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Abstract: The Long Short-Term Memory (LSTM) neural network model is an effective deep learning
approach for predicting streamflow, and the investigation of the interpretability of deep learning
models in streamflow prediction is of great significance for model transfer and improvement. In
this study, four key hydrological stations in the Xijiang River Basin (XJB) in South China are taken
as examples, and the performance of the LSTM model and its variant models in runoff prediction
were evaluated under the same foresight period, and the impacts of different foresight periods on the
prediction results were investigated based on the SHapley Additive exPlanations (SHAP) method to
explore the interpretability of the LSTM model in runoff prediction. The results showed that (1) LSTM
was the optimal model among the four models in the XJB; (2) the predicted results of the LSTM
model decreased with the increase in foresight period, with the Nash–Sutcliffe efficiency coefficient
(NSE) decreasing by 4.7% when the foresight period increased from one month to two months,
and decreasing by 3.9% when the foresight period increased from two months to three months;
(3) historical runoff had the greatest impact on streamflow prediction, followed by precipitation,
evaporation, and the North Pacific Index (NPI); except evaporation, all the others were positively
correlated. The results can provide a reference for monthly runoff prediction in the XJB.

Keywords: runoff prediction; LSTM model; interpretability; Xijiang River Basin

1. Introduction

Accurate runoff prediction is the foundation for water resources management, allo-
cation, and utilization, which can provide effective scientific support for regional flood
control and drought resistance, the optimization of reservoir scheduling, and the planning
and design of hydraulic engineering [1–3]. The intricate interplay between climate change
and human activities renders runoff formation highly sensitive and results in complex, non-
linear, and non-stationary runoff sequences that pose a significant challenge for accurate
prediction [4]. Therefore, as runoff patterns become increasingly diverse, it remains a criti-
cal focus and challenge in hydrological prediction to explore and develop high-precision
runoff prediction models and innovative methods [5,6].

Currently, models used for runoff prediction can be broadly categorized into two
types: process-driven models and data-driven models [7–11]. A process-driven model
utilizes hydrological cycle analysis and simulation to achieve accurate runoff predictions.
While this model can effectively reveal the physical mechanisms of runoff formation, it
requires extensive and precise hydrological data. Furthermore, challenges related to model
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parameter determination and poor generalizability are common [12]. A data-driven model
predicts runoff by mining the historical data for relationships between driving factors
and target values, offering flexibility in application, remedying the strict requirements of
conceptual and physical hydrological models on watershed hydrological conditions, and
producing satisfactory simulation results [13–15]. As deep learning models continue to
advance and computing power improves, the simulation and forecasting capabilities of
traditional machine learning have been significantly enhanced. With these advancements,
it has become possible to better capture the temporal and spatial structural features in hy-
drological, meteorological, and geographical data [16–20]. Based on a multi-gate structure,
the Long Short-Term Memory (LSTM) network has overcome the problem of vanishing
gradients that are commonly encountered in traditional recurrent neural networks and is
widely used in the field of runoff prediction [21–24]. Numerous studies have shown that the
LSTM model is not only capable of describing the complex precipitation–runoff relationship
of watersheds on a daily scale but also has significant advantages in mining long-term
correlations in time series data, particularly in its excellent performance in flood forecast-
ing [25–29]. Besides its ability to mine long-term correlations, the LSTM model boasts
structural flexibility. By incorporating other model structures into its standard architecture,
such as the Convolutional Neural Network LSTM (CNN-LSTM), Bi-directional LSTM
(Bi-LSTM), and Convolutional Long Short-Term Memory (Conv-LSTM), we can create
hybrid models that achieve even greater accuracy in prediction [30–33]. The CNN-LSTM
model can combine the characteristics of convolutional neural networks and recurrent
neural networks. Barzegar et al. used a CNN-LSTM model to predict water levels in a
lake and achieved good results. Their model was able to accurately predict water levels
up to two weeks in advance, which could be useful for managing water resources and
preventing flooding [34]. Jaseena et al. achieved more reliable and accurate results in wind
speed prediction by using the Bi-LSTM model, which uses a bi-directional transmission
structure and can comprehensively consider the forward and backward connections of the
data [35]. In order to address the problem of spatiotemporal forecasting, a Conv-LSTM
hybrid model has been developed with the advantages of spatial feature extraction and
learning temporal dependencies in sequential data. Ha et al. developed a Conv-LSTM
model to predict the monthly streamflow of the Yangtze River in three flood years [36].
While variant models generated by improving the LSTM model have shown progress in
predicting hydrological phenomena, there is currently a lack of a comprehensive evaluation
of their performance for streamflow predictions in watersheds. The quantification of the
impact of relevant input variables in deep learning-based streamflow simulation, as well
as the interpretation of improved streamflow forecasting performance, are still open ques-
tions that require further investigation. Although deep learning models have shown good
performance in hydrological prediction, their highly non-linear structure makes it difficult
to interpret their predictions, which presents some obstacles to the application of these
models. Currently, most research efforts in the field of machine learning are focused on
improving the predictive performance of deep learning models. However, understanding
the rationale behind their predictions remains a major challenge [37,38]. Most of the runoff
prediction models built based on machine learning are opaque, with black box or gray box
characteristics, and the internal mechanism of the models is unclear. The interpretation is
poor, the influence direction of the feature on the output is not clear, and the visibility of
the importance of the feature is poor [39–42]. Common Feature Importance interpretation
methods include Feature Importance, Feature Effects, and Feature Interactions. And these
have certain applications in hydrology research [43,44]. However, while these methods
play an important role in interpretability, they all have different shortcomings. The recent
emergence of SHapley Additive exPlanations (SHAP) appears to have changed this situa-
tion. SHAP originated from game theory and introduced an additive explanation model,
where all features are considered contributors. The response of machine learning output
to input can be obtained through calculated SHAP values [45,46]. In addition, the SHAP
method has global and local interpretation capabilities, which can provide an explanation
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of the influence of global features, as well as a local explanation for a single sample or
prediction. And the SHAP method has a wide range of applicability, suitable for a variety of
machine learning models, including neural networks, decision trees, etc. These advantages
can make up for the shortcomings of Feature Importance, Feature Effects, and Feature
Interactions. In feature analysis research, SHAP has been proven to be effective in various
fields such as medicine [47], automotive engineering [48], materials science [49], and water
environment [50,51]. However, to our knowledge, only a few studies have applied inter-
pretable machine learning methods to the attribution analysis of hydrological variables.
Moreover, relevant studies have shown that atmospheric circulation is a dominant factor
driving climate and weather changes, as well as a key driver of the water cycle, which has
a certain impact on streamflow [52,53]. Using an atmospheric circulation factor as the input
to the machine learning model not only takes into account the physical factors of runoff
formation but also improves the prediction effect of the model [54,55].

The main objectives of this study are the following: (1) to identify the atmospheric
circulation factors that have the greatest impact on streamflow and analyze the time-lag
effect between historical streamflow, precipitation, evaporation, atmospheric circulation
factors, and streamflow forecasts; (2) to investigate the effects of atmospheric circulation
factors on streamflow changes in the Xijiang River Basin (XJB) from 1961 to 2018 using the
cross-wavelet analysis method; (3) to evaluate the performance of LSTM and its variants in
medium- to long-term streamflow prediction by analyzing the impact of different model
structures on prediction results under different lead times; (4) to enhance the credibility of
the optimal model by conducting interpretability analysis based on SHAP values.

2. Study Area and Data Processing
2.1. Study Area

The Xijiang River is the largest tributary of the Pearl River, which originates from
Maxiong Mountain, Qujing City, Yunnan Province. It flows into the Pearl River Delta at
Sixianjiao, Sanshui, Guangdong Province, with a total length of 2241 km. The main streams
from upstream to downstream are the Nanpan River, Hongshui River, Qian River, Xun
River, and Xijiang River. The Xijiang River is its general name. The drainage area reaches
353,100 km2, 79% of the total area of the Pearl River Basin. The elevation of the basin is
high in the Northwest and low in the Southeast. The Yunnan-Guizhou Plateau is in the
Northwest, hills and basins are in the middle, and a plain delta is in the East. The terrain
of the XJB is complex, and there are significant spatial differences in meteorological and
hydrological elements. Based on this, the XJB is divided into four sub-basins: the Upper
Xijiang River Basin, the Liu River Basin, the Yu River Basin, and the Middle-Lower Xi River
Basin. The hydrological control stations for these sub-basins are Qianjiang (QJ), Liuzhou
(LZ), Guigang (GG), and Wuzhou (WZ), respectively.

2.2. Data Processing

The data used in the study consists of observed runoff and meteorological data from
various stations, as depicted in Figure 1, spanning the years from 1961 to 2018. Among
these, there are missing data for certain months from the LZ station for the period between
1988 and 2000. To address this, missing data for the affected station were interpolated based
on concurrent data from downstream stations. Considering the difference of precipitation
on the windward slope and the leeward slope in spatial interpolation, Yan et al. [56] showed
that the co-Kriging interpolation method of the spherical model and the semi-variance
function was adopted in the spatial interpolation of precipitation in Guizhou Province, and
better results were obtained. This method considered the influence of the terrain and slope
face on precipitation [57]. In addition, the Xijiang River Basin and Guizhou Province have
great geographical similarities. Therefore, the collaborative Kriging interpolation method
was adopted for spatial interpolation through the software ArcGIS10.3. Furthermore, a
rigorous quality control procedure was implemented to ensure data reliability. Regard-
ing atmospheric circulation factors, a set of nine commonly used circulation indices for
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the same period were chosen as potential factors. These indices include Niño-Southern
Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO),
Arctic Oscillation (AO), Atlantic Multi-decadal Oscillation (AMO), Indian Ocean Dipole
Mode Index (DMI), North Pacific Index (NPI), Pacific North American pattern (PNA),
and Sunspot Index (SSI) (https://www.ncdc.noaa.gov/teleconnections (accessed on 12
March 2023)).
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Figure 1. Location of the XJB and selected hydrologic control stations and meteorological stations.

3. Methodology
3.1. Model Introduction

The LSTM model, as a special type of recurrent neural network, is composed of
multiple memory cell structures, each of which is controlled by three “gates” [21]. Figure 2a
shows the structure of an LSTM model’s memory cell, where the forget gate ft determines
the amount of previous cell state information to be discarded; the input gate determines
the proportion of newly acquired information to be stored in the current cell state Ct; and
the output gate Ot determines the final output information at this moment. The specific
formulas are as follows:

ft = σ(W f [ht−1, xt] + b f ) (1)

it = σ(Wi[ht−1, xt] + bi) (2)

C′t = tanh(Wc[ht−1, xt] + bc) (3)

Ct = ft ⊗ Ct−1 + it ⊗ C′t−1 (4)

Ot = σ(Wo[ht−1, xt] + bo) (5)

ht = ottanh⊗ Ctt (6)

where xt is the input vector, ht−1 is the output information of the previous unit state, σ is
the sigmoid activation function, ⊗ represents the vector multiplication, Wf, Wi, Wc, and Wo
are the weight matrices of the neural network, and bf, bi, bc, and bo are the bias vectors.

https://www.ncdc.noaa.gov/teleconnections
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Figure 2. The schematic diagrams of different models: (a) LSTM, (b) CNN-LSTM, (c) Conv-LSTM,
and (d) Bi-LSTM.

In the process of modeling through the software Anaconda2020, by using the method
of controlling variables, five hyperparameters of the LSTM model are calibrated, namely
time step, dropout rate, batch size, number of units in the hidden layer, and epochs.
For each hyperparameter, an initial search space was defined first, and the method of
grid search was used to search each hyperparameter, keeping the other hyperparameters
unchanged. Through the performance evaluation on the test set, the optimal value of
each hyperparameter was selected, other hyperparameters were kept unchanged, the
next hyperparameter was added to the adjustment, and the interaction between different
hyperparamete was considered. The above steps were repeated until all hyperparameters
were calibrated. The final calibration parameters were as follows: time step of 1, batch size
of 128, dropout rate of 0.01, 32 units in the hidden layer, and 100 epochs.

The CNN-LSTM model structure, as shown in Figure 2b, combines the CNN and
LSTM models. The CNN model extracts and integrates data features through two steps of
convolutional kernel pooling, while the LSTM model filters and memorizes the integrated
data features before outputting predictions through a fully connected layer [58]. Compared
to the LSTM model, the CNN-LSTM model has three additional parameters: filters, con-
volution kernel size, and pooling layer, all set at 128, (3, 3), and 1, respectively, with other
parameters being the same as those of the LSTM model.

The Conv-LSTM model structure, as shown in Figure 2c, aims to establish temporal
relationships while characterizing local spatial features. Its internal structure is the same
as that of the LSTM model, with the main difference being the calculation method of the
“gates”, which is through convolutional calculations for Conv-LSTM and matrix calcu-
lations for LSTM [59]. The LSTM model uses one-dimensional input data, which is not
suitable for spatial sequence data, whereas the Conv-LSTM model uses two-dimensional
input data to overcome this limitation. The Conv-LSTM model has the same parameter
types as the CNN-LSTM model, with filters and the convolution kernel size set at 128 and
(3, 3), respectively, and other parameters being the same as those of the LSTM model.

The Bi-LSTM model structure, as shown in Figure 2d, processes any sequence forward
and backward independently using separate hidden layers. The hidden layers integrate
past and future information, giving the Bi-LSTM model the ability to capture data informa-
tion in both directions [35]. In theory, the Bi-LSTM model can better consider the temporal
relationships in runoff data than traditional LSTM models. Apart from the number of
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hidden layer units, the parameter settings for the Bi-LSTM model are the same as those for
the LSTM model. Both sets of hidden layer units are set at 32.

3.2. Wavelet Analysis

The atmospheric circulation is an important factor affecting regional climate change. Its
variations and anomalies can simultaneously or sequentially affect distant regions spatially,
and the resulting correlation is called teleconnection [60]. Based on wavelet transform and
cross-spectrum, the Cross-Wavelet Transform (XWT) method can analyze the multi-time
scale teleconnection relationship between two sequences in the time-frequency domain and
reveal the phase relationship of the two sequences in the high-energy area [61,62]. The spe-
cific principle is as follows: assuming that the two-time sequences are X = {xi|i = 1, 2, . . ., n}
and Y = {yi|i = 1, 2, . . ., n}, their continuous wavelet transforms are WX

n (s) and WY
n (s),

respectively. Then, the cross-wavelet spectrum can be defined as follows:

WXY
n (s) = WX

n (s)WY∗
n (s) (7)

where WY∗
n (S) is the complex conjugate of WY

n (S); and WXY
n (S) is the absolute value of the

cross-wavelet power spectrum.
Although cross-wavelet analysis can reveal the co-localization of two sequences in

the high-energy region, its analytical capability for low-energy regions is insufficient [63].
Hence, in this study, wavelet coherence analysis (WTC) was used for analyzing the tele-
connection relationship between runoff and atmospheric circulation factors through Mat-
lab2021a software. The specific definition is as follows:

R2
n(n) =

∣∣S[s−1WXY
n (s)

]∣∣2
S
[
s−1|WX

n (s)|2
]
· S
[
s−1|WY

n (s)|
2
] (8)

where
∣∣S[s−1WXY

n (s)
]∣∣2 is the cross-product of the fluctuating amplitudes of two time

series at a certain frequency; and S
[
s−1
∣∣WX

n (s)
∣∣2] · S[s−1

∣∣WY
n (s)

∣∣2] is the amplitude of the
oscillating waves of two time series.

3.3. Evaluation Indicators

To evaluate the performance of different models in predicting monthly runoff, in-
dicators such as root mean square error (RMSE), mean absolute error (MAE), and the
Nash–Sutcliffe efficiency coefficient (NSE) were selected to assess the accuracy of the pre-
dictions [64]. As shown in Table 1, Qobs represents the observed values, Qf represents the
predicted values, Qobs represents the mean of the observed values, and n is the number of
observed values.

Table 1. Formulas of evaluation indicators.

Evaluation Indicators Formula Optimal Value

RMSE RMSE =
√

1
n ∑ n

i=1(Q f −Qobs)
2 0

MAE MAE =
n
∑

i=1

∣∣∣Q f −Qobs

∣∣∣/n 0

NSE NSE = 1−
n
∑

i=1

(
Q f −Qobs

)2
/

n
∑

i=1

(
Qobs −Qobs

)2 1

3.4. Interpretable Machine Learning Method

One of the limitations of using machine learning models is their lack of interpretability.
Specifically, SHAP is an interpretable machine learning method based on game theory that
quantifies the impact of each feature on model predictions. By calculating the SHAP value
for each feature, we can understand how each feature affects the output of the model in
a given input case. SHAP visualization tools help us understand the logic behind model



Water 2023, 15, 3184 7 of 21

predictions, providing an intuitive way to interpret complex machine-learning models [45].
The SHAP value for each input variable represents the weighted average of its marginal
contribution. The SHAP method introduces a Shapley Kernel to approximate Shapley
Values, making the calculation feasible. A Shapley Kernel is a weighted kernel function
used to calculate the impact of each feature on the predicted value, and its formula is
as follows:

φi(x, f ) = ∑ S⊆N\{i}
|S|!(|N| − |S| − 1)!

|N|!

[
f
(

xS∪{i}

)
− f (xS)

]
(9)

where x is the input value of the model, f is the ML model; xS represents the feature subset
S of the input value x; f (xS) represents the predicted value of the feature subset S; i is the
feature to calculate the Shapley Value; N is the feature set; f (xS∪{i}) represents the predicted
value of the feature subset S plus feature i; |S| represents the cardinality of the feature
subset S; |N| represents the cardinality of the entire feature set N.

The mathematical formula of the SHAP importance measure is as follows:

Mean (|SHAP value|) = ∑N
i=1|φi(x, f )|

N
(10)

where Mean(|SHAP value|) represents the average of the absolute values of the Shapley values.

4. Results
4.1. Feature Selection
4.1.1. Selection of Atmospheric Circulation Factors

Taking into account the impact of climate change on runoff, atmospheric circulation
factors are introduced to screen out the factors that have a significant impact on runoff,
which are then integrated into the runoff prediction model to further improve its accuracy.
Currently, there are no specific principles to follow for selecting the input features of a
machine learning model. Previous studies have mostly used the correlation coefficient
method, which has yielded relatively good results [65]. In view of this, the Pearson
correlation coefficients between monthly runoff and nine atmospheric circulation factors
with different time delays of 0 to 6 months were calculated, and the factor with the highest
correlation coefficient was selected as the input factor for the model from the circulation
factors that passed the 0.01 significance test, which was the NPI. In general, NPI is the
largest when the delay is 1 month, the Pearson correlation coefficient with a 1-month delay
is shown in Table 2.

Table 2. The correlation coefficient between monthly runoff and atmospheric circulation factors with
a 1-month delay.

Hydrological
Station ENSO PDO NAO AO AMO DMI NPI PNA SSI

QJ 0.026 0.013 −0.029 0.073 −0.032 −0.015 0.512 ** −0.052 0.018
LZ 0.072 0.055 −0.049 0.087 * 0.026 0.024 0.452 ** −0.088 * 0.034
GG −0.021 −0.063 −0.042 0.064 −0.028 −0.026 0.487 ** −0.056 0.008
WZ 0.040 0.024 −0.001 0.098 ** −0.031 0.006 0.517 ** −0.087 * 0.021

Note: ** means that the correlation coefficient passed a two-tailed test at the 0.01 significance level; * means that
the correlation coefficient passed a two-tailed test at the 0.05 significance level.

4.1.2. Delayed Effect Analysis

Given the hysteresis effect of factors on runoff, such as precipitation and evaporation,
as well as the varying time lags in their impact on runoff, it is critical to analyze and select
suitable factors for accurately predicting runoff. The correlation coefficients between precip-
itation, evaporation, the atmospheric circulation factor NPI, and runoff were calculated at
the four hydrological stations of QJ, LZ, GG, and WZ, separately. A correlation coefficient
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greater than 0.3 can pass a 95% confidence level test, as shown in Figure 3. It was observed
that for the QJ station, the 1-month time lag between the historical runoff, precipitation,
evaporation, NPI, and predicted runoff showed the highest correlation coefficients, which
were 0.66, 0.71, 0.70, and 0.51, respectively. For the LZ station, when the time lag between
the historical runoff, precipitation, evaporation, NPI, and predicted runoff was 0 months,
the highest correlation coefficients reached 0.58, 0.79, 0.61, and 0.4, respectively. The time
lag (1 month) in the GG station was the same as that in the QJ station, with the highest
correlation coefficients of 0.62, 0.70, 0.63, and 0.49, respectively. And for the WZ station,
the time lag between the historical runoff, precipitation, evaporation, NPI, and predicted
runoff was also 1 month, with the highest correlation coefficients of 0.65, 0.66, 0.68, and
0.52, respectively. In addition, when the lag time was 3 months, there was a significant
negative correlation between the predicted runoff and various factors. Therefore, based on
the comprehensive lag effect analysis, it was determined that all predictive factors should
have a consistent time lag of 1 month.
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and PR denoting historical runoff, precipitation, evaporation, North Pacific Index, and predicted
runoff, respectively.

4.2. Driving Effect of Atmospheric Circulation Factors on Runoff Change

In order to explore the main driving factors of monthly runoff variations in the XJB
from 1961 to 2018, we adopted a cross-wavelet analysis to further analyze the common
characteristics between the monthly runoff and nine atmospheric circulation factors (ENSO,
PDO, AO, NAO, AMO, DMI, NPI, PNA, and SSI). Different from the Pearson correlation
coefficient method, a cross-wavelet analysis reveals the correlation between two non-
stationary signals in both the time domain and frequency domain, which can provide richer
feature information than a correlation analysis in the frequency domain. In addition, a cross-
wavelet analysis can also reflect the common period between sequences at different scales.
The analysis results are shown in Figures 4 and 5 below. Figure 4 shows the cross-wavelet
transform diagram of the monthly runoff and atmospheric circulation factors of the WZ
station in the low-energy region, that is, in the wavelet condensation spectrum. It can be
seen that there is a significant resonance period with a positive correlation between runoff
and ENSO, which was 128–190 months in 1973–1995. Runoff and PDO had six significant
resonance periods, which were 8–16 months in 1972–1976, 2002–2006, and 2011–2014 with
a positive correlation, and 8–16 months in 1983–1987, 1993–1996, and 1998–2002 with a
negative correlation, respectively. Runoff and NAO had five significant resonance periods,
which were 8–16 months in 1968–1972, and 100–128 months in 1991–2010 with a positive
correlation, and 24–40 months in 1967–1972, 1991–1995, and 2011–2010 with a negative
correlation, respectively. Runoff and AO had two significant resonance periods with a
positive correlation, which were 9–16 months in 1962–1968 and 24–30 months in 1987–1996.
Runoff and AMO had three significant resonance periods, which were 48–64 months in
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1990–2000 and 8–20 months in 2002–2016 with a positive correlation, and 90–120 months in
1985–1998 with a negative correlation, respectively. Runoff and DMI had two significant
resonance periods with a negative correlation, which were 8–16 months in 1968–1972 and
18–40 months in 1964–1975. Runoff and NPI had three significant resonance periods, which
were 8–16 months in 1961–2018, 24–48 months in 2009–2015 with a positive correlation,
and 128–256 months in 1976–2002 with a negative correlation, respectively. Runoff and
PNA had four significant resonance periods with a negative correlation, which were
8–16 months in 1982–1986, 1992–1995, 1998–2003, and 2008–2011. Runoff and SSI had three
significant resonance periods, which were 32–48 months in 1995–2001, 10–16 months in
2002–2016 with a positive correlation, and 110–128 months in 1995–2005 with a negative
correlation, respectively.
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Figure 5 shows the cross-wavelet transform diagram of the monthly runoff and atmo-
spheric circulation factors of the WZ station in the high-energy region, that is, the wavelet
energy spectrum. It is worth mentioning that runoff and teleconnection factors (ENSO,
PDO, NAO, AO, AMO, DMI, NPI, PNA, SSI) also had short-term intermittent oscillation
periods of 8–16 months in 1961–2018, with the NPI having the greatest impact on runoff
and showing a positive correlation.

4.3. Comparative Analysis of Model Prediction Performance
4.3.1. Prediction Performance of Different Models in the Same Forecast Period

To accurately study the predictive performance of different models within the same
forecasting period, the historical runoff, precipitation, evaporation, and atmospheric circu-
lation factors were selected as the input variables, and the predicted runoff was selected as
the output variable. A 1-month time lag was used to capture the temporal variability. To
avoid issues such as overfitting due to limited training data, monthly data from 1961 to
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2010 were used as the training set, while data from 2011 to 2018 were used as the testing set
for model training and evaluation. Figure 6 shows the runoff forecast results in the four
stations of QJ, LZ, GG, and WZ in the XJB. It is worth noting that the predicted runoff in the
four models closely matched the observed runoff, with a consistent overall trend of runoff
variation. This indicated that the employed models had a high accuracy in predicting
runoff, making them viable options for runoff forecasting.
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Figure 7 compares the observed and predicted runoffs obtained from different models
in WZ. It could be seen that all four models demonstrated relatively high accuracy. The
LSTM model had the highest level of fit, with data points tightly clustered around the fitted
line. The other three models (CNN-LSTM, Conv-LSTM, and Bi-LSTM) showed varying
degrees of deviation from the fitted line. Overall, compared with the LSTM model, there
were still some deviations in the prediction results from other models.
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To better visualize the performance of different models in predicting runoff at various
hydrological stations and address the issue where similar a distribution cannot be inferred
from images, several evaluation metrics were introduced to quantitatively assess the
prediction results (Table 3). It was observed that the LSTM model achieved the highest
training accuracy among the four stations in the training dataset, with NSE values ranging
from 0.933 to 0.959, RMSE values ranging from 0.252 to 1.318 (103 m3/s), and MAE values
ranging from 0.137 to 0.869 (103 m3/s). Moreover, the LSTM model exhibited superior
predictive performance in the testing dataset as well, with NSE ranging from 0.950 to
0.960, RMSE ranging from 0.221 to 0.833 (103 m3/s), and MAE ranging from 0.195 to
0.698 (103 m3/s). The NSE value of the CNN-LSTM model was approximately 0.92 across
all four stations, and the Conv-LSTM and Bi-LSTM models exhibited an NSE value of
approximately 0.91 in GG and WZ. Furthermore, the NSE value remained steady at around
0.93 in QJ and LZ. It could be concluded that although the Conv-LSTM and Bi-LSTM models
had good generalization ability, their predictive performance was affected by station data,
and their prediction accuracy at different stations had greater uncertainty compared to
that of the LSTM and CNN-LSTM models. In addition, due to the differences in the actual
runoff at different stations, RMSE and MAE exhibited varying patterns. Among them,
the RMSE and MAE values in WZ were significantly larger than those at the other three
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stations, which was because the WZ station was located downstream of the XJB and to
some extent aggregates the runoff from the other three upstream stations.

Table 3. Evaluation index values of different models at different stations.

Station Model

Training Set Test Set

NSE RMSE
(103 m3/s)

MAE
(103 m3/s) NSE RMSE

(103 m3/s)
MAE

(103 m3/s)

QJ

LSTM 0.944 0.456 0.274 0.950 0.249 0.203
CNN-LSTM 0.921 0.529 0.308 0.920 0.305 0.244
Conv-LSTM 0.920 0.535 0.312 0.939 0.275 0.218

Bi-LSTM 0.927 0.526 0.296 0.942 0.269 0.212

LZ

LSTM 0.959 0.252 0.137 0.960 0.241 0.210
CNN-LSTM 0.925 0.338 0.163 0.926 0.343 0.282
Conv-LSTM 0.929 0.337 0.231 0.925 0.363 0.326

Bi-LSTM 0.916 0.362 0.251 0.926 0.340 0.269

GG

LSTM 0.933 0.405 0.237 0.954 0.221 0.195
CNN-LSTM 0.922 0.416 0.248 0.923 0.286 0.242
Conv-LSTM 0.927 0.415 0.246 0.919 0.296 0.249

Bi-LSTM 0.928 0.412 0.242 0.922 0.288 0.245

WZ

LSTM 0.950 1.318 0.869 0.955 0.833 0.698
CNN-LSTM 0.934 1.439 0.901 0.923 1.060 0.818
Conv-LSTM 0.900 1.695 0.928 0.906 1.197 0.922

Bi-LSTM 0.920 1.460 0.916 0.911 1.153 0.867

In order to enrich the evaluation criteria for different models, Taylor diagrams were
introduced to assess their predictive performance. Firstly, the standard deviation was
normalized to eliminate the problem of varying station data causing differences in magni-
tude (Figures 8 and 9). Based on Figure 8, it was observed that the correlation coefficients
between the predicted and observed runoff values of different models within the training
dataset were consistently above 0.95, which suggested that the prediction results made by
the four models were reliable. Furthermore, taking into account the varying representative
locations of these models across differing stations, it was found that LSTM exhibited the
highest correlation, followed by the CNN-LSTM, Bi-LSTM, and Conv-LSTM models. As
seen in Figure 9, it was evident that the test set exhibited a higher degree of correlation
compared to the training set, which suggested that the model had undergone significant
improvements in accuracy after being trained. Through the above analysis, it can be in-
ferred that among the four hydrological stations in the XJB, the LSTM model outperformed
the other three models in terms of both accuracy and reliability. Moreover, the predicted
results generated by the LSTM model also exhibited the highest degree of correlation with
the observed values.

4.3.2. Prediction Performance of Optimal Model under Different Foresight Periods

According to the previous analysis, it is known that the LSTM model has the highest
accuracy in predicting runoff in the XJB, and the NSE can reach above 0.95 for a 1-month
time lag. To investigate the prediction accuracy of the model under a different forecast
period, the LSTM model was used to predict the monthly runoff with a forecast period of
1–3 months in the XJB (Table 4). In the QJ station, the NSE values for a forecast period of
1–3 months were 0.950, 0.897, and 0.858, respectively, with values decreasing by 5.58% and
4.35%, respectively. In the LZ Station, the NSE values for a forecast period of 1–3 months
were 0.960, 0.901, and 0.863, with values decreasing by 6.15% and 4.22%, respectively. In
the GG Station, the NSE values for a forecast period of 1–3 months were 0.954, 0.889, and
0.859, with values decreasing by 6.81% and 3.37%, respectively. In the WZ Station, the
NSE values for a forecast period of 1–3 months were 0.955, 0.893, and 0.849, with values
decreasing by 6.49% and 4.93%, respectively. It can be inferred from the above analysis that
with the increase of the forecasting horizon, the accuracy of the model tends to decrease
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to some extent. Moreover, the decrease in accuracy was relatively smaller for a 3-month
forecasting horizon than for a 2-month horizon. Additionally, the changing trends of the
RMSE and MAE increased with the decrease in NSE.
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Table 4. Comparison of prediction effect of LSTM model in test set under different foresight periods.

Forecast
Period Error Indicator QJ LZ GG WZ

1 month
NSE 0.950 0.960 0.954 0.955

RMSE (103 m3/s) 0.249 0.241 0.221 0.833
MAE (103 m3/s) 0.203 0.210 0.195 0.698

2 month
NSE 0.897 0.901 0.889 0.893

RMSE (103 m3/s) 0.295 0.274 0.243 1.310
MAE (103 m3/s) 0.266 0.280 0.244 0.832

3 month
NSE 0.858 0.863 0.859 0.849

RMSE (103 m3/s) 0.312 0.290 0.269 1.664
MAE (103 m3/s) 0.297 0.321 0.276 0.920
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4.4. Interpretability Analysis of LSTM Model

According to the predicted results in the models, it can be inferred that the optimal
model was the LSTM. To improve the interpretability of this model, we utilized the SHAP
visualization tool to investigate the importance and the positive and negative effects
of each input feature on the predicted results. The mean SHAP values of each feature
were calculated based on the average of the absolute SHAP values of all samples. The
contribution degree and global impact of input features are shown in Figures 10 and 11.
The contribution degree of input features was generated based on the SHAP value, which
sorts features according to their impact on model output. In this figure, the SHAP value of
each feature represented its relative contribution to the model output. The global impact
graph provided a more macro perspective, showing the overall impact of each feature in
the model on the output. It did not just focus on the impact of a single sample but also
revealed the model’s feature impact changes across the input space. In the input feature
contribution, we could identify the features that had an important impact on the prediction
and then understand why the model made a certain prediction. In a global impact graph,
each data point represented a sample, and the variable points of a feature were arranged
according to the size of the SHAP value. If there are multiple variable points with the same
SHAP value, it means that these features had a similar degree of influence on the model’s
prediction results. The number of variable points with the same SHAP value could reflect
the common impact of features in the overall model, providing us with deeper insight and
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interpretation. As seen in Figure 10, it was evident that the influence of different input
features on the runoff prediction results was consistent throughout the basin. Specifically,
historical runoff had the greatest impact, followed by precipitation, and finally evaporation
and NPI. Figure 11 showed that the historical runoff, precipitation, and NPI had varying
degrees of positive impacts on the predicted runoff, with a positive correlation, while
evaporation had a negative impact on the predicted runoff, with a negative correlation.
In addition, due to the strong spatial heterogeneity within the XJB, the contributions of
meteorological factors, such as precipitation and evaporation, to runoff generation varied
among different sub-basins. The interpretation results were consistent with the actual law
in a certain range, which can further enhance the credibility of the model.
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5. Discussion
5.1. Reasons for Differences in Model Prediction Accuracy

The time scale of the runoff prediction (hour, day, month) should serve water resource
management, such as water resource scheduling, water resource allocation, and flood and
drought disaster prevention. The LSTM and its variant models used in this study, namely
CNN-LSTM, Conv-LSTM, and Bi-LSTM, had achieved good prediction results in other
basins and at different time scales [24,25,36,66–69]. In terms of data sets, the training set
size allowed the models to be trained adequately. First, the training set was large enough in
number to cover the diversity and complexity of the data, and the data set was taken from
real data. In addition, from the results of model training, the index NSE of the training
set and the test set of the LSTM model and its variant models in different hydrological
stations could reach above 0.90, and there was little difference between the two values.
Among them, the LSTM model with the best accuracy can reach the maximum of 0.960
in the test set of the LZ station. The models could achieve excellent performance, and
there was no overfitting or underfitting phenomenon, with a certain generalization ability.
In terms of selecting input variables, historical runoff, precipitation, evaporation data,
and atmospheric circulation factors were chosen as input variables for the models. The
parameters of each model are fully calibrated to achieve the corresponding highest accuracy.
The predictive performances of different models were analyzed, and the results showed
that the LSTM model had a higher prediction accuracy and stability than other variant
models across different stations in the XJB (as shown in Table 3). The possible reasons
for the difference in predictive accuracy among different models are that the CNN-LSTM,
Conv-LSTM, and Bi-LSTM models have made improvements based on the LSTM model,
enhancing their abilities in different aspects. However, this enhancement of ability also has
limitations. As for the aforementioned variant models, the CNN-LSTM model is mainly
used in image processing. In the case of processing different types of data, it requires a
conversion of data format, which limits its ability to perform direct processing [70]. When
processing temporal information, the Conv-LSTM model is parallelly stacked in layers,
and each layer operates independently. However, extracting spatial features may affect
the propagation of temporal information, resulting in a decrease in its ability to process
temporal information and subsequently leading to a decrease in its predictive accuracy [71].
The Bi-LSTM model still cannot transmit the starting point information of a sequence well
for excessively long sequences. In the case of streamflow prediction, when dealing with a
large quantity of data over a long period of time, this limitation results in its relatively low
predictive accuracy [72].

5.2. Uncertainty

There are two main sources of uncertainty in this study. Firstly, there are missing data
for certain months from the period of 1988–2000 in the LZ station. Although these gaps
were filled using downstream station data and underwent rigorous quality control, the
interpolated values may not be completely accurate, which could potentially affect the
model training and prediction results. Secondly, the selection of model parameters directly
affects the prediction results. In this study, the parameters were selected using a controlled
variable approach, and the chosen parameters were within the optimal range. However, it
is unknown whether there are better parameters outside of this range.

5.3. Advantages and Limitations

Global climate change has led to increasingly unpredictable weather patterns, includ-
ing frequent occurrences of extreme flood and drought events, which has brought about
more uncertainty in the prediction of river runoffs. In addition, the accuracy of forecasts is
influenced by uncertain factors such as model structure and input variables. Therefore, it
is crucial to select a suitable set of forecast factors from numerous hydro-meteorological
elements for a given watershed [53,73,74]. In this study, the selection of forecast factors was
primarily based on two considerations. Firstly, early-stage runoff was taken into account
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due to its strong autocorrelation and the assumption that the historical patterns of a runoff
would continue into the future [75]. Secondly, other factors that affect a runoff were also
considered. From the perspective of the runoff generation mechanism, it is known that
the formation process of runoff is mainly influenced by climate factors and underlying
surface conditions in the watershed. Among these factors, climate characteristics, particu-
larly precipitation and evaporation, are the most important factors that affect long-term
runoff changes [76]. Precipitation is the source of runoffs, and its spatial distribution and
amount directly affect the formation of runoffs. Additionally, the magnitude of evapo-
ration affects variations in the amount of runoff [77]. Moreover, the XJB is located in a
monsoon precipitation zone where atmospheric circulation factors have a certain influence
on climate change [78]. Yang et al. indicate that the NPI has a significant influence on the
runoff change in the basin, which supports our research results [79]. Understanding the
predictions made by deep learning models is currently a challenge in the field of machine
learning. Previous studies have mostly failed to explain the reasons behind the model’s
predicted results [80]. In this study, we use a game theory-based global sensitivity analysis
method called the SHAP interpretability method to analyze the contribution of each input
feature to the predicted results, and thus improve the reliability and application value of
the model. Figures 10 and 11 demonstrate that historical runoff has the greatest impact on
runoff prediction, followed by precipitation, evaporation, and NPI, respectively.

This paper proposes the application of LSTM and its variant models in runoff pre-
diction for the XJB. The aim is to provide decision-makers with a convenient and reliable
method for accurate runoff predictions with high predictive accuracy. However, there are
also some limitations in this paper. The hydrological stations selected in this study are
mainly located in the middle and lower reaches of the XJB, and further verification of the
applicability of the model to the entire XJB requires additional hydrological stations.

6. Conclusions

Based on precipitation, runoff, and other data from the XJB from 1961 to 2018, this
paper constructed a runoff prediction model using LSTM and its variant models. Historical
runoff, precipitation, evaporation, and the NPI (an atmospheric circulation factor) were
used as inputs, while the predicted runoff was the output. The optimal model was chosen
based on a comparison of predicted and observed values. The selected optimal model was
then used to analyze the runoff predictions for different foresight periods. In addition,
the SHAP method was employed to analyze the interpretability of the optimal model,
identifying the importance and contribution (positive or negative) of each input feature to
the predicted results. The findings are summarized below:

(1) The NPI is the most influential atmospheric circulation factor affecting the runoff in
the XJB.

(2) When comparing different models with the same forecast period, the LSTM model
had higher NSE results in the QJ, LZ, GG, and WZ, with values of 0.950, 0.960, 0.954,
and 0.955, respectively. These values were higher than those in the other three models
tested at the same stations. Therefore, it can be concluded that the LSTM model is the
optimal choice among the four models used in this study.

(3) With the optimal model, the LSTM model, its prediction results decreased as the
foresight period increased. Specifically, the NSE decreased by 4.7% when the foresight
period increased from one month to two months, and it decreased by 3.9% when the
foresight period increased from two months to three months. This suggested that
although the decrease in the NSE was slow as the foresight period increased, there
was a converging trend of a declining NSE with a longer foresight period.

(4) Based on SHAP values, an interpretability analysis was conducted on the LSTM model.
The results showed that in the XJB, historical runoff had the greatest impact on runoff
prediction results, followed by precipitation, evaporation, and the NPI. Evaporation
was negatively correlated with runoff, while historical runoff, precipitation, and the
NPI were positively correlated.
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