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Abstract: Scouring depends on several factors, including the water flow of artificial obstacles, sections,
piers, and foundations, the disturbance of bed materials, and soil permeability. The other factors are
the non-parallelism between piers and the water flow, the type of river activity (static or dynamic),
and the existence of a waterfall or an obstacle that forms a waterfall in natural bed materials, causing
the underlying bed materials to be washed away. This study fully investigated how the movement of
a tree trunk affects a river’s flow by considering different flow conditions using the artificial neural
network (ANN) model. A feedforward optimal network with the error back-propagation training
algorithm and sigmoid transfer functions was used for four models. To determine the number of
neurons in the hidden layer, one and ten neurons were selected in the hidden layer according to
verification indicators. In addition, a physical model was utilized to measure data. To verify and
test the models, our data were gathered in a laboratory using the physical model. Considering the
network structure of one neuron in the hidden layer, a comparison was made between dimensional
and dimensionless parameter models that are effective in terms of the dimensions of the scour hole.
The comparison between the results of the ANN and the measured data using nonlinear regression
models demonstrated that the ANN was more accurate and capable of simulating phenomena.
Additionally, R and RMSE values were between 0.93 and 0.98, as well as 0.18 and 0.013, respectively.
Finally, the results related to the width, height, length, and depth of the scour revealed that the
modified DOT model had the best agreement with Mahdavizadeh’s measured data.

Keywords: modeling; souring; downstream scour; tree trunk deflector; straight channel

1. Introduction

Scouring is a natural phenomenon caused by water flow on erosive beds in rivers and
channels. Local scour is also a part of the morphological changes of waterways, which
mainly occurs due to various human-made structures. Experiments have shown that
the scouring process can lead to the destruction of aprons and gradually bring about the
conditions that cause the failure of the main structure due to shear failure and seepage of
flow at the end of the protected bed.

Protecting beds against scouring is highly costly, especially for cases in which bed
protection operations must be conducted underwater. Moreover, the length of the bed that
needs protection depends on the allowable amount of scouring. Therefore, predicting the
dimensions of the scour pit is extremely important. The flow where the scouring originates
is a two-phase flow (water and sediment). Thus, the scouring is affected by a variety
of variables, including the flow conditions, characteristics of the alluvial bed, time, and
waterway geometry. Hence, researchers have studied and experimentally investigated
these variables [1].

A large body of research has been conducted on the scouring of protected beds. Amini
and Heydarpour [2] evaluated the similarity of scour profiles downstream of a hydraulic
jump and presented a scour pit in terms of dimensionless profiles. Rajabi et al. [3] examined
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temporal changes in the local scour downstream of hydraulic structures and divided the
development of holes into four stages. Hashemi et al. [4] studied scour development
downstream of a spillway and concluded that there is no similarity between scour pit
profiles. Amini and Mohammad [5] focused on the similarity of scour pits in different
conditions and found that temporal changes in scour depth are exponential. They also
observed that when the Froude number is high, the equilibrium depth of the scour pit is
independent of the particle Froude number. Kashani et al. [6] investigated the downstream
scour of a broad-crested weir with side slopes. They demonstrated that a reduction in
the downstream depth causes a longitudinal expansion of the scouring characteristics.
Moussa [7] concluded that the effect of the downstream depth on scour pit parameters
depends on the value of the particle Froude number based on laboratory results obtained
from the scouring of noncohesive sediment downstream of the apron.

Saber et al. [8], Mahdavizadeh et al. [9], Mahdavizadeh and Lim [10], Ali et al. [11]
and Shen et al. [12] reported that for low heads, the efficiency of a spillway increases with
the increase in the number of spillway openings. Jain and Fischer [13], Froehlich et al. [14]
and Melville and Sutherland [15] showed that having an inlet opening larger than the
outlet opening increases the flow discharge over spillways. Regarding our literature review,
although many relevant papers have been published, few studies have been conducted on
tree trunk deflectors in straight channels so far.

Despite previous investigations in this field, no study, to our knowledge, has ad-
dressed the downstream scour of spillways or provided comprehensive information about
the characteristics of the downstream scour profile of spillways. Considering that less
general criteria have been provided for predicting and controlling scouring in all possi-
ble states, establishing experimental and laboratory relationships is highly useful [16,17].
Meftah and Mossa [18] conducted research on a new approach to predicting local scour
downstream of grade-control structures (GCSs). Their study experimentally focused on
scour hole development downstream of a sloped GCS in alluvial channels. A large series
of laboratory experiments were performed in a rectangular channel with a non-cohesive
sediment bed [18]. Additionally, Meftah et al. published a paper relating to scour holes
and found that anisotropy parameters are at the maximum near both the scour mouth
and the scour bed, caused, respectively, by the grade control structure and sediment ridge
formation, which play fundamental roles in maintaining and enhancing the secondary flow
motion [19]. Furthermore, Meftah et al. [19] found a new scaling of the maximum scour
depth at equilibrium, which was validated using experimental data, satisfying the validity
of a spectral exponent equal to −5.3. The proposed scaling represents quite reasonable
accuracy in predicting the equilibrium scour depth in different hydraulic structures [20].
This study aimed to fully investigate how the trunk movement affects the river flow by
considering different flow conditions.

2. Research Objectives

Scouring studies have a long history in hydraulic science and river engineering. So
far, many studies have addressed scouring downstream and around hydraulic structures
in straight channels. However, the results of these investigations are extremely contradic-
tory. Moreover, the scouring mechanism is considered a complex process due to multiple
contributing factors; therefore, most research in this field is experimental and limited to
estimations of the variables governing this phenomenon. However, due to the existing
conditions and complexities, as well as the lack of a strong relationship responding to
all conditions, it is still of special interest to researchers in hydraulic science and river
engineering fields.

Most previous studies have focused on a single pier in a steady-state flow. The present
research has attempted to investigate various experimental methods and equations to
determine the depth of scour downstream and around hydraulic structures in straight
channels. It has also sought to evaluate the accuracy of these methods in comparison with
the measured data and examine a set of selected artificial intelligence methods, including
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genetic planning and a decision tree. Finally, the results of experimental relationships and
the models will be compared with each other.

The scour downstream of a tree trunk deflector in a straight channel is also a common
problem that has always been a concern for engineers. Predicting the dimensions of this
erosion and its control and reduction methods is one of the subjects that has always been
taken into consideration in the design of these structures. However, despite the predictions
and suggestions of various measures to control the erosion, local or general destruction
occur in these structures after a period of operation, and essential preparations must be
taken to control and prevent the spread of erosion.

In this quantitative research, the applied analytical field method has been used, making
it possible to obtain generalizable results. This method was utilized due to its efficiency in
collecting and arranging the data and the possibility of statistical operations on the data.

To evaluate the validity and accuracy of this model, first, the results are analyzed based
on the data used in model calibration. Then, they are compared with the actual values
measured at the site. Finally, the obtained efficiency and accuracy using the imperialist
competition algorithms will be compared with the valid methods of other researchers.

In this research, first, the determining factors and the necessary information in this
field are collected via a detailed and comprehensive review of the available sources related
to the performance of the scouring process, as well as the recorded field data. Next, the
scouring model is developed based on the determining factors according to the obtained
information. Eventually, the scouring process will be predicted in the expected conditions
using the imperialist competition algorithm and the genetic algorithm. This prediction is
performed by applying the collected field data. It should be noted that MATLAB software
has been employed in this investigation.

To conduct the experiments of this research for the tree trunk deflector model in the
straight channel, a schematic view of the scour hole downstream of the apron, along with
the characteristic parameters of the hole, is shown in Figure 1. The experiments were
conducted in a flume, which was 10 m in length, 0.5 m in width, and 0.5 m in height. The
height of the channel from the floor of the laboratory and the slope of the channel floor
were 1.3 m and 0.001, respectively. In addition, the floor and the walls of the channel were
made of iron and glass, respectively.
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Figure 1. Schematic view of scour hole and its characteristic parameters.

To measure the flow discharge, a metal sharp-edged triangular weir with a 90-degree
vertex angle was used at the end of the downstream basin. This flume was also equipped
with a gate with the ability to control the downstream depth and jump. The length of
the rigid apron was 60 cm, and the depth and length of the sediments were 17 cm and
210 cm, respectively. Sand with uniform gradation (d50) of 1 mm and a standard deviation
of 1.3 was utilized in this research.

The downstream depth was adjusted using the sluice gate installed at the end of the
laboratory flume. At the end of the experiment period (6 h), coincident with the closing
of the end gate, the flow was cut off, and after the complete drainage of the sedimentary
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bed, the bed profile was measured using a depth gauge with an accuracy of 1 mm. The
above-mentioned process was repeated for the next experiment.

3. Dimensional Analysis

The parameters affecting the scour dimensions in the tree trunk deflector in the straight
channel can be written as follows:

f (q, Yt, H, L, N, Wi, Wo, Si, So, W, T, ρw, ρs, g, µ, d50, ds, Ls, Lo, hd, Ld) = 0 (1)

where q, Yt, and H are the flow discharge per unit width of the weir, the downstream depth,
and the height of the water over the weir, respectively. In addition, L and N represent the
length of the weir crown and the number of weir keys, respectively. Further, Wi and Wo
denote the width of the inlet and outlet openings of the weir, respectively, and W is the
total width of the weir. Furthermore, Si and So are the slope of the inlet and outlet keys, and
T represents the equilibrium time. Moreover, g and µ indicate the acceleration of gravity
and the dynamic viscosity of water, respectively. Additionally, ρs, ρw, Ls, Lo, ds, Ld, and hd
are the specific mass of sand, the specific mass of water, the location of the maximum scour
depth, the maximum expansion of the hole, the maximum scour depth, the distance of the
pile from the end of the apron, and the height of the pile, respectively.

Considering that the effect of flow discharge and downstream depth on the scour
downstream of the weir has been investigated in this research, the time factor and constant
parameters are removed, and the equation is summarized as:

ψ = f1(q, Yt, H, ρs, ρw, g, d50, µ) = 0 (2)

where ψ denotes the dimensions of the scour hole. Using Buckingham’s theory, dimen-
sionless parameters effective on the scour phenomenon downstream of the weir were
determined as follows:

ψ

H
= f2

 q√
gH3

,
Yt

H
,

d50

H
,

ρs − ρw

ρs
,

µ

ρq

 (3)

The flow condition in all experiments was turbulent; therefore, the Reynolds num-
ber is removed from Equation (3). By keeping all parameters constant, except for the
flow discharge and downstream depth, two dimensionless parameters affecting the scour
phenomenon at the end of the fixed-length apron were calculated as:

ψ

H
= f3

 q√
gH3

,
Yt

H

 (4)

According to this relationship, the following functions can be presented for the maxi-
mum scour depth, the location of the maximum scour depth, and the length of the scour
hole, respectively:

ds

H
= A

 q√
gH3

,
Yt

H

 (5)

Ls

H
= B

 q√
gH3

,
Yt

H

 (6)

Lo

H
= C

 q√
gH3

,
Yt

H

 (7)

The dependence of parameters in the above relationships can be determined using
laboratory data.
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4. Steps for Determining the Optimal Network for Modeling

Several factors are involved in predicting the dimensions of the scour hole using the
artificial neural network (ANN) model. Some of them are related to the data used and their
initial processing. The method of neural network training is another effective factor. Briefly,
the network modeling steps can be described as follows:

1. Initially, processing input and objective data for training and experimenting.
2. Entering inputs, including input and target, in the MATLAB environment.
3. Building the desired neural network.
4. Entering inputs.
5. Entering objectives.
6. Building a new network.
7. Specifying the type of network.
8. Specifying the education function.
9. Specifying the appropriate learning function.
10. Specifying the execution function.
11. Specifying the number of layers.
12. Specifying the number of neurons in each layer.
13. Specifying the transfer functions in each layer.
14. Initially estimating by neural network according to the specifications defined in the

above-mentioned steps.
15. Simulating the new network according to the specifications defined in the above steps.
16. Identifying that training is the most important stage.
17. Updating the initial weights according to the input and objective information.
18. Obtaining the modified weights and biases in each layer.

The data normalization relationship, the network characteristics used in the models,
the applied verification indicators, and the relationships obtained for each model are
presented in the next section.

5. Initial Data Processing

This section includes the selection of parameters that are effective for the problem, the
selection of appropriate algorithms for training and classification of algorithms, as well as
the normalization of data. The normalization is performed to equalize all parameters used
in the problem.

Considering that the output of the sigmoid transfer function utilized in the back-
propagation algorithm is between zero and one, the output value of the training pairs
should be within the same range. In practice, the input information should be mapped in
the range of 0–1 before it is proposed to the network, which is considered according to the
following rule:

Xl =
(Xl − Xmin)

(XmaxXmax)
(8)

where Xi is the input mapped value. In addition, Xmax and Xmin are the maximum and
minimum values in the range, respectively. In this way, it is guaranteed that the output of
each input neuron will range from zero to one. At the end of the network operations, an
inverse mapping should be conducted according to the above relationship to access the
real outputs of the network.

6. Network Specifications

An optimal network has high training accuracy. In such a network, the received
outputs have a higher correlation with the objectives presented to the network and a lower
mean squared error (MSE). Statistical indicators have been utilized to achieve this objective.
The considered network specifications are provided in Table 1.
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Table 1. Network specifications

Network Type Educational
Function

Learning
Function

Execution
Function

Transfer Function
of First Layer

Transfer Function
of Second Layer

Feed-forward back propagation TrainLM Learngdm MSE Tansig Purelin

Note. MSE: Mean squared error.

According to the functions selected for network modeling, the relationship that can
extract the answer for each input is as follows:

Objective purelin lw ∗ tansig iw ∗ input b1 b2 (9)

7. Verification Indicators

The correlation coefficient and the root mean square error (RMSE) are the verification
indicators that are used in this section. The related relationships are as follows:

Correlation coefficient:
r = ∑ xy√

∑ x2∑ y2
(10)

Root mean square error:

RMSE = (
∑
(
x− y)2

n
)

1
2 (11)

where x = X− X′.
X, X′, Y, Y′ and n are the observed value, the average of observed values, the value

predicted by the network, the average of the values predicted by the network, and the total
number of pairs, respectively. Due to the importance of the scour height in comparison
with the other dimensions of the scour hole in the design of hydraulic structures, SPSS
software was also utilized to evaluate the constructed (prepared) network to estimate the
height of the hole for the last two models (i.e., DOT and modified DOT models).

8. Number of Neurons in the Hidden Layer

Given the mentioned characteristics of the network, first, for one of the models with
variable numbers of neurons, various networks with 1, 2, 5, and 10 neurons in the hidden
layer were randomly considered to determine the number of neurons in the hidden layer
with the TanSig transfer function.

According to verification indicators—namely, the correlation coefficient and the
RMSE—in different networks, it was concluded that an increase in the number of neurons
increases the correlation coefficient while decreasing the RMSE. Based on data in Figure 2,
it was determined from 10 neurons onwards, there is no noticeable difference between the
verification indicators of related networks. On the other hand, an increase in the number of
neurons, even though it increases the accuracy of the problem (which is negligible at about
0.0001), increases the elements of weights and bias matrices obtained in each model that
can, to some extent, create problems for the user.

Therefore, 1 and 10 neurons in the hidden layer were used for network modeling.
In some models, the network with one neuron had suitable accuracy compared to the
network with 10 neurons in the hidden layer because the selected network type, training
and learning algorithms, and transfer function resulted in suitable accuracy for the network.
Hence, due to the negligible change in the results with an increase in the number of neurons
in some models, one neuron seemed to be sufficient for proposing a suitable relationship to
estimate scour dimensions.
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9. First Model (Dimensional Parameters)

As thoroughly explained in previous sections, effective parameters in the formation of
the scour hole are described as follows:

(hs1Ls1ws)− f
(
Q1Tw1g1 I Ig1re1o1t

)
(12)

9.1. Problem Inputs and Data Range

The first model includes dimensional parameters that allow us to estimate the height
(Hc), length, hydraulic radius (Rc), and width of the scour hole. The inputs and data range
are listed in Table 2.

Table 2. Problem inputs and data range in the dimensional model.

Problem Inputs Q Tw Hc Rc t

Data range before normalization 1.02–1.77 6–18 35–65 0.01–0.075 5–300

Problem objectives hs Ls ws

Data range before normalization 0.05–0.2 0.29–1.1 0.27–0.72

9.2. Proposing a Relationship to Estimate the Scour Depth

After the preparation of normalized inputs by the optimal network, the verification
indicators were obtained according to Table 3.

Table 3. Verification indicators of the dimensional model for estimating the depth of the scour hole in
networks with one and ten neurons in the hidden layer.

Verification Indicator For 1 Neuron For 10 Neurons

r 0.888 0.9020

RMSE 0.171 0.16
Note. RMSE: Root means square error.

Figure 3 illustrates the performance of the dimensional model when estimating the
depth of the scour hole in the network with ten neurons in the hidden layer.
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Considering the insignificant difference between the verification indicators of the
networks with one and ten neurons in the hidden layer, the weights and biases of the
network with one neuron are presented for ease of use:

iw −4.7938 0.01147 −2.252 0.96372 0.72361
lw −0.2154
b1 0.94135
b2 0.26149
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9.3. Proposing a Relationship to Estimate the Scour Length

The related verification indicators are presented in Table 4.

Table 4. Verification indicators of the dimensional model to estimate the length of the scour hole in
networks with one and ten neurons in the hidden layer

Verification Indicator For 1 Neuron For 10 Neurons

r 0.779 0.9270

RMSE 0.3 0.263
Note. RMSE: Root means square error.

The verification parameters of the network with ten neurons in the hidden layer were
better than the network with one neuron in the hidden layer; consequently, the weights
and biases of the network with ten neurons are presented as:
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iw 0.13954 −0.34703 −15.5455 −0.26827 0.25136 −43.5149 11.4334 26.5195 36.7548 3.5274
6.0547 2.0094 0.91448 −0.54972 −10.8109
7.8354 1.9898 26.5308 23.2199 −29.5445
2.8142 −1.4457 0.13635 0.14362 −0.044816
4.2529 −0.20599 0.34307 6.9064 0.14279
15.0312 −23.46 −35.6526 6.9185 −4.2878
1.4054 0.0003593 10.5808 9.8189 −0.82246
3.6569 −4.6905 0.35255 −3.4822 0.23934
3.673 7.2103 −9.84 2.8869 −14.0008
lw −5.705 −0.024168 −0.23666 −0.052683 −3.8318
2.4468 −0.039192 0.10734 1.4926 0.25297
b110 × 1−2.4279
3.2261
−3.0193
−31.399
0.32681
−1.0797
14.2966
−12.1405
2.4792
11.8944
b2 −5.6428

9.4. Proposing a Relationship to Estimate the Scour Width

The related verification indicators are provided in Table 5. In addition, the performance
of the dimensional model when estimating the width of the scour hole in the network with
ten neurons in the hidden layer is depicted in Figure 4.

Table 5. Verification indicators of the dimensional model when estimating the width of the scour
hole in networks with one and ten neurons in the hidden layer.

Verification Indicator For 1 Neuron For 10 Neurons

r 0.765 0.8670

RMSE 0.213 0.219
Note. RMSE: Root means square error.
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The verification parameters of the network with ten neurons in the hidden layer were
better than the network with one neuron in the hidden layer; therefore, the weights and
biases of the network with ten neurons are presented as follows:

iw 0.13954 −0.34703 −15.5455 −0.26827 0.25136 −43.5149 11.4334 26.5195 36.7548 3.5274
6.0547 2.0094 0.91448 −0.54972 −10.8109
7.8354 1.9898 26.5308 23.2199 −29.5445
2.8142 −1.4457 0.13635 0.14362 −0.044816
4.2529 −0.20599 0.34307 6.9064 0.14279
15.0312 −23.46 −35.6526 6.9185 −4.2878
1.4054 0.0003593 10.5808 9.8189 −0.82246
3.6569 −4.6905 0.35255 −3.4822 0.23934
3.673 7.2103 −9.84 2.8869 −14.0008
lw −5.705 −0.024168 −0.23666 −0.052683 −3.8318
2.4468 −0.039192 0.10734 1.4926 0.25297
b110 × 1 −2.4279
3.2261
−3.0193
−31.399
0.32681
−1.0797
14.2966
−12.1405
2.4792
11.8944
b2 −5.6428

10. The Second Model (Dimensionless Parameters)

As mentioned in previous sections, using π-Buckingham’s theory, the obtained param-
eters were as shown in Equation (13).

ϕ

Re
= f

(
σl

Q
√

g
(

Rg)2.b ,
t

316
,

Tw

Hn

)
(13)

10.1. Problem Inputs and Data Range (Considering All Analyzed Parameters)

The first model includes dimensional parameters used to estimate the height, length,
and width of the scour hole. The inputs and data range are as shown in Table 6.

Table 6. Problem inputs and data range in the dimensionless model with all input parameters.

Problem Inputs
Q√

g(Rg)2.b
t

316
TH
WG

Data range before normalization 211.4037–40,547.97 0.0158–0.9494 0.0923–0.5143

Problem objectives hs
Ro

ls
Ro

Ws
Ro

Data range before normalization −3337.0–16.666 −3.867–1.667 −766.3–60

10.2. Proposing a Relationship to Estimate the Scour Height

After the preparation of normalized inputs via the optimal network, verification
indicators were obtained according to Table 7. Figure 5 depicts the performance of the
dimensional model in estimating the height of the scour hole in the network with ten
neurons in the hidden layer.
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Table 7. Verification indicators of the dimensionless model for estimating the height of the scour hole
in networks with one and ten neurons in the hidden layer.

Verification Indicator For 1 Neuron For 10 Neurons

r 0.954 0.954

RMSE 0.18 0.101
Note. RMSE: Root means square error.
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Figure 5. Performance of the dimensionless model in estimating the height of the scour hole in the
network with ten neurons in the hidden layer.

Considering that there is no significant difference between the verification parameters
of networks with one and ten neurons in the hidden layer, the weights and biases of the
network with one neuron in the hidden layer are presented as

iw −39.7872 −0.034739 −0.020536
lw −14.9571
b1 −1.9605
b2 −14.3687

10.3. Proposing a Relationship to Estimate the Scour Length

After the preparation of normalized inputs via the optimal network, verification
indicators were obtained based on the data in Table 8. Figure 6 displays the performance of
the dimensional model when estimating the length of the scour hole in the network with
ten neurons in the hidden layer.

Table 8. Verification indicators of the dimensionless model for estimating the length of the scour hole
in networks with one and ten neurons in the hidden layer.

Verification Indicator For 1 Neuron For 10 Neurons

R 0.975 0.977

RMSE 0.261 150.2
Note. RMSE: Root means square error.
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Figure 6. Performance of the dimensionless model when estimating the length of the scour hole in
the network with ten neurons in the hidden layer.

Given that no considerable difference is found between the verification parameters
of networks with one and ten neurons in the hidden layer, the weights and biases of the
network with one neuron in the hidden layer are expressed for ease of use:

iw = [2.7141 1.114] 41,321.0
lw = [0.27514] b1 = [−2.2937] b2 = [0.27265]

10.4. Proposing a Relationship to Estimate the Scour Width

Following the preparation of normalized inputs via the optimal network, the verifica-
tion indicators were obtained according to Table 9. Figure 7 illustrates the data related to
the performance of the dimensionless model when estimating the length of the scour hole
in the network with ten neurons in the hidden layer.

Table 9. Verification indicators of the dimensionless model for estimating the width of the scour hole
in networks with one and ten neurons in the hidden layer.

Verification Indicator For 1 Neuron For 10 Neurons

r 0.96 0.967

RMSE 0.133 720.1
Note. RMSE: Root means square error.

Considering the trivial difference between the verification parameters of networks
with one and ten neurons in the hidden layer, the weights and biases of the network with
one neuron in the hidden layer are presented as follows:

iw = [2.2369 0.74602 −0.070153]
lw = [0.4215] b1 = [−1.7941] b2 = [0.40101]

In the next few sections, a sensitivity analysis of dimensionless parameters has been
conducted to investigate the importance of each input parameter for estimating the dimen-
sions of the scour hole.
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Figure 7. Performance of the dimensionless model when estimating the width of the scour hole in
the network with ten neurons in the hidden layer.

10.5. Problem Inputs and Data Range (Considering the Discharge, Hydraulic Radius, and Time)

This section examines the importance of input parameters in such a way that the
combined (simultaneous) effect of discharge, time, and hydraulic radius is evaluated by
removing a parameter such as the downstream depth. The inputs and data range are listed
in Table 10.

Table 10. Problem inputs and data range in the dimensionless model (considering the discharge
and time)

Problem Inputs
Q√

g(Rg)2.3
T

316

Data range before normalization 211.4037–40,547.97 0.0158–0.9494

Problem objectives hs
Ro

ls
Ro

Ws
Ro

Data range before normalization −3337.0–16.666 −768.3–91.667 −766.3–60

10.6. Proposing a Relationship to Estimate the Scour Depth

After the preparation of normalized inputs by the optimal network, verification indi-
cators were obtained based on the results in Table 11.

Table 11. Verification indicators of the dimensionless model when estimating the height of the scour
hole in the network with one neuron in the hidden layer (Inputs: discharge and time).

Verification Indicator For 1 Neuron

r 0.867

RMSE 0.18
Note. RMSE: Root means square error.

The weights and biases of each layer for one neuron at the first and second layers are
as follows:

iw = [2.0836] 96927.0
lw = [0.43032] b1 = [−1.8341] b2 = [0.42186]
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10.7. Proposing a Relationship to Estimate the Scour Length

After the preparation of normalized inputs via the optimal network, verification
indicators were achieved according to Table 12.

Table 12. Verification indicators of the dimensionless model when estimating the length of the scour
hole in the network with one neuron in the hidden layer (Inputs: discharge and time).

Verification Indicator For 1 Neuron

r 0.972

RMSE 0.261
Note. RMSE: Root means square error.

The weights and biases of each layer for one neuron at the first and second layers are
iw = [2.6707 1.0615]
lw = [0.2766] b1 = [−2.183] b2 = [0.27328]

10.8. Proposing a Relationship to Estimate the Scour Width

Following the preparation of normalized inputs via the optimal network, verification
indicators were obtained based on Table 13.

Table 13. Verification indicators of the dimensionless model when estimating the width of the scour
hole in the network with one neuron in the hidden layer (Inputs: discharge and time).

Verification Indicator For 1 Neuron

r 0.963

RMSE 0.133
Note. RMSE: Root means square error.

The weights and biases of each layer for one neuron at the first and second layers are
as follows:

iw = [−2.3799 −0.84391]
lw = [−0.40819] b1 = [1.9426] b2 = [0.39318]5

10.9. Problem Inputs and Data Range (Considering the Discharge, Hydraulic Radius, Spillage
Height, and Downstream Depth)

In the present and the following sections, the importance of input parameters is
examined in such a way that the combined (simultaneous) effect of discharge, time, and
hydraulic radius is investigated by removing a parameter such as the downstream depth.
The inputs and data range are provided in Table 14:

Table 14. Problem inputs and data range in the dimensionless model (considering the discharge,
downstream depth, and spillage height).

Problem Inputs Q√
g(Rg)2.3

TW
IIg

Data range before normalization −211.4037–40,547.97 −0.5143–0.0923

Problem objectives hs
Ro

ls
Ro

Ws
Ro

Data range before normalization −16.666–0.7333 −91.667–3.867 −766.3–60

10.10. Proposing a Relationship to Estimate the Scour Depth

After the preparation of normalized inputs via the optimal network, verification
indicators were achieved according to the data in Table 15.
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Table 15. Verification indicators of the dimensionless model when estimating the depth of the scour
hole in the network with one neuron in the hidden layer (Inputs: discharge, downstream depth, and
spillage height).

Verification Indicator For 1 Neuron

r 0.931

RMSE 0.142
Note. RMSE: Root means square error.

The weights and biases of each layer for one neuron at the first and second layers are
expressed as

iw = [−6.0657 −3.1513]
lw = [−0.30208]
b1 = [5.3721] b2 = [0.33668]

10.11. Proposing a Relationship to Estimate the Scour Length

Following the preparation of normalized inputs by the optimal network, verification
indicators were obtained based on Table 16.

Table 16. Verification indicators of dimensionless model when estimating the length of the scour
hole in the network with one neuron in the hidden layer (Inputs: discharge, downstream depth, and
spillage height).

Verification Indicator For 1 Neuron

r 0.963

RMSE 0.245
Note. RMSE: Root means square error.

The weights and biases of each layer for one neuron at the first and second layers are
as follows:

iw = [13.5355] 6894.5
lw = [0.2103] b1 = [−10.633] b2 = [0.22864]

10.12. Proposing a Relationship to Estimate the Scour Width

After the preparation of normalized inputs via the optimal network, verification
indicators were achieved according to the results of Table 17. The weights and biases of
each layer for one neuron at the first and second layers are

iw = [−4.1125] 4906.1
lw = [−0.31991]
b1 = [1.3956] b2 = [0.33135]

Table 17. Verification indicators of dimensionless model when estimating the width of the scour
hole in the network with one neuron in the hidden layer (Inputs: discharge, downstream depth, and
spillage height).

Verification Indicator For 1 Neuron

r 0.886

RMSE 0.133
Note. RMSE: Root means square error.

10.13. Regression Model

Most (previous) researchers have utilized empirical relationships to predict the dimen-
sions of the scour hole downstream of hydraulic structures; accordingly, in this paper, the
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nonlinear and dimensionless regression relationships were obtained between the dimen-
sionless parameters of scour hole dimensions using the data set which was utilized to train
the neural network. The coefficients and verification indicators are presented in Table 18.

Table 18. Coefficients and verification indicators of the regression model

Verification Indicators Coefficients
Output Parameter

RMSE R c b a k

1.537 0.845 0.165 0.128 0.4 0.224 hs
Ro

3.181 0.887 0.03 0.102 0.389 0.848 ls
Ro

3.165 0.939 −0.015 0.096 0.393 0.682 ws
Ro

Note. RMSE: Root means square error.

According to the verification indicators in Table 18, the superiority of the neural
network over the regression relationships is evident.

11. The Third Model (Parameters of DOT Relationship)
11.1. Problem Inputs and Data Range (Considering All Analyzed Parameters)

The first model includes dimensional parameters used to estimate the height, length,
and width of the scour hole. The inputs and data range are presented in Table 19.

Table 19. Problem inputs and data range in DOT model (considering all parameters).

Problem Inputs ( Q
Q

√
g(Rg )2.3

)β
( t

316 )θ Ch Cs

Data range before normalization −860.8–−62.677 −685.0–−0.978 1 1

Problem objectives hs
Ro

ls
Ro

Ws
Ro

Data range before normalization −337.3–−91.666 −337.3–−91.666 −456.0–−1.068

11.2. Proposing a Relationship to Estimate the Scour Depth

Due to the importance of scour height in comparison to other dimensions of the
scour hole in the design of hydraulic structures, the SPSS software was used to evaluate
the constructed (prepared) network in order to estimate the height of the scour hole in
two models according to Table 20. In addition, the performance of the DOT model when
estimating the height of the scour hole in the network with one neuron in the hidden layer
is displayed in Figure 8.

Table 20. Verification indicators of the DOT model when estimating the depth of the scour hole in
networks with one and ten neurons in the hidden layer.

Verification Indicator For 1 Neuron For 10 Neurons

r 0.823 0.823

RMSE 0.221 0.222

Test Statistics

tailed Asymp. Sig. 2- 0.94 0.952
Note. RMSE: Root means square error.

According to the above tables, there is no significant difference between the verification
indicators of networks with one and ten neurons in the hidden layer. Hence, only the
weights and biases of each layer for a neuron in the first and second layers are presented
for ease of use:

iw = [2.7332 1.1145] lw = [0.37603] b1 = [−2.5149] b2 = [0.40032]



Water 2023, 15, 3483 17 of 24

Water 2023, 15, x FOR PEER REVIEW 17 of 25 
 

 

Table 20. Verification indicators of the DOT model when estimating the depth of the scour hole 

in networks with one and ten neurons in the hidden layer. 

Verification Indicator For 1 Neuron For 10 Neurons 

r 0.823 0.823 

RMSE 0.221 0.222 

Test Statistics 

tailed Asymp. Sig. 2- 0.94 0.952 
Note. RMSE: Root means square error. 

 

Figure 8. Performance of the DOT model when estimating the height of the scour hole in the net-

work with one neuron in the hidden layer. 

According to the above tables, there is no significant difference between the verifi-

cation indicators of networks with one and ten neurons in the hidden layer. Hence, only 

the weights and biases of each layer for a neuron in the first and second layers are pre-

sented for ease of use: 

iw = [2.7332 1.1145] lw = [0.37603] b1 = [−2.5149] b2 = [0.40032] 

11.3. Proposing a Relationship to Estimate the Scour Length 

After the preparation of normalized inputs via the optimal network, verification in-

dicators were obtained according to Table 21. Figure 9 displays the performance of the 

DOT model when estimating the length of the scour hole in the network with one neuron 

in the hidden layer. Based on the results, the DOT model was proven to be a suitable 

model for determining the height of the scour with one neuron in the hidden layer. 

According to the obtained data, the verification indicators of networks with one and 

ten neurons in the hidden layer are not significantly different from each other. Thus, only 

the weights and biases of each layer for one neuron in the first and second layers are 

provided for ease of use: 

iw = [2.226 ]58187.0 lw = [0.30018] b1 = [−2.0164] b2 = [0.29304] 

  

Figure 8. Performance of the DOT model when estimating the height of the scour hole in the network
with one neuron in the hidden layer.

11.3. Proposing a Relationship to Estimate the Scour Length

After the preparation of normalized inputs via the optimal network, verification
indicators were obtained according to Table 21. Figure 9 displays the performance of the
DOT model when estimating the length of the scour hole in the network with one neuron
in the hidden layer. Based on the results, the DOT model was proven to be a suitable model
for determining the height of the scour with one neuron in the hidden layer.
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Figure 9. Performance of the DOT model when estimating the length of the scour hole in the network
with one neuron in the hidden layer.
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Table 21. Verification indicators of the DOT model when estimating the length of the scour hole in
networks with one and ten neurons in the hidden layer.

Verification Indicator For 1 Neuron For 10 Neurons

r 0.912 0.955

RMSE 0.197 0.196
Note. RMSE: Root means square error.

According to the obtained data, the verification indicators of networks with one and
ten neurons in the hidden layer are not significantly different from each other. Thus, only
the weights and biases of each layer for one neuron in the first and second layers are
provided for ease of use:

iw = [2.226 ]58187.0 lw = [0.30018] b1 = [−2.0164] b2 = [0.29304]

11.4. Proposing a Relationship to Estimate the Scour Width

After the preparation of normalized inputs via the optimal network, verification
indicators were obtained based on the data in Table 22. Moreover, Figure 10 illustrates the
performance of the DOT model in estimating the width of the scour hole in the network
with one neuron in the hidden layer. Regarding the performance of the DOT model, a high
correlation was found between measured and predicted data (r coefficient equals 96%).
Thus, the DOT model could determine the length of the scour hole.

Table 22. Verification indicators of the DOT model when estimating the width of the scour hole in
networks with one and ten neurons in the hidden layer.

Verification Indicator For 1 Neuron For 10 Neurons

R 0.920 0.920

RMSE 0.127 0.127
Note. RMSE: Root means square error.
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Figure 10. Performance of the DOT model when estimating the width of the scour hole in the network
with one neuron in the hidden layer.

According to the above tables, there is no considerable difference between verification
indicators of the networks with one and ten neurons in the hidden layer. Therefore, only
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the weights and biases of each layer for a neuron in the first and second layers are presented
for ease of use:

iw = [2.227] 32157.0 lw= [0.42603] b1 = [−2.0122] b2 = [0.41858]

12. The Fourth Model (Modified Parameters of DOT Relationship by
Mahdavizadeh et al. [9]

As mentioned in previous sections, based on studies conducted by Mahdavizadeh et al. [9],
some modifications were made to the presented DOT relationship, and the most major
modification was related to the Ch coefficient (correction coefficient for dischargers placed
above the bed).

12.1. Problem Inputs and Data Range (Considering All Analyzed Parameters)

The first model includes dimensional parameters for estimating the height, length,
and width of the scour hole. The inputs and data range are listed in Table 23.

Table 23. Problem inputs and data range in the modified DOT model (considering all parameters).

Problem Inputs ( Q
Q

√
g(Rg )2.3

)β
( t

316 )θ Ch Cs

Data range before normalization −860.8–−62.677 −685.0–−0.978 −5238.0–−5.744 1

Problem objectives hs
Ro

ls
Ro

Ws
Ro

Data range before normalization −6685.0–16.666 −337.3–−91.666 0.654–1.068

12.2. Proposing a Relationship to Estimate the Scour Depth

Due to the importance of scour height compared to other dimensions of the scour
hole when designing hydraulic structures, the SPSS software was employed to evaluate
the constructed (prepared) network in order to estimate the height of the scour hole in
two models according to Table 24. Figure 11 depicts the performance of the modified DOT
model when estimating the height of the scour hole in the network with ten neurons in the
hidden layer.
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Figure 11. Performance of the modified DOT model in estimating the height of the scour hole in the
network with ten neurons in the hidden layer
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Table 24. Verification indicators of the modified DOT model when estimating the depth of the scour
hole in networks with one and ten neurons in the hidden layer.

Verification Indicator For 1 Neuron For 10 Neurons

r 0.892 0.99

RMSE 0.174 0.30

Test Statistics

tailed Asymp. Sig. 2- 0.79 0.631
Note. RMSE: Root mean square error.

According to the above tables, the verification indicators for the network with ten
neurons in the hidden layer were considerably better than the network with one neuron in
the hidden layer, and the weights and biases of each layer for the network with ten neurons
are presented accordingly.

The weights and biases of each layer for ten neurons in the first layer and one neuron
in the second layer are as follows:

tw = [−1.8257 1.5218 1.4234− 4.7408 3.225 2.7717 0.8317 0.72259 0.9047 0.7889− 1.6829− 1.1076
−1.2241− 0.34738− 1.3393− 0.90147− 4.2037 0.68638− 0.73127
−2.1551 1.0957 0.48339− 6.8952− 0.5458− 0.09546 1.7343 0.13212
−2.725 2.8264 5.014 ]

b1 = [1.5223 3.1079− 2.2221 0.3562 2.2982 3.2111− 0.38371 6.6135− 1.76− 5.15332 ] & b2 = [−1.5452]

12.3. Proposing a Relationship to Estimate the Scour Length

Following the preparation of normalized inputs via the optimal network, verification
indicators were achieved according to the results of Table 25. Figure 12 illustrates the
performance of the modified DOT model when estimating the length of the scour hole in
the network with ten neurons in the hidden layer.
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the network with ten neurons in the hidden layer.
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Table 25. Verification indicators of the modified DOT model when estimating the length of the scour
hole in networks with one and ten neurons in the hidden layer.

Verification Indicator For 1 Neuron For 10 Neurons

r 0.906 90.9

RMSE 0.158 60.15
Note. RMSE: Root means square error.

According to the obtained data, the verification indicators of the network with ten
neurons in the hidden layer were significantly better than those of the network with one
neuron in the hidden layer, and the weights and biases of each layer for the network with
ten neurons are provided as follows:

tw = [−4.115 1.6064 2.4648 2.708− 0.441 1.34 1.9201 0.30683 0.72145 0.579
−2.9508 0.13616 0.56558 1.8124 0.23374 1.9206− 4.7773− 0.68007− 1.5667 7.1589
−0.62828− 1.885 6.3575− 0.80458− 2.746 2.6796− 0.59437
−1.8491 1.8631 0.67031 ]

b1 = [2.8328− 2.418 0.83235 1.8199− 2.5394− 0.84454− 3.7426− 2.7153− 3.1956− 3.0936 ] & b2 = [0.7289]

iw = [0.0012777 0.0019802 0.074627 0.84902 0.89887 0.072178 1.2967− 0.72109− 0.0089801− 0.087896]

12.4. Proposing a Relationship to Estimate the Scour Width

After the preparation of normalized inputs via the optimal network, verification
indicators were obtained based on Table 26. In addition, the performance of the modified
DOT model when estimating the height of the scour hole in the network with ten neurons
in the hidden layer is shown in Figure 13.
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the network with ten neurons in the hidden layer.

Table 26. Verification indicators of the modified DOT model when estimating the width of the scour
hole in networks with one and ten neurons in the hidden layer

Verification Indicator For 1 Neuron For 10 Neurons

r 0.920 90.9

RMSE 0.06 50.0
Note. RMSE: Root means square error.
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Based on the results of previous tables, the verification indicators of the network with
ten neurons in the hidden layer were noticeably better than those of the network with one
neuron in the hidden layer, and the weights and biases of each layer for the network with
ten neurons are presented accordingly. Moreover, the results show when we increase the
neurons from 1 to 10, although there is good agreement between measured and predicted
data (r values changed from 0.92 to 0.91) when we consider Table 26 as the sample, the
RMSE values represented an extreme increase (from 0.06 to 50). Thus, for all the models,
RMSE highly increases when we increase the neurons. The authors suggested that it is
better to use from one to a maximum of ten neurons with a hidden layer to predict the
phenomena presented in this paper. Finally, the results revealed that, to determine the
width of the scour, the modified DOT model has the best agreement with Mahdavizadeh
et al. [9] measured data. It is recommended that the modified DOT model should be used
to evaluate scour phenomena in downstream of a tree trunk deflector in a straight channel.

tw = [4.7375 1.5235− 1.7657 0.1251− 3.4212− 4.6497− 0.42725− 1.5776
−0.42536 2.1324 0.45629 3.0379 0.084743 1.7028− 5.2973− 0.060602− 2.3278
−3.7748 0.25748− 1.632− 0.17825 2.8168 0.60903 1.7487− 0.50335− 3.7777− 0.026987
−0.069468− 2.3697− 3.5469 ] b1
= [−6.1356 2.8755 2.7369− 5.3774 2.7847 3.7468 2.4404− 1.7452 3.1539 3.6851 ]

iw = [−0.024240− 0.021207− 2.0727− 0.010040 0.013438 0.30770 3.2674 0.0047410− 0.04910− 0.49110]

13. Conclusions

Mahdavizadeh et al.’s [9] laboratory values were used to model the neural network,
and the the DOT relationship was investigated; next, by considering the structure of one
neuron in the hidden layer, a comparison was made between the DOT relationship and
the modified DOT relationship, according to Mahdavizadeh et al. [9]. It was observed that
modified DOT had a higher correlation and a lower MSE for all dimensions of the scour
hole in comparison with the DOT relationship according to data in Tables 27 and 28.

Table 27. Verification indicators for dimensions of the scour hole for one and ten neurons in the
hidden layer for dimensional input parameters.

Input Parameters Number of Hidden Layer Neurons
hs ls ws

r RMSE r RMSE r RMSE

Ql Tw1gl Hg1Rg1σl t 1 0.888 0.171 0.779 0.3 0.765 0.213

Ql Tw1gl Hg1Rg1σl t 10 0.902 0.16 0.927 0.263 0.867 0.219

Note. RMSE: Root means square error.

Table 28. Verification indicators for dimensions of the scour hole for one and ten neurons in the
hidden layer for dimensionless input parameters.

Input Parameters Number of Hidden Layer Neurons
hs
Ro

ls
Ro

Ws
Ro

r RMSE r RMSE r RMSE

1 0.954 0.18 0.975 0.261 0.960 0.133

10 0.954 0.101 0.977 0.251 0.967 0.172

1 0.867 0.18 0.972 0.245 0.963 0.13

1 0.931 0.142 0.963 0.245 0.886 0.133

Note. RMSE: Root means square error.

The comparison of ANN and nonlinear regression models according to Tables 28 and 29
demonstrates a higher accuracy and capability of ANNs in the simulation of the phenomenon.
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Table 29. Verification indicators for dimensions of the scour hole for the regression dimensionless model.

Input Parameters
hs
Ro

ls
Ro

Ws
Ro

r RMSE r RMSE r RMSE

k
((

Q√
g(Rg)2.3 )

a
(

t
316 )

b
(

Tg
w

Hg

))
0.854 1.537 0.887 3.181 0.939 3.165

Note. RMSE: Root means square error.

Despite the superiority of the dimensionless model over the dimensional model, in
the next step, the sensitivity analysis was performed on the dimensionless model and(

Q√
g(Rg)2.3 )

a
(

t
316 )

b were considered as input parameters. Based on the results, the effect

of downstream depth and the spillage height on the height of the scour hole was noticeable
because verification indicators (Table 28) were changed in comparison with the state
that all parameters were considered input parameters. In the next case, considering(

Q√
g(Rg)2.3 )

a
(

Tg
w

Hg

)
the input parameters and relying on the verification indicators (Table 28),

the effect of time on the width of the scour hole was considerably greater than that of the
length and height of the scour hole.

It should be noted that laboratory values reported by Mahdavizadeh [9] were utilized
to model the neural network, and investigations were conducted on the DOT relationship.
Accordingly, the DOT relationship and the modified DOT relationship (presented by Mah-
davizadeh et al. [9].) were compared by considering the structure of one neuron in the hidden
layer. It was observed that the modified DOT has a higher correlation and a lower MSE in all
dimensions of the scour hole compared to the DOT relationship (Tables 30 and 31).

Table 30. Verification indicators for dimensions of the scour hole for one and ten neurons in the
hidden layer for the input parameters of the DOT relationship.

Input Parameters Number of Hidden Layer Neurons
hs ls ws

r RMSE r RMSE r RMSE

1 0.823 0.221 0.912 0.197 0.920 0.127

10 0.823 0.222 0.955 0.196 0.920 0.127

Note. RMSE: Root means square error.

Table 31. Verification indicators for dimensions of the scour hole for one and ten neurons in the
hidden layer for the input parameters of the modified DOT relationship.

Input Parameters Number of Hidden Layer Neurons
hs ls ws

r RMSE r RMSE r RMSE

1 0.892 0.471 0.906 0.158 0.920 0.06

10 0.99 0.03 0.99 0.156 0.99 0.05

Note. RMSE: Root means square error.

Despite the superiority of the modified DOT model, a network with ten neurons in
the hidden layer was constructed (prepared) to provide the relationships to estimate the
dimensions of the scour hole downstream of the tree trunk deflector due to the culvert.
The weights and biases were based on the sigmoid transfer function and the linear transfer
function in the first and second layers, respectively. The whole relationship is as follows:

Objective purelin = lw × tansig iw × input b1 b2 (1-)6
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