide minerals and carbonaceous matter appear to be the main
influences on snowpack albedo reduction [13]. This is because dust and carbonaceous
particles are heated by the absorption of solar radiation and, in turn, heat the surrounding
snow mainly through conduction to adjoining snow grains [14], which influences regional
water resources, ecological environmental security, and climate change [15].

On the glacier surface, especially in the ablation zone, wind-blown dust particles,
often combined with biogenic materials, can aggregate to form cryoconite after melting [16].
Cryoconites are airborne sediments that accumulate on the surface of glaciers [17], and
they are formed by mycobial activity [8]. The formation of mineral cryoconite deposited
on glaciers depends on the sources and transport processes of aeolian dust surrounding
glaciers [18]. A study conducted by Stibal et al. (2017) [19] concluded that ablation of the
Greenland ice sheet surface is amplified by surface darkening caused by light-absorbing
impurities such as mineral dust, among others. However, little research has been done on
the effects of dust particles (mainly wind dust deposition on snow and ice from atmospheric
transport) on the physicochemistry of glacier meltwater runoff [20].

Wind processes are important sources of particulate matter [21], the Sahara Desert is
the main source of dust for the Earth’s atmosphere [22,23], and North African dust hotspots
located in the Sahara are responsible for 50% to 70% of the global mineral dust budget.
Dust-laden air masses originating from these sources can be transported over long distances
and can also affect remote areas, such as North and South America, Europe, and the Middle
East [1]. Saharan dust inputs affect current ecosystems and biogeochemical cycles on a
global scale [24]. A study conducted in Mediterranean mountain lakes concluded that the
Sierra Nevada lakes have experienced lacustrine alkalinization due to Saharan dust [25].
In Greenland, the presence of Saharan dust caused an increase in surface temperature of
about 10 ◦C for more than three consecutive days, with implications for snowmelt [3,26]. In
the European Alps, the role of Saharan dust events on snowmelt was analyzed, concluding
that a reduction in snow cover was expected through snow albedo feedback [27].

Airborne dust deposition in the snow cover has been shown to decrease surface snow
albedo [28–30]. The Sahara Desert contributes more than 50% of global dust emissions,
making it the world’s largest source of dust [31]. Also, in appropriate meteorological
scenarios, Sahara dust particles could climb to an altitude of approximately 1.5 to 8 km [32].
It then crosses long distances, reaching the Atlantic Ocean, America, and Europe [33–35].
Throughout the world, mineral dust in seasonal snow and glaciers negatively affects their
surface albedo, namely in the northern hemisphere [36], Asia [37–40], Europe [27,41], and
North America [42]. In South America, studies of the impact of dust on snow albedo in
the extratropical mountains of the Chilean Central Andes have also been analyzed [43].
While other studies on tropical South American glaciers have analyzed mineral dust and
its potential effect on snow albedo in Peru [44] and Bolivia [45,46].

In tropical glaciers in South America [47,48], measurements of light-absorbing particles
in surface snow are mainly concentrated in the Cordillera Blanca, and limited informa-
tion is available on their chemical composition (carbonaceous or mineral components),
whereas records of powdered ice cores have been investigated in several sectors of the
Andes, including in the Cordillera Blanca, Cordillera Oriental, and Cordillera Real [49].
Meteorological measurements at glacier elevation (>4800 m a.s.l.) are still very scarce and
often limited to short time periods [50], and there are no established regional networks for
monitoring aeolian dust deposition on snow [51]. Studies have revealed that glaciers in the
tropical Andes have been retreating rapidly during the last few decades [52]. Therefore,
they should be monitored systematically [53], because their quantification facilitates the
prediction of meltwater runoff as well as the distribution and availability of freshwater
in the Andes region [54]. Also, studies conducted by Méndez et al. (2018) [48] showed
that Saharan dust intrusion was present in approximately 95% of the Colombian territory.
However, the impact of mineral dust on snow albedo variation in Colombian glaciers
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has been little studied. Only one study carried out in the Sierra Nevada de Santa Marta
(northern Colombia) for the months of June (2000–2020) has been reported in the literature,
which found a negative correlation of 31% (p < 0.05) between snow albedo and mineral
dust (p < 0.05) [47].

Therefore, the main objective of this study is to analyze the impact of Saharan in-
trusions on the snow albedo reduction in the tropical glaciers of Colombia through the
2000–2020 period. The results can be used to understand how the dust that arrives from
the Sahara Desert in North Africa is darkening the snow on the glaciers and, consequently,
the glaciers lost in Colombia. This article is ordered as follows. Section 2 shows the mate-
rials and methods used to calculate the snow albedo reduction associated with Saharan
intrusion events in Colombian tropical glaciers. Section 3 details the results and discussion
of the snow albedo reduction analysis for each of the glaciers studied in Colombia. Finally,
Section 4 reports the main conclusions and proposes future studies.

2. Materials and Methods
2.1. Studied Area

Colombia is the northernmost country in South America (Figure 1). It covers an area
of 1,141,748 km2, making it the twenty-fifth largest country in the world and the seventh
largest in the Americas [55]. Latitudinally, Colombia is crossed by the Andes mountain
range, which is the main and longest mountain range in South America [56]. This mountain
is very important for Colombia. It generates more than 70% of its gross domestic product
and provides fresh water and energy for most of its inhabitants [57]. Colombian glacier
areas are in the higher parts of this mountain (>4850 m a.s.l.). They reside within a tropical
zone, enabling them to experience the effects of the Intertropical Convergence Zone rather
than being subjected to the seasonal variations that define regions at higher latitudes [58].
Currently, there are only six zones’ glaciers in Colombia (Table 1), namely, Sierra Nevada
de Santa Marta (SNSM), Sierra Nevada del Cocuy (NSC), Nevado del Ruíz (NDR), Nevado
Santa Isabel (NDS), Nevado del Tolima (NDT), and Nevado del Huila (NDH). Previous
studies indicate that Colombian glaciers have shrunk from 374 km2 in the Little Ice Age
(17th–19th centuries) to 34.85 ± 0.54 km2 in 2020. This means that Colombia has lost
92% of its glacier area [59,60]. Thus, these glaciers are extremely fragile, very sensitive
to climate variability, changes in precipitation, and temperature, and respond to global
climate dynamics [61]. The glacier areas of Colombia present an important relationship
between the glacier system ecosystems and the moorlands, lagoon systems, and main water
sources and their contribution to the water cycle [62,63].

Table 1. Location and main geographical characteristics of glacial areas in Colombia, listings from
north to south [59].

Glacial Areas in Colombia Geographical Coordinates Maximum Height
(m a.s.l.) Glacier Area (km2)

Sierra Nevada de Santa Marta (SNSM) 10◦49′ N; 73◦39′ W 5775 5.81
Sierra Nevada del Cocuy (SNC) 6◦27′ N; 72◦17′ W 5380 13.19

Nevado del Ruíz (NDR) 4◦53′ N; 75◦19′ W 5330 8.14
Nevado de Santa Isabel (NDS) 4◦49′ N; 75◦22′ W 4968 0.45

Nevado del Tolima (NDT) 4◦39′ N; 75◦22′ W 5280 0.52
Nevado del Huila (NDH) 2◦55′ N; 76◦03′ W 5364 6.74
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Figure 1. Location of the glacial areas under study in South America and Colombia. (a) Distribution 
of glacial areas in Colombia; (b) Sierra Nevada de Santa Marta; (c) Nevado del Huila; (d) Nevado 
del Ruíz (1), Nevado de Santa Isabel (2), and Nevado del Tolima (3); and (e) Sierra Nevada del Co-
cuy. 

Table 1 shows the glacier areas of Colombia from north to south. SNSM is the north-
ernmost glacier area in Colombia and the highest (5775 m a.s.l.). NDS is the lowest glacier 
area (4968 m a.s.l.) and covers the smallest area (0.45 km2). While SNC is the second high-
est glacier area (5380 m a.s.l.) and covers the largest area (13.19 km2). 

2.2. Data 
Dust data were obtained from the Modern-Era Retrospective analysis for Research 

and Applications, version 2 (MERRA-2), namely, Average Dust Extinction AOT 550 nm to 
analyze a spatial analysis of the dust plume from the Sahara Desert to the American Car-
ibbean was performed by means of a 12-months and June and July months (2000–2020); 
mineral dust (MD) as well as Dust Deposition (M2TMNXADG v5.12.4) to analyze the 
presence of month during the 12-month period over Colombia, estimate the dust deposi-
tion anomalies in each glacier and was used as an independent variable in the multiple 
regression analysis applied to each glacier; and Dust Deposition data were also used to 
estimate the Sen’s Slope (median trend) which has proven robust against outliers [64] for 
each glacier studied. Then, a delimitation of six glacial areas of the Colombian Andes was 
carried out on the heights covered by snow. In fact, all analyzed areas were delimited 
using the same shapefile format file, its mean, a geospatial vector data format for geo-
graphic information systems (GIS) for each Colombian glacier. For a better analysis, snow 
cover and surface temperature data from MODIS were used for June-July as the period of 
intrusion of Saharan dust into Colombia. We mainly used daily MODIS data 
(https://modis.gsfc.nasa.gov/data/ (accessed on 21 December 2022)) combining TERRA 

Figure 1. Location of the glacial areas under study in South America and Colombia. (a) Distribution
of glacial areas in Colombia; (b) Sierra Nevada de Santa Marta; (c) Nevado del Huila; (d) Nevado del
Ruíz (1), Nevado de Santa Isabel (2), and Nevado del Tolima (3); and (e) Sierra Nevada del Cocuy.

Table 1 shows the glacier areas of Colombia from north to south. SNSM is the north-
ernmost glacier area in Colombia and the highest (5775 m a.s.l.). NDS is the lowest glacier
area (4968 m a.s.l.) and covers the smallest area (0.45 km2). While SNC is the second highest
glacier area (5380 m a.s.l.) and covers the largest area (13.19 km2).

2.2. Data

Dust data were obtained from the Modern-Era Retrospective analysis for Research and
Applications, version 2 (MERRA-2), namely, Average Dust Extinction AOT 550 nm to ana-
lyze a spatial analysis of the dust plume from the Sahara Desert to the American Caribbean
was performed by means of a 12-months and June and July months (2000–2020); mineral
dust (MD) as well as Dust Deposition (M2TMNXADG v5.12.4) to analyze the presence of
month during the 12-month period over Colombia, estimate the dust deposition anomalies
in each glacier and was used as an independent variable in the multiple regression analysis
applied to each glacier; and Dust Deposition data were also used to estimate the Sen’s Slope
(median trend) which has proven robust against outliers [64] for each glacier studied. Then,
a delimitation of six glacial areas of the Colombian Andes was carried out on the heights
covered by snow. In fact, all analyzed areas were delimited using the same shapefile format
file, its mean, a geospatial vector data format for geographic information systems (GIS) for
each Colombian glacier. For a better analysis, snow cover and surface temperature data
from MODIS were used for June-July as the period of intrusion of Saharan dust into Colom-
bia. We mainly used daily MODIS data (https://modis.gsfc.nasa.gov/data/ (accessed on
21 December 2022)) combining TERRA and AQUA satellite data with a special resolution
of 0.5 km and 1 km. The MODIS data used were the M*D10A1 C6 products for snow albedo
(SA) and normalized difference snow index (NDSI) as snow cover (SC) using both the
MODIS snow algorithm [65] and the M*D11C1 C6 products for land surface temperature

https://modis.gsfc.nasa.gov/data/
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(LST). This LST product is generated by the generalized split-window LST algorithm [66]. A
selection of quality data was made, taking pixels of better resolution and avoiding a larger
amount of biased data. While images from Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observations (CALIPSO) were used to observe dust in the atmospheric column
over the study area. Finally, the wind rose was analyzed for each Colombian tropical glacier
studied, showing how many hours per year the wind blows from the indicated direction.
(https://www.meteoblue.com/en/weather/historyclimate/climatemodelled/ (accessed
on 1 August 2023)).

2.3. Methods

For the data analysis, a multidimensional spatial analysis was performed with mul-
tidimensional raster layers generated by HDF files. The raster data were entered for a
computational analysis using the Python console of QGis software(version 3.16), by which
we proceeded to calculate outliers (2000–2020) of dust and albedo data, for which a calcula-
tion of multidimensional anomalies was performed in order to analyze the alterations of
snow albedo with the intrusion of Saharan dust in the glacial areas of Colombia.

Mathematically, anomalies can be calculated using the mean or median as the defi-
nition of the mean (as shown in Equation (1)). If the data distribution is skewed, outliers
can greatly affect the mean, so median or z-score methods may be more appropriate for
such data:

Z =
x− µ

S
, (1)

where x is the pixel value in a raster slice, µ is the mean value of the pixel values over the
given time interval, and S is the standard deviation of the pixel values over the time interval.
It is taken into account that for each variable, the raster to be analyzed must have the same
extension, cell size, and spatial reference. The average or median value is provided directly
as raster input in the parameter average calculation interval. The input of each raster is
performed, and the difference from the mean is calculated by comparing the pixel values
in each sector with the corresponding pixel values in the outer raster. The Z score of each
pixel will be calculated. A Z score of 0 indicates that the pixel value is identical to the mean
value. A Z score of 1 indicates that the pixel value has a standard deviation of 1 from the
mean value. If the Z score is 2, the pixel value has a standard deviation of 2 from the mean
value, and so on.

To estimate the effect of mineral dust deposition (MD) on the reduction of snow albedo
(SA) on each glacier, a linear multiple correlation of SA with land surface temperature
(LST), MD, and snow cover (SC) was performed using a multiple regression analysis for
the monthly averages of June and July 2000–2020 on each glacier. Finally, four passes
from the CALIPSO satellite on 22 June 2006, 2 July 2010, 30 June 2015, and 30 June 2020
were visualized and confirmed the presence of mineral dust in the atmospheric column
between 0 and 5 km altitude in Colombia during the analyzed months [67] (as shown
in Appendix A).

3. Results and Discussion
3.1. Saharan Dust Intrusion Event in Colombia

Figure 2 shows the average monthly data of dust deposition in Colombia in the period
from 2000 to 2020. It can be observed that the highest average concentrations were 18.9
and 19.22 mg·m−2 (extreme values up to 39.17 and 36.9 mg·m−2) for the months of June
and July, respectively. In addition, it is observed that these average values are above the
mean values, which indicates a positively skewed distribution of these values. In this
sense, as shown in Figure 3, the high dust concentrations would be the effect of the Saharan
intrusion, which arrives in Colombia from North Africa. These results were consistent with
previous studies that showed increases in mineral dust due to Saharan intrusion in the
middle of each year [68–73].

https://www.meteoblue.com/en/weather/historyclimate/climatemodelled/
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Figure 3. Saharan dust distribution from North Africa to the Caribbean Sea and Colombia in America.
Observed through the average dust extinction AOT 550 nm for June and July months (2000–2020),
using data from MERRA-2 Model M2TMNXAER v5.12.4.

3.2. Snow Albedo and Dust Deposition Variation in Colombian Glacial Areas

Figure 4 shows the results of the calculation of snow albedo and dust deposition
anomalies in each of the Colombian glaciers studied during the June–July months from
2000 to 2020. The largest snow albedo reductions (associated with increased dust deposition)
were observed at 39.39% (15.84 mg·m−2), 32.1% (88.52 mg·m−2) and 30.58% (49.89 mg·m−2)
in SNC (Figure 4j), SNSM (Figure 4k), and NDR (Figure 4b), respectively. While glaciers
with less snow albedo reduction (associated with increased dust deposition) were ob-
served at 17.28% (10.07 mg·m−2), 25.64% (26.18 mg·m−2), and 30.24% (13.98 mg·m−2) in
NDH (Figure 4g), NDT (Figure 4e), and NDR (Figure 4a), respectively. In addition, these
results also show that the northernmost glaciers with the highest dust deposition have
predominantly northerly winds. While the southernmost glaciers, where there is less dust
deposition, have prevailing winds with a southerly wind component. This could indicate
that the average values of dust deposited in the Colombian glacial areas for the June and
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July periods have an impact on the albedo decrease by darkening snowy surfaces. These
results are consistent with what is shown in Figure 3, which shows that the Saharan intru-
sion arrives with greater concentration in the north and is diluted as it reaches the south
of Colombia. Additional 12-month analysis also shows that the largest dust intrusions
from the Sahara into Colombia occur during the months of June–July each year (as shown
in Figure A5).
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Figure 4. Snow Albedo (left panels) and Dust Deposition (right panels) anomalies from June and
July daily values (2000 to 2020) in all the Colombian glaciers studied. Values expressed as a func-
tion of the standard deviation—SD, namely, in the Nevado del Ruíz—NDR (SDSnowAlbedo = 14.4%
(a); SDDustDeposition = 12.83 mg·m−2 (b)), the Nevado de Santa Isabel—NDS (SDSnowAlbedo = 14.7% (c);
SDDustDeposition = 49.89 mg·m−2 (d)), the Nevado del Tolima—NDT (SDSnowAlbedo = 11.6% (e);
SDDustDeposition = 12.12 mg·m−2 (f)), the Nevado del Huila—NDH (SDSnowAlbedo = 12% (g);
SDDustDeposition = 9.97 mg m−2 (h)), the Sierra Nevada del Cocuy—SNC (SDSnowAlbedo = 13.13% (i);
SDDustDeposition = 14.94 mg m−2 (j)) and, the Sierra Nevada de Santa Marta—SNSM
(SDSnowAlbedo = 10.7% (k); SDDustDeposition = 44.26 mg m−2 (l)). Red arrows indicate prevailing
wind direction (as shown in Figure A6).
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The results of this work are consistent with previous studies showing that Saharan
dust reaching (see Appendix A) Colombian tropical glaciers reduces their snow albedo.

3.3. Saharan Dust Intrusions Effects on Snow Albedo Decrease in Colombia

Although the most important LAPs in the reduction of Albedo snow are Black Carbon
and Organic Carbon and Mineral Dust [74–78]. Previous studies in the Sierra Nevada
de Santa Marta, Colombia [47] have shown that dust can reduce snow albedo up to 41%
(p < 0.001), while the combination of Black Carbon and Organic Carbon and Mineral
Dust only 29% (p < 0.05). This shows the importance that Mineral Dust can have in the
reduction of snow albedo in Colombian tropical glaciers. In this sense, the relationship
between SA and LST, MD and SC, was analyzed, and the coefficients of determination
(R2) were calculated using their monthly averages. These parameters underwent initial
mean subtraction followed by normalization using their corresponding standard deviations.
Subsequently, a multiple linear regression analysis was conducted for every glacier, utilizing
these normalized parameters for the months of June and July within the timeframe of 2000–
2020 in Colombian glaciers, as shown in the following equations:

SASNSM = −2.27× 10−15 − 0.54LSTSNSM − 0.13MDSNSM + 0.27SCSNSM R2
SNSM = 0.71 (p < 0.001) (2)

SASNC = 0.09 − 0.35LSTSNC − 0.16MDSNC + 0.38SCSNC R2
SNC = 0.56 (p < 0.001) (3)

SANDR = −7.88× 10−17 − 0.61LSTNDR − 0.18MDNDR + 0.40SCNDR R2
NDR = 0.64 (p < 0.001) (4)

SANDS = −1.27× 10−15 − 0.37LSTNDS − 0.20MDNDS + 0.41SCNDS R2
NDS = 0.59 (p < 0.001) (5)

SANDT = −8.67× 10−17 − 0.10LSTNDT − 0.08MDNDT + 0.09SCNDT R2
NDT = 0.15 (p = 0.85) (6)

SANDH = 0.48 + 0.23LSTNDH + 0.04MDNDH + 0.19SCNDH R2
NDH = 0.49 (p = 0.07) (7)

Furthermore, to test the relationship between LST, MD, and SC, the square and square
root of LST, as well as the product of LST, MD, and SC. They were used in the regression
analysis of each glacier. Results revealed that all their regression coefficients in each
multiple regression equation was insignificant at 99% confidence level. In most of the
multiple correlation Equations (2)–(5) it was found that the LST, MD, and SC coefficients
have the expected physical behavior on the snow albedo (SA). This means that increasing
temperature and dust reduce the albedo, while increasing snow cover is associated with
increased snow albedo [79,80]. However, Equation (7) shows that the MD would increase
the SA in NDH, which would not be physically expected. Equation (6) was the one
that showed the lowest coefficient of determination. In addition, the results of NDH
are due to the fact that it is the southernmost tropical glacier in Colombia as shown in
Figure 3, it is the area of Colombia where the Saharan intrusion arrives weak. In addition,
Sen’s Slope de Sen shows a positive trend of increasing dust deposition on all glaciers
studied. However, this trend shows a decreasing pattern from north to south. That
is, while the northernmost glaciers show higher dust deposition trends of 6.58 × 10−3

µg·m−2·year−1 and 5.19 × 10−3·µg·m−2·year−1 in SNSM and SNC, respectively. Those
further south present the lowest dust deposition trends of 2.81 × 10−3 µg·m−2·year−1

and 3.53 × 10−3 µg·m−2·year−1 for NDH and NDT, respectively (as shown in Table 2). In
particular, NDT, which has the lowest R2 at the same time presented the highest number
of hours per year with velocities > 12 km h−1 from the southeast (Figure A6). At that
point, the north-south deposition pattern is consistent with research carried out in France,
which found regional patterns of African dust deposition decreasing with distance from the
North African coasts according to a south-north gradient [41]. Then, these results show that
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there are regional effects as climatic variables due to the high spatial variability in mineral
dust and snow properties [81]. Therefore, considering the lowest Sen’s Slope, the lowest
values of R2, and the non-significant p-values of Equations (6) and (7) of NDH and NDT,
respectively, these are discarded for the following calculation. Then, the contributions of
LST, MD, and SC to the SA behavior of each glacier in Colombia were estimated using the
difference of the normalized mean values of LST, MD, and SC for the months of June and
July 2000–2020. In this way, the percentage of SA reduction due to deposition was estimated.
These results showed that the glaciers where MD contributed the most to SA behavior were
35.4%, 24%, and 21.4% in NDS, NDC, and NDR, respectively. Using regression equations
to analyze the impact of aerosol optical depth (AOD) on snow albedo behavior has been
used previously in the Sierra Nevada in CA, United States. They found that approximately
26% of the snow albedo reduction from March to April over the Sierra Nevada is caused
by an increase in AOD [82]. This technique was also used in the Central Andes of Chile,
where they found that AOD contributed up to 13.59% to the variation of snow albedo in the
2000–2016 period [83]. Our results are also consistent with studies conducted by He et al.
2019, who applied a stochastic model of aerosol and snow albedo to simulate dust with
snow grains. They found that internal mixing of dust and snow increases the magnitude
of snow albedo reduction by 10% to 30% [84]. Thus, the results of this study would show
that the MD is having an important impact on the snow albedo variation in most of the
Colombian tropical glaciers analyzed.

Table 2. Comparative summary of the main results listed from north to south for each tropical glacier
studied in Colombia. Wind roses analyzed to determine the predominant wind direction are shown
in Figure A6.

Colombian Tropical
Glacier Studied

Sen’s Slope Multiple Regression Analysis Prevailing Wind
Direction×10−3 µg·m−2·year−1 p-Value R2 p-Value

SNSM 6.58 <0.001 0.71 <0.001 East and Northeast
SNC 5.19 <0.001 0.56 <0.001 Northeast
NDR 3.54 <0.001 0.64 <0.001 Northeast
NDS 3.54 <0.001 0.59 <0.001 Northeast and Southeast
NDT 3.53 <0.001 0.15 0.85 Southeast
NDH 2.81 <0.001 0.49 0.07 Southeast

In addition, considering the increasing trends of dust deposition on Colombian tropical
glaciers between 2.81 × 10−3 µg·m−2·year−1 and 6.58 × 10−3 µg·m−2·year−1. This would
suggest that under the effects of climate change [85–89], the increase of LAPs such as
Mineral Dust would be negatively feeding back, together with the increase in surface
temperature, the reduction of snow albedo in these glaciers, and therefore increasing
the risk of the loss of these tropical glaciers [59]. In addition, the results of this work
can serve as input for regional and global climate models to improve our understanding
of the response of tropical glaciers to climate change [41,84,90,91]. However, this study
has only been based on satellite observations and reanalysis data due to the absence of
ground observations and LAP measurements on snow samples in the study area. Thus, a
coordinated international network of field observations of the atmosphere and cryosphere
at high mountain sites in Colombia could provide near-real-time measurements useful for
supporting future climate [49].
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4. Conclusions

The present work analyzes the relationship between Saharan intrusion and snow
albedo reduction in tropical glaciers in Colombia for the period 2000–2020. Mineral dust
appears to have an impact on the reduction of snow albedo in Colombian glaciers of up
to 39.39%. It is also appreciated that the northernmost glaciers have a higher exposure to
Saharan intrusions. The results may be useful for understanding the impact of Saharan
dust on albedo reduction in Colombian tropical glaciers and, therefore, on the acceleration
of their ablation rate. However, it is hoped that future work can analyze snow samples to
determine the presence and quantification of light-absorbing particles in these glaciers.
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Appendix A

During the last 20 years (2000–2020), it has been possible to observe different Saha-
ran dust intrusion events over Colombia’s mainland through the CALIPSO satellite [67].
Particularly, vertical dust profiles were observed in the 5 km above the land surface in
Colombia in the months of June and July, namely, 22 June 2006 (Figure A1), 2 July 2010
(Figure A2), 30 June 2015 (Figure A3), and 30 June 2020 (Figure A4). These observations
of superficial atmospheric dust allow us to see that the Saharan dust intrusion events are
arrive in Colombia each year. Thus, they can be deposited on Colombia’s glaciers and
reduce its snow albedo. Figure A5 shows the monthly distribution of the Saharan dust
plume crossing the Atlantic Ocean, reaching Colombia with the highest dust’s AOT values
in June and July. Finally, Figure A6 shows the wind rose for each area studied to analyze
the impact that this direction may have on the dust being deposited on the glaciers studied.
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Figure A1. Nighttime pass of the CALIPSO satellite on 22 June 2006 [67]. (a) The orbit track locations 
around the planet. (b) The vertical profile of the dust as an aerosol subtype for the trajectory (pink 
color) shown in (a). The red dotted lines enclose the study area in the Colombian Caribbean. 

Figure A1. Nighttime pass of the CALIPSO satellite on 22 June 2006 [67]. (a) The orbit track locations
around the planet. (b) The vertical profile of the dust as an aerosol subtype for the trajectory (pink
color) shown in (a). The red dotted lines enclose the study area in the Colombian Caribbean.
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Figure A2. Daytime pass of the CALIPSO satellite on 2 July 2010 [67]. (a) The orbit track locations 
around the planet. (b) The vertical profile of the dust as an aerosol subtype for the trajectory (blue 
color) shown in (a). The red dotted lines enclose the study area in the Colombian Caribbean. 

Figure A2. Daytime pass of the CALIPSO satellite on 2 July 2010 [67]. (a) The orbit track locations
around the planet. (b) The vertical profile of the dust as an aerosol subtype for the trajectory (blue
color) shown in (a). The red dotted lines enclose the study area in the Colombian Caribbean.
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Figure A3. Daytime pass of the CALIPSO satellite on 30 June 2015 [67]. (a) The orbit track locations 
around the planet. (b) The vertical profile of the dust as an aerosol subtype for the trajectory (blue 
color) shown in (a). The red dotted lines enclose the study area in the Colombian Caribbean. 

(a) 

(b) 

Figure A3. Daytime pass of the CALIPSO satellite on 30 June 2015 [67]. (a) The orbit track locations
around the planet. (b) The vertical profile of the dust as an aerosol subtype for the trajectory (blue
color) shown in (a). The red dotted lines enclose the study area in the Colombian Caribbean.
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Figure A4. Daytime pass of the CALIPSO satellite on 30 June 2020 [67]. (a) The orbit track locations 
around the planet. (b) The vertical profile of the dust as an aerosol subtype for the trajectory (blue 
color) shown in (a). The red dotted lines enclose the study area in the Colombian Caribbean. 

(a) 

(b) 

Figure A4. Daytime pass of the CALIPSO satellite on 30 June 2020 [67]. (a) The orbit track locations
around the planet. (b) The vertical profile of the dust as an aerosol subtype for the trajectory (blue
color) shown in (a). The red dotted lines enclose the study area in the Colombian Caribbean.
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Figure A5. Monthly distribution of Average Dust Extinction AOT 550 nm for (2000–2020), using data 
from MERRA-2 Model M2TMNXAER v5.12.4, which shows Saharan dust distribution from North 
Africa to the Caribbean Sea and Colombia. Red dotted line shows the highest monthly concentra-
tions that reach the Colombian mainland arrive in June and July with AOT values between 47.71 × 
10−3 and 113.4 × 10−3. 

Figure A5. Monthly distribution of Average Dust Extinction AOT 550 nm for (2000–2020), using data
from MERRA-2 Model M2TMNXAER v5.12.4, which shows Saharan dust distribution from North
Africa to the Caribbean Sea and Colombia. Red dotted line shows the highest monthly concentrations
that reach the Colombian mainland arrive in June and July with AOT values between 47.71 × 10−3

and 113.4 × 10−3.
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Figure A6. Wind rose for the studied areas. The wind rose for each Colombian tropical glacier stud-
ied shows how many hours per year the wind blows from the indicated direction. Source: Simulated 
historical climate and weather (https://www.meteoblue.com/en/weather/historyclimate/clima-
temodelled/ (accessed on 1 August 2023)). 

  

Figure A6. Wind rose for the studied areas. The wind rose for each Colombian tropical glacier
studied shows how many hours per year the wind blows from the indicated direction. Source: Sim-
ulated historical climate and weather (https://www.meteoblue.com/en/weather/historyclimate/
climatemodelled/ (accessed on 1 August 2023)).
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