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Abstract: The formation of the Jinsha River drainage is a significant subject of concern in the geolog-
ical and geomorphological fields. Among them, one key question is whether there was a regional
paleo lake into which Lower Jinsha River drainage drained during the late Pliocene to early Pleis-
tocene, due to massive fluvio-lacustrine sediments widely distributed in the Lower Jinsha River.
Nevertheless, there has yet to be a consensus on the genesis of those fluvio-lacustrine sediments due
to poor sedimentological and chronological data. In this study, to unravel the origin of those fluvio-
lacustrine sediments and the formation model of the Lower Jinsha River, sedimentary characteristics,
including spatial distribution, lithological composition, and stratigraphic contact relationship of
those fluvio-lacustrine sediments were analyzed, and chronological determination of the fluvio-
lacustrine sediments using Electron Spin Resonance and Optically stimulated luminescence method
was conducted. The results show that in the Lower Jinsha River, the lacustrine sediments are mainly
composed of silt and clay, with apparent horizontal bedding, stacked with fluvial cobble-gravel and
sand, and are in unconformable contact with the underlying bedrock strata or paleo soil. The lacus-
trine sediments are spatially discontinuous and mainly distributed in the Shigu, Taoyuan, Panzhihua,
and Longjie reaches. Downstream of these reaches are deeply incised gorges with an average slope
>30◦, and many landslide landforms and deposits can be identified here. In each reach, the lacustrine
sediments were closely distributed along the trunk and tributary channels in the plane and were
distributed at different altitudes, forming a sequence of lacustrine terraces. Chronological analysis
shows that in different reaches, the deposition ages of lacustrine sediments are significantly different.
In each reach, the deposition age of the lacustrine terraces of high altitude is older than that of low
altitude. The above characteristics collectively indicate that the lacustrine sediments in the Lower
Jinsha River were locally deposited by individual dammed lakes, probably induced by landslide
rather than a regional paleo lake by tectonic activities. During the incision process of the river
valley, landslides continuously block the river channel, forming dammed lakes, and then deposited
lacustrine sediments at different elevations, forming lacustrine terraces. The lacustrine sediment of
the topmost lacustrine terrace in Panzhihua reach was dated to be 1.78 Ma, combined with previous
studies on the fluvial terraces, indicating the Lower Jinsha River existed and started to incise its valley
before the early Pleistocene. The widespread dammed lake sediment indicates that the formation of
the Jinsha River valley follows the pattern of “incision-landslide-damming-aggradation-incision”.

Keywords: lacustrine sediment; terrace; river evolution; Jinsha River

1. Introduction

The formation and evolution of great rivers is a major scientific issue concerning
geomorphology [1]. The Jinsha River, the upper reaches of the Yangtze River, is an essential
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part of the drainage system of the southeast Tibetan Plateau. Its formation and evolution
have been the primary issues concerning geologists and geomorphologists since the begin-
ning of the 20th century because of its peculiar drainage patterns and its significance in
deciphering the history of tectonic uplift [2–10].

In the past twenty years, with the development of chronology and source tracing
technology, there have been more and more research results and controversies on this issue.
However, they mainly focus on the following three aspects. The first aspect is the incision
time of the modern Jinsha River. Many scholars have studied the incision time of the Jinsha
River from different perspectives and based on various methods, but, at present, there are
significant differences in the research results, which range from the late Eocene to early
Pleistocene [11–20].

The second aspect is whether the Jinsha River once flowed southward. Most re-
searchers suggest that the Jinsha River was once a tributary of the south-flowing “paleo
Red River” in the southeastern Tibetan Plateau and eventually flowed to the east by river
capture before Miocene [13,21,22], while some scholars hold the view that there is no
connection between the paleo Jinsha River and paleo Red River [23–25].

The third aspect is whether there was a regional paleo lake into which the Lower
Jinsha River drainage drained during the late Pliocene to early Pleistocene due to massive
fluvio-lacustrine sediments widely distributed in the Lower Jinsha River. However, poor
chronology data and sedimentary analysis of the fluvio-lacustrine sediments led to various
models on the genesis of the fluvio-lacustrine sediments being proposed. One model
thought that the fluvio-lacustrine sediments were deposited by tectonic-related regional
paleo-lake “Xigeda” during Plio-Pleistocene, formed by damming the originally south-
flowing Jinsha River [26] or east-flowing Jinsha River [27,28] due to tectonic activities,
based on the similar sedimentary characteristics and deposited ages. In this model, the
modern Jinsha River flowed eastward and incised down from the lacustrine sediments after
the paleo lake breached at about 1.3 Ma. Another model thought that the fluvio-lacustrine
sediments were deposited by individual dammed lakes induced by landslide, debris, and
glaciation in the Pleistocene, and that no regional paleo lake existed [29–32].

Fluvio-lacustrine sediments preserve the past geologic and climatic records [33], as
well as information about the drainage evolution [20,34]. In this paper, to unravel the
genesis of the fluvio-lacustrine sediments and the formation time and pattern of the Jinsha
River valley in the Lower Jinsha River, field surveys from Shigu to Longjie were conducted
to measure the spatial distribution and sedimentary characteristics of the fluvio-lacustrine
sediments and relative landforms. To determine the depositional model of the fluvio-
lacustrine sediments and formation time of the Jinsha River valley, Electron Spin Resonance
(ESR) and Optically stimulated luminescence (OSL) techniques, which were commonly
used to date the burial age of the Pleistocene sediments in the lacustrine and fluvial settings,
were employed to date the deposition ages of the fluvio-lacustrine sediments.

2. Geological and Geomorphic Setting

The study area is located between 99◦30′ E–103◦30′ N and 25◦30′ N–28◦00′ N (Figure 1)
and belongs to the southeastern Tibetan Plateau, where the landscape is characterized by
well-preserved low-relief surfaces or planation surfaces distributed between the deeply
incised valleys of the Jinsha River and its tributaries [35,36].

Tectonically, the study area is located in the southeastern part of the Chuandian
rhombic block, which is bounded by the sinistral Xianshuihe-Xiaojiag fault system to
the northeast and the central Jinshajiang-Red River fault system to the southwest. The
Chuandian rhombic block is divided into two parts by the NE-SW-trending Yalong thrust
fault system, which was once part of the Longmen thrust fault during the Mesozoic [37,38].
The north part is the Songpan-Ganze terrane, which is mainly composed of strongly folded
and faulted Triassic flysch and volcanoclastic rocks. The south part is the South China
blocks, which consists mostly of less deformed Palaeozoic sedimentary rocks [39]. Overall,
the region lacks Tertiary strata. This region has experienced a complex and protracted
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deformation history during the Mesozoic and Cenozoic [40]. Late Cenozoic to modern
deformation across the southeastern Tibetan Plateau is mainly focused along these large
strike-slip faults. The neotectonic activities are intense, and earthquakes are frequent.

The Jinsha River, originating from the Tibetan Plateau, flows first south parallel with
the Mekong and Salween Rivers in the Hengduan Mountains, then makes a dramatic turn
to northeast at Shigu. After that, it flows through the Yunnan Plateau, deeply incised
into gorges in response to the tectonic uplift during the late Cenozoic, and makes several
dramatic turns at Sanjiangkou, Taoyuan, Panzhihua, Longjie, and Xinshizhen. Finally,
it flows east to enter the middle reach of the Yangtze River at Yibin, forming a strange
W-shaped course. Those sharp turns may be related to river captures or conjugate faults.
Terrain analysis, based on Shuttle Radar Topography Mission data, show that the valley
is deeply incised, with a relief of about 2–3 km from between the plateau surface to the
valley bottom, and that relatively broad valleys existed (Figure 2). The broad valley reaches
from Qizong to Shigu, Zhongjiangjie to Taoyuan, Guanyinyan to Panzhihua, Longjie, and
Menggu to Qiaojia. In these reaches, the valley bottom width exceeds 1 km, the channel
gradient is less than 2‰, and the average valley slope is less than 30◦. In addition, massive
Pliocene to Pleistocene sediments are distributed here (Figure 1). Compared to the wide
valley reaches, the gorge reaches are characterized by relatively narrow valley bottoms,
steep channel profiles, and steep valley slopes. In the gorge reaches, paleo landslide and
debris landform and depositions are common. This catastrophic process plays a vital
role in shaping river valley landforms [41,42]. The dammed lake formed by landslides or
debris can cause river aggradation of the upstream channel, hinder the river incision and
headward erosion, and the extreme flood formed after the dammed lake breaks can cause
intense erosion of the downstream river channel.
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Figure 2. Morphology of the Jinsha River valley from the Qizong to Yibin. (A) River longitudinal
profile and relief distribution along the Jinsha River. (B) Channel slope of the Jinsha River. (C) Valley
bottom width of the Jinsha River. (D) Average valley slope along the Jinsha River.

3. Samples and Methods
3.1. Field Work

In the Jinsha River valley, fluvio-lacustrine deposits and landforms are widely devel-
oped. In this study, we chose reaches from Shigu to Longjie for investigation. Sedimentary
characteristics and valley landforms, including river terraces and landslide, were described
in detail in the field. The sedimentary strata’s thickness and the fluvial gravel’s size were
measured by measuring ruler. The thickness of the fluvial gravel layer was measured from
the top layer to bottom layer, and the size of fluvial gravel was obtained by measuring the
average of its major and minor axes. A handheld high-resolution global positioning system
directly measured the latitude, longitude, and altitude of the sampling location and the
height of the terrace surface.

3.2. Dating Method

The geochronological framework for fluvio-lacustrine sediments and relative land-
forms is crucial regarding the river incision and aggradation process and the evolution
history of the Jinsha River. In this study, we selected Electron Spin Resonance (ESR) and
Optically Stimulated Luminescence (OSL) as our dating methods to measure the deposition
time of the fluvio-lacustrine sediments [43–46]. These two methods have been commonly
used to date the Pleistocene sediments in the lacustrine and fluvial settings because they
both directly date the quartz grains of which such sediments are often composed and
measure the depositional age at which quartz was buried in Quaternary sediments after the
last exposure. The ESR and OSL have an age range of up to around 2.5 Ma and 200 ka, re-
spectively. So, we use ESR to date the older sediments and OSL to date younger sediments.
ESR samples were collected from the sand layer or the fluvial gravel layer that contains
sand. OSL samples were collected from the sand or silt layers in the lacustrine sediments.
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For ESR dating, 30 cm surface material was first scraped out at the sampling sites
in order to make a fresh exposed surface. Then samples were collected from this fresh
surface, ensuring shielding from direct sunlight because, when samples were exposed
to sunlight or mixed with materials that were deposited later, the dating age will be
underestimated. In the laboratory, the samples were partitioned into two aliquots. The
first aliquot was subjected to dehydration at a controlled temperature of 50 ◦C for the
purpose of quantifying its water content. Subsequently, this dehydrated portion was finely
pulverized to yield silts with particle sizes smaller than 0.074 mm. The silt particles were
then subjected to rigorous analysis at the Beijing Research Institute of Uranium Geology
to determine the concentrations of uranium (U), thorium (Th), and potassium (K) using
laser fluorescence, colorimetric spectrophotometry, and atomic absorption techniques,
respectively. The second aliquot was sieved with water to extract grains with diameters
between 100 and 140 µm. Sieved grains were soaked in H2O2 for 48 h to remove organic
material, then soaked in 6 M HCl for 48 h to remove carbonate and disperse the grains. After
soaking, the sample was etched in HF for 6 h, and then purified with water and dried under
40 ◦C. After magnetic separation, quartz grains were divided into 10 subsamples (about
300 mg each). The aliquots received additional gamma doses ranging from 0 to 6000 Gy
using a 60Co source. The quartz E’ and Ge center ESR signal intensity was measured by
EMX Bruker X-band spectrometer at room temperature, with the following specifications:
X-band, microwave power 0.2 or 2.0 mW for E’ and 2.0 mW for Ge, modulation amplitude
0.1 mT. The samples were measured three times in different directions to obtain the average
intensity. The equivalent dose (DE) values and their errors were determined from the
dose-response data, fitted with a single saturating exponential (SSE) function using the
protocol and the software described by Yokoyama et al. (1985) [47] if the data show
exponential change or fitted with a linear equation if the data show linear change. The
dose determination was completed in the State Key Laboratory of Earthquake Dynamics,
Institute of Geology, China Earthquake Administration. The contributions of α-radiation
were neglected because most of the outer layers of the quartz grain had been removed by HF.
The error of the ESR age is mainly obtained through estimation methods, and is generally
below 15%, mainly from errors in total dose and environmental dose measurement.

Samples for OSL dating were collected from field profiles using 35 cm steel tubes
after thorough cleaning. In the laboratory, the samples underwent a series of treatments to
eliminate carbonate and organic matter. Specifically, 10% HCl and 30% H2O2 were applied
to remove carbonate and organic matter, respectively [48]. Medium or coarse-grained
fractions (ranging from 38–63 µm or 90–150 µm) were obtained through sieving. The
medium-grained fractions underwent a two-week etching process with 35% H2SiF6 to
remove feldspars. For the coarse-grained fractions, heavy liquids were used to separate
quartz, followed by etching with 40% HF for 1 h. Fluorites were eliminated by rinsing the
samples with HCl. Finally, the purity of the separates was verified using infrared diodes.

The OSL measurements were conducted at the Luminescence Dating Laboratory of
the Qinghai Institute of Salt Lakes. An automated Risø TL/OSL-DA-20 reader, which was
produced at the Risø Laboratory (Roskilde, Denmark), was used for OSL signal measure-
ments. As the measurement system is highly sensitive and includes a reference radiation
source, it is widely used for determining radiation doses in natural and artificial materials
with applications in geological and archaeological dating. DE determination in this study
was carried out using both the Single Aliquot Regenerative (SAR) protocol [49] and the
Standard Growth Curve (SGC) method [48,50]). Optical measurements were conducted
after applying a heating step at 260 ◦C for 10 s for natural and regenerative doses, and a
preheating step at 220 ◦C for 10 s for test doses [48]. The concentrations of uranium (U),
thorium (Th), and potassium (K) in each sample were determined through neutron activa-
tion analysis (NAA). The environmental dose rate was assessed by applying the conversion
relation established by Aitken (1985) [51] between the elemental concentrations (U, Th,
and K) and the dose rates corresponding to different minerals. To account for variations
in sample composition, the efficiency of the total dose rate was adjusted considering the
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density of quartz and the paleowater content specific to each sample. The water content
was derived by calculating the ratio of the weight of water to the weight of the dried sample.
The accuracy of OSL dating is 5–10%.

4. Results
4.1. Spatial Distribution and Sedimentary Characteristics of the Fluvio-Lacustrine Sediments

In the Jinsha River valley, fluvio-lacustrine sediments are widely distributed, mainly
on the relatively flat valley slopes on both sides of the trunk and tributaries of the Jinsha
River, overlying on the bedrock, ancient soil, weathered crust, river alluvial, or alluvial
deposits. The fluvio-lacustrine sediments are mainly comprised of gray, grayish blue,
grayish yellow, and brownish yellow silt and clay, locally mixed sand and gravel, and
well-developed horizontal bedding or laminae. Unlike the scattered and narrow river
terraces in the river valley, the top surface of lacustrine deposits is flat and wide, gently
tilting towards the river and extending upstream and downstream for a certain distance,
forming a stepped terrain in the valley. In order to distinguish these terraces from the river
terraces, they are referred to as lacustrine terraces in this article. Unlike the river terrace,
which is is formed by fluvial incision and aggradation, the lacustrine terrace here is formed
by lake depositing processes, and the terrace surface represents the paleo-lake bottom. They
form a stepped terrain in the valley with river terraces, alluvial fans, and other landforms.
Although the spatial distribution of lacustrine sediments is vast, the distribution along
the river is not continuous, manifested as a beaded distribution. Among them, in the
lower reaches of the Jinsha River, these lacustrine sediments are mainly distributed in the
Shigu reach, Taoyuan reach, Panzhihua reach, Longjie reach, and Qiaojia reach. Of course,
small amounts of lacustrine deposits are scattered between these reaches. Based on our
investigation results of the Shigu reach, Taoyuan reach, and Panzhihua reach, combined
with previous research results, we will describe the spatial distribution and sedimentary
characteristics of lacustrine sedimentation and lacustrine terraces below.

4.1.1. Shigu Reach

In the Shigu reach, lacustrine sediment is mainly composed of gray, grayish blue,
grayish yellow, and brownish yellow silt and clay, with locally mixed sand and gravel, and
well-developed horizontal bedding or laminae (Figure 3). This set of lacustrine sediments
can be traced upstream from Hutiao to Qizong. On the eastern valley profile of the Jinsha
River near Qiping, one lacustrine terrace developed, with an extensive terrace surface that
gently slopes towards the river. The altitude of the terrace surface is between 1870–1840 m.
On the western profile, four fluvial terraces were reported to have developed on the
lacustrine sediments. The height of those fluvial terraces were 43 m (T4), 25 m (T3), 20 m
(T2), and 10 m (T1) above the modern riverbed, respectively [52]. In the Tiger Leaping Gorge
immediately downstream of the Hutiaoxiao Vallege, the valley slope is in excess of 60◦, and
several colossal landslides characterized by round chair terrain can be identified. As such,
the lacustrine sediments in this reach may have been deposited by a landslide-dammed
lake. When the lake breached, the river incised the lacustrine sediments, forming four river
terraces on it. In addition, nearby at Qizong, the upstream terminal of lacustrine sediments
distribution, a set of fluvial gravel layers of a thickness of about 10 m was deposited on the
valley (photo b in Figure 3), implying an intense aggradation event here. This aggradation
event was possibly caused by the base level rising due to dammed lake formation.



Water 2023, 15, 3613 7 of 19Water 2023, 15, x FOR PEER REVIEW 7 of 19 
 

 

 

Figure 3. Lacustrine sediment and field photos in Shigu reach of the Jinsha River. (A) spatial distri-

bution of the lacustrine sediment. (B) lacustrine sediment and lacustrine terrace at Qiping. LS: La-

custrine sediment; FS: Fluvial sand. 

4.1.2. Taoyuan Reach 

In the Taoyuan reach, the lacustrine sediments are mainly composed of light yellow, 

grayish-yellow silt, and silty clay. Due to the infiltration of red paleo-soil and weathered 

crust, some areas appear reddish brown (photo a in Figure 4). The horizontal bedding of 

lacustrine sediment is developed, and the surface of lacustrine terraces is slightly inclined 

towards the river. Near Liujia Village on the west bank of the Jinsha River, the exposed 

profile shows that this set of lacustrine sediment directly overlies the fluvial gravels, and 

there is a set of fluvial sand and gravel lenses mixed in the lacustrine sediment (photo b 

in Figure 4). The fluvial gravel is well-rounded and has particle size of 5–10 cm. The la-

custrine sediments can be traced continuously from Zhaizicun downstream to 

Zhongjiangjie upstream, with a length of about 46 km along the river. The lacustrine sed-

iments are distributed along the trunk and tributary valleys of the Jinsha River and pre-

sents a dendritic shape on the plane (Figure 4A). The lacustrine sediments are distributed 

at an altitude of 1500–1180 m, forming a broad terrace landform on both sides of the chan-

nel. On the north bank of the river near Taoyuan, three lacustrine terraces developed (Fig-

ure 4B), with a tread height of 150–120 m (T3), 90–70 m (T2), and 20 m (T1) above river 

level, respectively. The lacustrine sediment of T2 and T1 all overlap on the fluvial gravel 

layer (photo c in Figure 4). At Zhaizicun, immediately downstream of the lacustrine sedi-

ments, huge damming landslides can be identified [53]. As such, we infer that lacustrine 

sediments in the Taoyuan reach were deposited by a dammed lake induced by landslides 

at Zhaizicun. Three lacustrine terraces imply that there are three river damming events in 

different epochs. 

Figure 3. Lacustrine sediment and field photos in Shigu reach of the Jinsha River. (A) spatial
distribution of the lacustrine sediment. (B) lacustrine sediment and lacustrine terrace at Qiping.
LS: Lacustrine sediment; FS: Fluvial sand.

4.1.2. Taoyuan Reach

In the Taoyuan reach, the lacustrine sediments are mainly composed of light yellow,
grayish-yellow silt, and silty clay. Due to the infiltration of red paleo-soil and weathered
crust, some areas appear reddish brown (photo a in Figure 4). The horizontal bedding of
lacustrine sediment is developed, and the surface of lacustrine terraces is slightly inclined to-
wards the river. Near Liujia Village on the west bank of the Jinsha River, the exposed profile
shows that this set of lacustrine sediment directly overlies the fluvial gravels, and there is a
set of fluvial sand and gravel lenses mixed in the lacustrine sediment (photo b in Figure 4).
The fluvial gravel is well-rounded and has particle size of 5–10 cm. The lacustrine sediments
can be traced continuously from Zhaizicun downstream to Zhongjiangjie upstream, with a
length of about 46 km along the river. The lacustrine sediments are distributed along the
trunk and tributary valleys of the Jinsha River and presents a dendritic shape on the plane
(Figure 4A). The lacustrine sediments are distributed at an altitude of 1500–1180 m, forming
a broad terrace landform on both sides of the channel. On the north bank of the river near
Taoyuan, three lacustrine terraces developed (Figure 4B), with a tread height of 150–120 m
(T3), 90–70 m (T2), and 20 m (T1) above river level, respectively. The lacustrine sediment
of T2 and T1 all overlap on the fluvial gravel layer (photo c in Figure 4). At Zhaizicun,
immediately downstream of the lacustrine sediments, huge damming landslides can be
identified [53]. As such, we infer that lacustrine sediments in the Taoyuan reach were
deposited by a dammed lake induced by landslides at Zhaizicun. Three lacustrine terraces
imply that there are three river damming events in different epochs.
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4.1.3. Panzhihua Reach

In the Panzhihua reach, lacustrine sediments are mainly composed of light yellow
and gray clay, silt, and fine sand, with apparent horizontal bedding. In terms of spa-
tial distribution, this set of lacustrine deposits can be traced upstream from Lazha to
Guanyinyan, mainly developing along the valleys of the trunk and tributaries of the Jinsha
River (Figure 5). For example, lacustrine sediments are very developed in the tributary
basins of the Tangba River, Dahe River, Bara River, and Yanyang River. Overall, the distri-
bution of lacustrine sediments is closely related to the river channels, exhibiting a dendritic
distribution pattern on the plane. Lacustrine sediments are distributed below an altitude of
1600 m, forming staircase terraces in the valley.

Near Guanyinyan, three terraces composed of lacustrine deposits can be seen on the
west bank of the Jinsha River (Figure 6), with tread heights of 121 m (T3), 114 m (T2), and
17 m (T1) above riverbed level, respectively. Among them, the surface of T3 and T2 are
extensive, reaching tens of meters. The terrace surface gently tilts towards the river, and
a set of fluvial gravels overlay on the lacustrine deposits (Figure 6). The gravel has good
roundness and complex lithology, with a particle size of 5–30 cm and a thickness of 2–3 m.
No fluvial gravel was found on T1. In the tributary Tangba River basin, lacustrine deposits
occur everywhere. At the Wanzitou, a lacustrine terrace can be seen. The height of this
terrace tread is about 182 m above the riverbed level of the Jinsha River. On this terrace,
fluvial gravels overlay on the lacustrine deposits. At the Jingtang, not far downstream of
Guanyinyan, a set of grayish yellow lacustrine sediments can be seen directly overlying
on the fluvial gravels; the top surface of the lacustrine sediment is about 308 m above the
modern riverbed (photo b in Figure 5).



Water 2023, 15, 3613 9 of 19

On the river valley near Bingcaogang, lacustrine sediments are continuously dis-
tributed on the profile, forming seven lacustrine terraces (Figure 6). The surface heights of
those terraces are about 470 m (T7), 430 m (T6), 360 m (T5), 300 m (T4), 250 m (T3), 220 m
(T2), and 180 m (T1), respectively. The study by Zhao et al. (2008) [54] showed that the
lacustrine sediments in the area were covered with fluvial gravels. However, we did not see
these fluvial gravels during field investigations, which may have been damaged by later
urban construction. Despite this, a set of fluvial gravels underlies the lacustrine sediments
of T1. The exposed thickness of this set of fluvial gravels is about 3 m, with good roundness
and a particle size of about 5–30 cm.

In the tributaries of the Bara River and Yanyang River basins, lacustrine sediments
are widely distributed. On multiple outcrop profiles, lacustrine sediments can be seen
overlying fluvial gravels, red weathered crust, ancient soil, or granite bedrock. Among
them, on the river valley profile near Sanduizi, five lacustrine terraces developed, with
surface heights of about 530 m (T5), 400 m (T4), 350 m (T3), 240 m (T2), and 170 m (T1)
above the modern riverbed, respectively. Lacustrine sediment of T5 directly overlays the
granite bedrock. A layer of fluvial gravel is sandwiched in the lacustrine sediment of T1,
with a thickness of about 2–3 m, good roundness, and complex lithology (Figure 6). On the
valley profile at Lazha, three lacustrine terraces developed (Figure 6). The heights of those
terraces are 730 m (T3), 500 m (T2), and 175 m (T1) above riverbed level, respectively.
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Many ancient and modern landslide landforms can be seen downstream of this reach.
As such, we inferred that the lacustrine sediments were landslide dammed lake sediments.
The sedimentary characteristics of the lacustrine deposits in this reach suggest that the
Jinsha River was dammed at least seven times with the valley incision in the geologic
history. When these ancient dammed lakes breached, the river incised down from the
lacustrine sediments, forming river terraces.

4.1.4. Longjie Reach

In the Longjie reach, lacustrine sediment is mainly composed of grayish black, grayish
white, grayish-yellow silt, and clay, with obvious horizontal bedding. This set of lacustrine
sediment is mainly distributed in the Longjie Basin and is generally exposed on both sides
of the Longchuan River north of Yuxian (Figure 7A). The lacustrine sediment unconformity
overlies the red Yuanmou Formation strata (Figure 7B). Four river terraces are developed
on the lacustrine sediment at the intersection of the Longchuan River and Jinsha River
(Figure 7C). In the downstream reach, the valley slope is in excess of 30◦, and several
huge landslides characterized by round chair terrain can be identified; these include the
Baimakou landslide, which was reported to have dammed the Jinsha River. As such, we
think that the lacustrine sediments in this reach may have been deposited by a landslide
dammed lake. When the lake breached, the river incised the lacustrine sediments, forming
four river terraces on it.
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Figure 7. Lacustrine sediment and field photos in Longjie reach of the Jinsha River. (A) Spatial
distribution of the lacustrine sediment, red line showing the profile location in Figure 7C. (B) The
relationship of the lacustrine sediment (Longjie Group) and the Yuanmou Group. (C) Profiles and
photos showing the lacustrine sediments and lacustrine terraces at Longjie.

4.2. Dating Results

Due to the fine grain size of lacustrine sediments, we did not extract enough quartz
grains between 100 and 140 µm for ESR dating in many samples; as such, we only received
six reliable ESR ages. The ESR signal spectrum of typical samples shows clear E ‘centers
(g = 2.001) and Ge centers (g = 1.9770) (Figure 8A). The additional irradiation dose response
curve shows an exponential increase in the response of signal intensity to dose, and the
curve is well fitted with a goodness of fit parameter (R2) greater than 0.98 (Figure 8B). By
using an exponential equation to fit and extrapolate until the ESR signal strength is zero,
the Paleodose (AD) of the sample can be calculated. The measured AD of the samples are
between 1188–6035 Gy (Table 1), and the AD of most samples are less than the maximum
irradiation dose of 6000 Gy, meeting the irradiation dose requirements for ESR dating.
The annual dose (d) was calculated based on the content of U, Th, and K using Bell’s
formula. Due to the surface of quartz particles having already been eroded when removing
feldspar, the contribution of α radiation can be ignored. Then, d was adjusted by the water
content. Finally, the ESR age (t) of the samples were calculated using the formula t = AD/d.
Considering all parameters, the total error of the ESR ages was estimate to less than 15%.
There are many influencing factors for ESR dating, and it is necessary to combine with
other dating methods results to verify the credibility of ESR dating result. By comparing
the ESR age (1416± 98 ka) of the T7 lacustrine sediment in Bingcaogang with the burial age
of cosmogenic nuclides (1530 ± 140 ka) of the lacustrine sediment at the same height [26],
it was found that the difference between the two is not significant, indicating that the ESR
dating results of the sample in this study are relatively reliable. The ESR dating results are
shown in Table 1 and in Figures 4 and 6.
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Figure 8. Typical ESR spectrum and additional dose-response curves of a quartz sample. (A) ESR
spectrum of sample PZH02, showcasing the characteristic signals within the spectrum; (B) Additional
dose-response curve of sample PZH02, showing the relationship between the received dose and the
corresponding ESR signal intensity.

Table 1. ESR sample information and analysis data.

Sample
No. Sampling Site Altitude

(m) Dating Material U
(µg/g)

Th
(µg/g)

K2O
(%)

Water
Content (%)

Equivalent
Dose (Gy/ka)

Paleodose
(Gy)

Age
(ka)

PZH01 T7 at Bingcaogang 1335 Lacustrine sediment 1.35 9.20 1.62 2.80 2.65 3751 ± 260 1416 ± 98
PZH02 T1 at Bingcaogang 1047 Fluvial sand 1.42 6.33 1.56 8.25 2.27 1188 ± 208 523 ± 92
PZH03 T5 at Sanduizi 1435 Lacustrine sediment 1.76 12.9 2.34 9.34 3.39 6035 ± 231 1780 ± 68
PZH04 T1 at Sanduizi 1075 Fluvial sand 1.46 9.85 2.23 8.87 3.05 3673 ± 551 1204 ± 181
PZH05 Wanzitou 1208 Lacustrine sediment 1.61 13.7 1.94 9.00 3.09 3175 ± 349 1028 ± 113
PZH06 T3 at Guanyinyan 1140 Fluvial sand 1.87 13.6 2.10 12.56 3.13 2881 ± 331 921 ± 106

The OSL decay curves for sample SHG, as illustrated in Figure 9A, exhibit a rapid
decrease in the OSL signals within the first second of stimulation, indicating the dominance
of the fast component in the OSL signal. The recuperation of the signal in the absence
of dose is found to be below 5% for all samples. Additionally, the recycling ratios for all
aliquots fall within the acceptable range of 0.9–1.1. Figure 8B displays the growth curves
of four individual aliquots and the Single Grain Characteristics (SGC) curve for sample
SHG. None of the four growth curves reach saturation up to a dose of 48 Gy and can be
accurately fitted using an exponential plus linear function. The OSL dating results are
presented in Table 2 and are also depicted in Figures 3 and 6.
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Figure 9. (A) The typical OSL shine-down curves of quartz grains, including the natural signal (N),
test signal (TD), and regenerate signals at 0 Gy, 48 Gy, and 160 Gy. (B) The growth curves of quartz
grains. N is natural signal, TD is test signal, 0 Gy, 48 Gy, and 160 Gy are regenerate signals along with
the average growth curve represented by a heavier line with empty circles.
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Table 2. OSL sample information and analysis data.

Sample
No.

Sampling Site Altitude
(m) Dating Material K

(%)
Th

(ppm)
U

(ppm)

Water
Content

(%)

Dose Rate
(Gy/ka)

De
(Gy)

Age
(ka)

SHG T1 at SHG 1850 Lacustrine sediment 1.94 ± 0.05 15.20 ± 0.40 2.79 ± 0.10 10 ± 5 3.50 ± 0.23 108.57 ± 3.09 31 ± 2.2
LZ T1 at Lazha 1025 Lacustrine sediment 1.80 ± 0.05 12.6 ± 0.34 3.29 ± 0.11 8 ± 5 3.32 ± 0.22 84.00 ± 4.54 25.3 ± 2.2
TY T3 at Taoyuan 1298 Lacustrine sediment 1.56 ± 0.05 14.2 ± 0.37 2.54 ± 0.10 10 ± 5 2.91 ± 0.20 225.63 ± 7.32 77.5 ± 5.8

5. Discussion
5.1. The Genesis of the Lacustrine Sediments: Regional Paleo Xigeda Lake or Local Damming Lake

The deposition of lacustrine sediments within the Lower Jinsha River and its primary
tributaries plays a critical role in unraveling the historical evolution of drainage patterns in
the southeastern Tibetan Plateau. However, the interpretation of these sediments remains a
subject of controversy, with two contrasting perspectives in contention. One perspective
posits that the lacustrine sediments originated from a vast paleo-lake known as “Xigeda”,
located in the southeastern Tibetan Plateau [26–28,55]. In contrast, an alternative stance
suggests that the lacustrine sediments may have resulted from localized damming of the
Jinsha River or its tributaries, highlighting the absence of continuous lacustrine sediments
and the presence of landslide deposits as supporting evidence [29–32]. Further investigation
and evaluation are crucial to reconcile these differing theories and gain comprehensive
insights into the long-term drainage evolution of the southeastern Tibetan Plateau.

Different sedimentary environments can lead to different sedimentary characteristics.
If the lacustrine sediments were deposited by a regional paleo-lake, the spatial distribution
of lacustrine sediments would be continuous along the river valleys, and the top elevation
of lacustrine sediments would be consistent without being uplifted by later differential
tectonic uplift. Their deposition age must be consistent or approximate, and the age
of the lacustrine sediments should follow the stratigraphic sequence law, namely the
younger sediment must be deposited above the older one in one location. If the lacustrine
sediments were the result of local landslide-dammed lakes, they should closely trace the
river channels in space, and generally present with different deposition ages in different
river reaches. In addition, due to river incision, the lacustrine sediments deposited on
the upper valley would be generally older than that on the lower valley. Below, we
will determine the genesis of the lacustrine sediments based on the spatial distribution,
sedimentary characteristics, and sedimentary age of lacustrine sediments combined with
the analysis of valley morphology characteristics.

From the spatial distribution of lacustrine sedimentation, the lacustrine sediments
are distributed along the trunk and tributaries of the Jinsha River. This is a common
phenomenon for dammed lake sediments because they are deposited only after the valley
system formation. This phenomenon can be found in other rivers elsewhere, e.g., in the
Indus River, numerous stacks of dammed lake sediments have been found to straddle the
Indus River and its tributaries and share a distinct horizontal alignment [56]. In the Spiti
River, massive relict lacustrine sediments caused by landslide damming were also found
to be distributed along the trunk and tributaries [57]. However, the spatial distribution
of lacustrine sediments along the river channel is discontinuous and presents a beaded
distribution in the plane. Second, there is a significant difference in the altitude of lacustrine
sediments in different reaches. Lacustrine sediments in the reaches of Shigu, Taoyuan,
Panzhihua, Longjie, and Qiaojia are distributed blow 1800 m, 1670, 1500 m, 1600 m, 1000 m,
and 860 m, respectively [17,58,59]. The altitude of the lacustrine sediments shows a gradual
downward trend from the upstream to the downstream of the Jinsha River. Therefore, the
spatial distribution of lacustrine sediments is closely related to the river channels, indicating
that the lacustrine sediments are deposited with the river incision and valley formation,
which is inconsistent with the sedimentary characteristics of ancient regional lakes.

From the relationship between lacustrine sediments and other strata, the lacustrine
sediments and fluvial gravels are stacked on each other. That is, the lacustrine sediments
overlie fluvial gravels, which are also covered by fluvial gravels. In addition, there are
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also fluvial gravels lenses mixed into the lacustrine sediments, indicating that lacustrine
sediments were deposited on fluvial terraces or valley slopes after the formation of river
valleys and during or after the deposition process of lacustrine sediment, suggesting that the
lacustrine sediments were repeatedly affected by rivers. In the Panzhihua area, lacustrine
sediments are not integrated over the underlying ancient strata and ancient soil. In the
absence of Neogene strata in the area, a thick layer of late Neogene sedimentation has
suddenly accumulated, indicating that the formation process of the lacustrine sediments
is very rapid, and that it is unlikely that it was formed by the valley barrier caused by
tectonic deformation.

From the deposition age of lacustrine sediment, the deposition age of lacustrine
sediments in different river reaches is inconsistent. In the Shigu reach, the deposition age
of lacustrine sediments was dated to be 32 ± 2 ka in this study or 20–0.4 ka by Wang et al.
(2020) [60]. In the Fengjie reach, the deposition age of lacustrine sediments was dated
to be 440–556 ka [59]. In the Taoyuan reach, the deposition age of lacustrine sediments
of T3 was dated to be 639 ± 86 ka in this study, or 110~93 ka by Zhu et al. (2019) [61].
In the Panzhihua reach, the deposition age of the lacustrine sediments was dated to be
1780 ± 68 k to 25.3 ± 2.2 ka. In the Longjie reach, the deposition age of lacustrine sediments
was dated to be 12.1–7.5 ka [62]. In the Qiaojia reach, the deposition age of lacustrine
sediments was dated to be 629–20 ka [17]. Additionally, the lacustrine sediments in the
Da River and the Anning River were dated to be 1000–500 ka [32]. Second, in the same
river reach, the deposition age of lacustrine terraces with higher altitudes is older than
that of lacustrine terraces at low altitudes. In the Panzhihua reach, lacustrine sediments
at Wanzitou were dated and yielded an age of 1028 ± 113 ka. Fluvial gravels overlying
the lacustrine sediments of T3 at Guanyinyan were dated to be 921 ± 106 ka, suggesting
that the lacustrine sediment has been deposited before 921 ± 106 ka. At Bingcaogang,
lacustrine sediments of T7 was dated to be 1416 ± 98 ka, and one sample from the fluvial
gravels under the lacustrine sediments of T1 yielded an age of 523 ± 92 ka, suggesting
that the lacustrine sediments were deposited late than 523 ka. On the Sanduizi profile, a
sample of the lacustrine sediments of T5 was measured and yielded an age of 1780 ± 68 ka;
fluvial gravels in lacustrine sediments of T1 was dated to be 1204 ± 181 ka. Obviously, the
deposition age of lacustrine sediments do not conform to the sedimentary characteristics of
a regional paleo-lake.

Therefore, we believe that the lacustrine sediments were not deposited by a regionally
giant paleo-lake, namely the ”Paleo-lake Xigeda” between the Pliocene to early Pleistocene,
but were rather more likely to have been locally deposited by individual dams of landslide,
debris flow, and glaciation. Figure 10A shows five ancient damming lakes, but this does
not mean that there were only five damming lakes in the Lower Jinsha River. The landslide,
debris, and river blocking events are especially prevalent in the Pleistocene around the
margins of the Tibetan Plateau due to the strong tectonic activities, high relief, narrow
river gorges, and threshold hillslopes [62–68]. Although most dammed lakes will collapse
within a few days, there are also dammed lakes that can exist stably for tens of thousands
of years, resulting in the accumulation of a large amount of lacustrine sediments in the
upstream reach of the damming body [41]. Previous studies have also reported that there
are many paleo damming events caused by landslides, mudslides, or glaciers in the Jinsha
River valley. For example, the Baimakou landslide may have blocked the Jinsha River and
caused the accumulation of lacustrine sediments in the Longjie reach [62]. The Zhaizicun
landslide may have blocked the Jinsha River and caused the accumulation of lacustrine
sediments in the Taoyuan reach [63]. In the Suwalong section of the Upper Jinsha River,
the landslide also blocked the Jinsha River and accumulated a large amount of lacustrine
deposits [65,69]. On 10 October and 3 November 2018, two successive landslides occurred
at Baige village, which totally dammed the Jinsha River on both occasions, resulting in
a dammed lake with a theoretical maximum storage capacity of 7.9 × 108 m3 [70]. As
such, we speculate that many ancient dammed lakes developed in the lower reaches of the
Jinsha River, and even the lacustrine sediments in the same reach may have been deposited
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separately from multiple ancient dammed lakes during the same period. However, due
to the lack of chronological data and the insufficient accuracy of dating methods, it is
impossible to distinguish the sediments of each dammed lake.
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Figure 10. (A) Schematic diagram of paleo-dammed lake for deposition of the lacustrine sediments
in the Lower Jinsha River. (B) The patterns of valley formation of the Lower Jinsha River.

Diachronic lacustrine terraces formed by the dammed lake were widely distributed at
different heights in the same reach, indicating that the river has been repeatedly blocked in
the downstream gorges, leading to aggradation in the upstream reaches. When the lake
was filled or a landslide dam was cut through, the river would incise upstream, and the
channel would cut down again from the lacustrine sediments, sometimes accompanied
by the development of a series of cut-in-fill terraces on the lacustrine sediments. With the
river incision, the height of the riverbed gradually decreases, vertical incision combined
with lateral incision will make the valley steep enough, and then a landslide happens
again, blocking the river and impounding a lake to deposit lacustrine sediments at a lower
height of the river valley. These processes happened one after another as the river incised
down. Therefore, the valley development of the Jinsha River was mainly occupied by the
major episodes of aggradation and incision. The continuity of the river process is shown as
“incision-landslide-damming-aggradation-incision”, while the interval in this process still
leads to the development of terrace sequences (Figure 10B).

5.2. Incision Time of the Lower Jinsha River

The viewpoints on the formation time of the Jinsha River valley have yet to reach a
consensus, spanning from the Paleocene to the Pleistocene [14,16–18,21,28,71].

Planation surfaces, which were regarded as the starting point of the birth of river
valley systems [72], are widely distributed in the southeastern Tibetan Plateau, with an age
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of Pliocene to Early Pleistocene [36,73], indicating that the paleo-drainage system in the
formation period of the planation surface has been reorganized in the early Pleistocene. The
modern valley systems of the Jinsha River were incised by themselves from the planation
surfaces, with no or only little relationship with the paleo-drainage system. Therefore, the
modern Jinsha River valley formed after the disintegration of planation surfaces induced
by the surface uplift of the Yunnan Plateau since the Pliocene.

The formation of landslide-dammed lakes requires the river valley to be cut down to a
certain depth, so the dammed lake deposits and the lacustrine terraces are the signs of the
valley cutting down. The dammed lake sediments have been appeared in the Panzhihua
reach at least 1.78 Ma ago, indicating that the Jinsha River has incised its valley prior to
1.78 Ma. Many previous studies of river terraces and associated sediments in other reaches
of the Jinsha River support this conclusion. For example, fluvial terraces immediately
upstream of the Shigu were developed around 1.54 Ma, and river terraces from Shigu to
Yibin were formed around 1.78 Ma B.P. [55]; Fluvial terraces near the Jinjiangjie were dated
to 1.02 Ma [74]. The fluvial terrace near Qiaojia was formed at about 1.2 Ma [17,73]. The
high-level river terraces from Yongshan to Yibin were formed between 1.17~1.02 Ma [11].
River terraces in the lower Yalong River, which is a tributary of the Jinsha River, also
formed around 1.1 Ma [75]. This evidence from the valley landforms and sediments
demonstrated that the valley system of the modern Jinsha River was formed in the late
Early Pleistocene (Figure 11).
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6. Conclusions

Through sedimentological analysis and chronological determination of the fluvio-
lacustrine sediments of the lower Jinsha River, we found that lacustrine sediment in this
reach is discontinuous in spatial distribution but is closely distributed along the main and
tributary channel. The lacustrine sediments are stacked with fluvial sand and gravels, and
are in unconformable contact with the underlying bedrock strata or weathered crust. The
elevation and deposition age of lacustrine sediments are significant different in different
reaches. The lacustrine sediments in same reach are distributed in a stepped pattern on the
valley profile, and the sedimentation age of high-altitude fluvial terraces is earlier than that
of low-altitude fluvial terraces. The oldest lacustrine terrace here were dated to be 1.78 Ma.
We suggest that the lacustrine sediments were deposited by individual local dammed lakes.
The modern Jinsha River began to incise its valley before the Early Pleistocene.
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