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Abstract: A design flood is an essential input for water infrastructure design and flood protection. A
flood frequency analysis has been traditionally performed under stationarity assumption indicating
that the statistical properties of historical flooding will not change over time. Climate change
and variability challenges the stationarity assumption, and a flood frequency analysis without
consideration of non-stationarity can result in under- or overestimation of the design floods. In this
study, non-stationarity of annual maximum floods (AMFs) was investigated through a methodology
consisting of trend and change point tests, and non-stationary Generalized Extreme Value (NSGEV)
models, and the methodology was applied to Campaspe River Basin as a case study. Statistically
significant decreasing trends in AMFs were detected for almost all stations at the 0.01 significance
level in Campaspe River Basin. NSGEV models outperformed the stationary counterparts (SGEV)
for some stations based on statistical methods (i.e., Akaike information criterion (AIC) and Bayesian
information criterion (BIC)) and graphical approaches (i.e., probability and quantile plots). For
example, at Station 406235, AIC and BIC values were found to be 334 and 339, respectively, for the
SGEV model, whereas AIC and BIC values were calculated as 330 and 334, respectively, for the
NSGEV 15 model with time-varying location and scale parameters. Deriving a design flood from
conventional stationary models will result in uneconomical water infrastructure design and poor
water resource planning and management in the study basin.

Keywords: annual maximum flood; non-stationarity; generalized extreme value model; change point

1. Introduction

Floods are among the most common and costliest natural disasters worldwide. Ac-
curate estimation of flood magnitudes corresponding to return periods of interest (design
flood) is a cornerstone of flood risk management [1]. A design flood is an essential input
for water infrastructure design and flood protection. The most direct approach to derive
the design flood is to conduct an at-site flood frequency analysis [2].

A flood frequency analysis has been traditionally performed under stationarity as-
sumptions indicating that the statistical properties of historical flooding (or its drivers such
as rainfall) will not change over time [3,4]. Climate change and variability challenges the
stationarity assumption. Several studies (e.g., [5–7]) explained that basic concepts in a
flood frequency analysis including probability of exceedance and return period are not
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valid when non-stationarity exists. The flood frequency analysis without consideration of
non-stationarity can result in under- or overestimation of the design floods.

There are several studies that conducted a non-stationary flood frequency analysis
in the literature. For example, Šraj et al. [8] employed stationary and non-stationary
Generalized Extreme Value (GEV) models using data from two flow stations in Slovenia.
They found that the flood quantile estimates from stationary models are lower than those
from the non-stationary models in recent years. Ray and Goel [9] examined a stationary
and non-stationary flood frequency analysis using annual maximum flood (AMF) data
from six gauging sites in Narmada River Basin. They considered both time and physical
covariates to develop non-stationary models and reported a significant increase in design
floods over time. Chen et al. [1] reported that non-stationary models at several stations
overperformed the stationary models in the UK, particularly the ones with rainfall-related
covariates. Singh and Chinnasamy [10] developed stationary and non-stationary GEV
models to perform a flood frequency analysis for Periyar River and found that using
stationary models instead of optimal non-stationary models may result in unsafe design of
the structure. Hounkpè et al. [11] developed time- and/or physical-covariate-dependent
GEV models for a frequency analysis using AMF data from five flow stations in the Ouémé
River Basin, Benin Republic. They reported that a non-stationary model with a linear
trend in its location parameter showed the best performance and sufficiently explained
the variation in the data. Bossa et al. [12] developed both stationary and non-stationary
GEV models using AMF data and sea surface temperature (as a climate index covariate)
across stations spread over West Africa. It was found in this study that non-stationary
GEV models outperform stationary models for majority of the stations. Anzolin et al. [13]
studied stationary and non-stationary GEV models for an AMF frequency analysis using
five covariates (for the non-stationary models), including annual temperature, El Nino
Southern Oscillation, annual rainfall, annual maximum rainfall, and annual maximum
soil moisture content. The authors reported that non-stationary models are preferable for
some of the studied stations, and they stated that non-stationary models with rainfall-based
covariates showed better performance.

In the literature, there are several Australian studies investigating non-stationarity of
AMFs. For example, Ishak et al. [14] employed the Mann–Kendal (MK) test to examine
trends in AMFs as the trends may be an indicator of the non-stationarity. Do et al. [15]
examined AMF trends globally including data from the east coast of Australia using the
Global Runoff Data Centre database. Ishak and Rahman [16] adopted MK and Pettitt
change point detection tests to study changes in Australian AMF data. All abovemen-
tioned Australian studies reported significant decreasing trends in AMFs in South-East
Australia. When non-stationarity is detected in extreme values (i.e., annual maximum
rainfall, temperature, or floods), it is recommended to conduct a non-stationary frequency
analysis to ensure whether a stationary or non-stationary frequency analysis results in more
accurate design value estimations corresponding to different return periods [17]. Although
there are several studies on non-stationarity of AMFs, the number of studies performing
a non-stationary flood frequency analysis is very limited in Australia. As an example,
Han et al. [18] performed a non-stationary regional flood frequency analysis in several
Australian catchments and estimated changes in flood quantiles in 2100. They predicted
decreases in flood quantiles corresponding to a 2-year (Q2) and 20-year (Q20) return period
at the majority of the studied catchments in the state of Victoria (with a more significant
decrease in Q20 estimations).

In this study, a generic methodology consisting of non-stationarity detection and a
non-stationary flood frequency analysis was applied using data from Campaspe River
Basin, located in north-central Victoria. The commonly used non-parametric tests including
MK trend and Pettitt change point tests were applied first to detect non-stationarities
as performed in several studies (e.g., [19,20]). Then, stationary and non-stationary GEV
models were developed for the frequency analysis of AMFs to derive design floods of
various return periods. Although there are some AMF trend analysis studies conducted at
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an Australian scale, most of those studies did not consider all stations in Campaspe River
Basin; also, a non-stationary frequency analysis was not applied in those studies. This
study aimed to contribute better understanding of the non-stationarity concept in a flood
frequency analysis in Australia as well as assisting water engineering practice in Campaspe
River Basin through more accurate design flood estimation for safe and cost-effective water
infrastructure design and water resource management.

2. Study Area and Data

The Campaspe River Basin with a surface area of 417,914 hectares is located in north-
central Victoria. The Campaspe River is a source of domestic, industrial, and commercial
water supply, particularly for the Bendigo urban supply area and irrigators in the area
between Malmsbury and Bendigo [21]. The length of Campaspe River is around 220 km,
and there are four storage reservoirs on the river with Lake Eppalock being the largest with
a 304 GL capacity [22].

Quality-controlled AMF data derived from daily streamflow data of six stations, which
are located at the outlet of six unregulated sub-basins of Campaspe River Basin, were used
for the analysis in this study. As the length of data record is significant for the trend and
frequency analysis, stations with a minimum data length of 40 years were considered. Data
were derived from hydrologic reference stations [23] created by Bureau of Meteorology,
Australia. Location, name, sub-basin area, and available data period of the selected stations
are shown in Table 1. Sub-basins with a minimal effect of land-use change and regulation
through artificial storage were considered in selection of the stations. The location of the
Campaspe River Basin and selected stations are shown in Figure 1.
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Table 1. Location, sub-basin area, and available data period of selected stations.

Station Number Sub-Basin Area (km2) Location Available Data Period

406208 37.6 144.451◦ E, 37.388◦ S 1970–2022
406213 633.8 144.539◦ E, 37.016◦ S 1975–2022
406214 237 144.428◦ E, 36.774◦ S 1972–2022
406226 171.6 144.650◦ E, 36.881◦ S 1978–2022
406235 212.3 144.660◦ E, 36.948◦ S 1980–2022
406250 77.5 144.370◦ E, 37.320◦ S 1983–2022

3. Methodology

The methodology of this study consists of three parts as shown below:

(1) The AMF trend analysis using the MK test.
(2) The AMF change point analysis using the Pettitt test.
(3) The stationary and non-stationary flood frequency analysis.

3.1. AMF Trend Analysis Using MK Test

The MK test was selected for the trend analysis in this study since it is a widely adopted
monotonic trend test for a hydro-meteorological time series data analysis (e.g., [24,25]). The
MK is a non-parametric test without any assumption about the statistical distribution of
the data. This makes the MK test a suitable approach for a trend analysis of non-normally
distributed data, which is very common in hydro-meteorology. A positive MK test score
(z-score) indicates an increasing trend, whereas a decreasing trend is represented by a
negative MK test score. If the calculated test statistic is larger than the critical value at any
significance level (e.g., 0.1, 0.05, 0.01), the null hypothesis of no trend is rejected and the
detected trend is considered as statistically significant at the same significance level. Critical
values at 0.1, 0.05, and 0.01 significance levels are 1.645, 1.96, and 2.576, respectively [26–28].
Formulation and details of the MK test can be seen from Kundzewicz and Robson [29].

Data independence is a requirement of the MK test. Autocorrelation plots, produced
through computing autocorrelations for data values at a range of time lags, were used to
check data independence in this study. In the autocorrelation plots, the lag-n autocorrelation
shows the correlation between values in the time series and their preceding value n water
years before. For example, lag-1 autocorrelation shows the correlation between values and
the value 1 year before. The autocorrelation function at lag-0 is always 1. Autocorrelation
estimates can be considered statistically significant at a 0.05 (5%) significance level if the
estimates are outside the 95% confidence intervals on the autocorrelation plots.

3.2. AMF Change Point Analysis Using Pettitt Test

The Pettitt test is commonly used for a change point analysis in hydro-meteorological
time series data to identify a sudden change in the mean of a time series [30,31]. Shifting
time and the significance level are the outputs of the test. Like the MK test, the Pettitt
test is a non-parametric technique with no assumption about the data distribution. The
null hypothesis of the Pettitt test indicates no difference between the means of the earlier
and later portions of time series data. If the test output (p-values) is less than a chosen
significance level, then the null hypothesis is rejected, suggesting that there is a sudden
change. More detailed information about the Pettitt test can be found from Conte et al. [32].

3.3. Stationary and Non-Stationary Flood Frequency Analysis
3.3.1. Stationary Flood Frequency Analysis

There are two basic methods to derive data for a flood frequency analysis: (1) block
maxima, and (2) peaks over threshold (POT). Flood data are produced by selecting the
maximum values from each year in the block maxima approach. In this case, flood data
are commonly named as AMF. In the POT approach, data above a certain threshold are
selected. When there is a sufficient number of data points, the block maxima approach is a
suitable approach and serves better for data independency requirements in comparison
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to the POT approach. In this study, Generalized Extreme Value (GEV) distribution was
selected to fit the AMF data for the frequency analysis as recommended and applied by
several studies (e.g., [8,10,33]).

The GEV distribution covers the three extreme value distributions including Gumbel,
Frechet, and negative Weibull. Equation (1) shows the cumulative distribution function of
the GEV distribution.

F(x) = exp

{
−
(

1 + ξ
x− µ

σ

)−1/ξ
}

(1)

defined on the set {q : 1 + ξ(q− µ)/σ > 0}, where “µ” represents the location parameter,
“σ” corresponds to the scale parameter, and “ξ” is the shape parameter. In case of the shape
parameter being equal to zero, the distribution is called Gumbel. The distribution is called
Fréchet if the shape parameter is positive, whereas it is named negative Weibull with a
negative shape parameter [10,34]. In the stationary GEV models, all three parameters are
constant (not dependent on covariates).

Parameters of the GEV models can be estimated through different methods such as
the method of moments, the maximum likelihood estimates (MLE), and the L-moments. In
this study, the MLE approach was employed since it is a more robust technique [2,35]. The
stationary GEV model is abbreviated as SGEV for the rest of the manuscript.

3.3.2. Non-Stationary Flood Frequency Analysis

The parameters of the SGEV model are constant, whereas one or more parameters
of non-stationary GEV (NSGEV) models are not fixed. The parameter(s) might change
over time or as a response of physical covariates (variable other than flow). The Pacific-
and Indian-Ocean-related large-scale climate variabilities including El Niño Southern
Oscillation (ENSO), Interdecadal Pacific Oscillation (IPO), Indian Ocean Dipole (IOD),
and Southern Annular Mode (SAM) have significant impact on Australian floods [36,37].
Therefore, in this study, indices including the Southern Oscillation Index (SOI), Dipole
Mode Index (DMI), Tripole Index (TPI), and SAM index (representing the ENSO, IOD, IPO,
and SAM, respectively) were used as physical covariates in NSGEV models in addition to
the time covariate.

SOI and TPI data were obtained from the National Oceanic and Atmospheric Admin-
istration Physical Sciences Laboratory. SOI data were available from 1856 to 2021 (https:
//psl.noaa.gov/gcos_wgsp/Timeseries/SOI/ accessed on 5 May 2023), whereas TPI data
were derived for the period of 1854–2021 (https://psl.noaa.gov/data/timeseries/IPOTPI/
accessed on 7 May 2023). DIM data, covering the period of 1982–2021, were derived from
the Japan Agency for Marine-Earth Science and Technology (https://www.jamstec.go.jp/
virtualearth/general/en/index.html accessed on 7 May 2023). SAM index data over the
period of 1957–2021 were derived from British Antarctic Survey (https://legacy.bas.ac.
uk/met/gjma/sam.html accessed on 10 May 2023). Annual average index values were
employed in NSGEV models, and in total 16 GEV models (1 SGEV and 15 NSGEV) were
developed for each station in this study. All developed non-stationary models are shown
in Table 2.

If the location parameter is varying, the location parameter (µ) is defined based on
µ0 and µ1. If the scale parameter shows variation, the ln(scale) parameter (φ) is expressed
according to φ0 and φ1, as represented in the following equations:

µ(x) = µ0 + µ1x1 (2)

ln(σ(x)) = φ(x) = φ0 + φ1x1 (3)

It should be noted that the logarithmic scale parameter was used to ensure positivity
of the scale parameter in GEV models.

https://psl.noaa.gov/gcos_wgsp/Timeseries/SOI/
https://psl.noaa.gov/gcos_wgsp/Timeseries/SOI/
https://psl.noaa.gov/data/timeseries/IPOTPI/
https://www.jamstec.go.jp/virtualearth/general/en/index.html
https://www.jamstec.go.jp/virtualearth/general/en/index.html
https://legacy.bas.ac.uk/met/gjma/sam.html
https://legacy.bas.ac.uk/met/gjma/sam.html
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Table 2. Developed non-stationary GEV models.

Model Name Parameters of Model

µ ln(σ) = φ ξ

NSGEV1 µ(x) = µ0 + µ1 × SOI Constant Constant

NSGEV2 µ(x) = µ0 + µ1 × TPI Constant Constant

NSGEV3 µ(x) = µ0 + µ1 × SAM Constant Constant

NSGEV4 µ(x) = µ0 + µ1 ×DMI Constant Constant

NSGEV5 µ(t) = µ0 + µ1 × t Constant Constant

NSGEV6 Constant φ(x) = φ0 +φ1 × SOI Constant

NSGEV7 Constant φ(x) = φ0 +φ1 × TPI Constant

NSGEV8 Constant φ(x) = φ0 +φ1 × SAM Constant

NSGEV9 Constant φ(x) = φ0 +φ1 ×DMI Constant

NSGEV10 Constant φ(t) = φ0 +φ1 × t Constant

NSGEV11 µ(x) = µ0 + µ1 × SOI φ(x) = φ0 +φ1 × SOI Constant

NSGEV12 µ(x) = µ0 + µ1 × TPI φ(x) = φ0 +φ1 × TPI Constant

NSGEV13 µ(x) = µ0 + µ1 × SAM φ(x) = φ0 +φ1 × SAM Constant

NSGEV14 µ(x) = µ0 + µ1 ×DMI φ(x) = φ0 +φ1 ×DMI Constant

NSGEV15 µ(t) = µ0 + µ1 × t φ(t) = φ0 +φ1 × t Constant

As shown in Equations (2) and (3), there are 2 elements of the location and scale
parameters to estimate, a constant component µ0 (for location parameter) and φ0 (for scale
parameter), and µ1 and φ1, which represent the covariate’s effect on the parameter. In a
non-stationary model, it is assumed that the location and scale parameters show variation
linearly with time and the physical covariate as adopted by many studies (e.g., [38–40]),
since the linearity assumption gives the flexibility of easy model fitting and interpretable
results. In all non-stationary models, the shape parameter is considered to be constant
since high error is involved in estimating it to allow changing with a covariate [41]. A
multivariate analysis of models with five covariates (SOI, DMI, TPI, SAM, and time) would
result in a very large number of non-stationary models; therefore, the non-stationary models
were developed through combinations including one covariate at a time in the location
and/or scale parameter as shown in Table 2 for the sake of simplicity. The time covariate in
the models corresponds to an index representing the water year, and the values are centred
and scaled before being used in the non-stationary models with the time covariate. The R
nonstat package [41] was used to develop stationary and non-stationary GEV models as
well as MK trend and Pettitt change point tests.

3.3.3. Model Selection Process

As explained above, there were 16 candidate flood frequency analysis models (station-
ary and non-stationary) developed for each station (basin) in this study. Both statistical and
graphical approaches were used to select the best flood frequency analysis model. These
statistical and graphical selection approaches are explained below.

Statistical Methods

The Akaike information criterion (AIC) and Bayesian information criterion (BIC) were
employed as the statistical methods in this study as they are widely used in frequency
analysis studies (e.g., [11,42,43]). The number of parameters is used in AIC to establish a
trade-off between the goodness of fit and the model simplicity. The lowest AIC indicates
the best model. The BIC is a similar method to the AIC with a difference in weighting the
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model simplicity where the BIC assigns more weight to the simplicity. The AIC and BIC
are calculated as follows:

AIC = −2log (L) + 2k (4)

BIC = −2log (L) + 2k log(N) (5)

where L is the likelihood function, k refers to the number of parameters, and N corresponds
to the sample size [43].

Graphical Methods

In addition to the statistical tests, graphical approaches (diagnostic plots) including
probability (P-P) and quantile (Q-Q) plots were used for selecting the best models. In
the P-P plot, the non-exceedance probability of each AMF in the data set estimated from
the statistical model is compared with the empirical estimate of the probability based
on the Weibull plotting position formula. In other words, P-P is a plot of the points as
shown below: {(

F̂(xi),
i

n + 1

)
: i = 1, . . . n

}
(6)

where F̂(xi) is the non-exceedance probability of each AMF data value from the GEV model
and x(i), i = 1,. . .n is ordered independent AMF observations.

The Q-Q plot compares the flow estimated from the empirical probability with the
observed flow. It is a plot of points as follows:{(

F̂−1
(

i
n + 1

)
, x(i)

)
: i = 1, . . . n

}
(7)

where F̂−1
(

i
n+1

)
shows a model-based estimate of the i/(n + 1) quantile and x(i) indicates

an empirical estimate of the quantile. P-P and Q-Q plots with points lying close to the
diagonal line indicate a successful-fitted model.

Residual P-P and Q-Q plots are special forms of P-P and Q-Q plots. Residual diagnostic
plots are useful for the models with covariates since the model quantile cannot be defined
in those models as a different GEV model is expressed with each set of covariates. In the
residual diagnostic plots, the model residuals are generated for each data point based on
fitted model parameters to ensure data points belong to a common distribution. Similar to
regular diagnostic plots, in residual diagnostic plots, a well-fitted model is represented by
the points lying close to the diagonal line [41,44].

3.3.4. Uncertainty

In this study, the uncertainty in GEV models was quantified through 90% confidence
intervals, and this means being 90% confident that the correct answer lies within this
interval. The confidence intervals are also useful for the best fit selection. It should be noted
that the confidence limits are constructed using a parametric bootstrapping procedure.
This approach is used to derive confidence limits in situations where uncertainty of the
underlying statistical population exists or for the cases with an impractical analytical
solution. More information about the applied parametric bootstrapping approach can be
seen in Eastoe and Tawn [45].

4. Results and Discussion
4.1. AMF Trend Analysis

Table 3 shows the z-scores, two-sided p-values, and outcome of the MK trend test.
In Table 3, S corresponds to statistically significant trends at different significance levels
shown within brackets, whereas NS indicates statistically insignificant trends even at the
0.1 significance level. As can be seen in Table 3, decreasing AMF trends were detected at all
stations. All of these trends are statistically significant (either at 0.01 or 0.05 significance
level) except the trend at Station 406250. Trend and autocorrelation graphs were also
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plotted for all stations. Figure 2 indicates the trend and autocorrelation graphs for the AMF
at the stations, showing statistically the most significant trends with the highest absolute
z-score and lowest p-value (i.e., Stations 406208 and 406214).
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Table 3. Trend analysis results.

Station Number z-Score 2-Sided p-Value Outcome

406208 −3.66157 0.000250671 S (0.01)
406213 −2.36704 0.017931094 S (0.05)
406214 −3.66343 0.00024886 S (0.01)
406226 −2.60603 0.009159779 S (0.01)
406235 −2.59458 0.00947072 S (0.01)
406250 −1.45834 0.144746587 NS

In Figure 2, there are two graphs (i.e., trend and autocorrelation) for each station. The
trend graph illustrates the time series of AMF data (represented by black line) and smoothed
data (represented by red line) based on locally weighted polynomial regression (LOWESS)
as an indicator of regression trend lines [46,47]. LOWESS was employed in this study for
visual identification of trends in AMF data. The second graph shows the autocorrelation
estimate (black line) corresponding to the range of lags. The 95% confidence intervals
(blue dashed lines) are also presented in the autocorrelation graph. If the autocorrelation
estimates are outside of 95% confidence intervals, autocorrelation would be statistically
significant at a 0.05 significance level. As can be seen, in Figure 2, there is no statistically
significant autocorrelation in AMF data for the selected two stations. This is also the case
(no statistically significant autocorrelation) for all AMF time series data at all stations.
LOWESS lines show that there is a clear decreasing trend in AMF data of Stations 406208
and 406214, and this outcome agrees with the trend results shown in Table 3.

4.2. AMF Change Point Analysis

As explained in the Methodology section, the change point analysis was conducted
using the Pettitt test at 0.1, 0.05, and 0.01 significance levels. Table 4 shows the outcome of
the Pettitt test.

Table 4. Change point analysis (Pettitt test) results.

Station Number p-Value Outcome Year of Change

406208 0.000295 S (0.01) 1996
406213 0.010492 S (0.05) 1996
406214 0.002299 S (0.01) 1996
406226 0.015921 S (0.05) 1996
406235 0.016234 S (0.05) 1996
406250 0.088723 NS 2000

In Table 4, S and NS indicate statistically significant (with significance levels shown
within brackets) and insignificant changing points, respectively. Table 4 shows that the
statistically significant change point was detected for all stations except Station 406250, and
the significant change point for all stations is the year 1996. The change point (year 1996) is
indicated in Figure 2 with a vertical blue dashed line at Stations 406208 and 406214.

The state of Victoria (including the Campaspe River Basin) experienced one of the
worst droughts on record, the Millennium Drought, during 1997–2009. This drought is very
likely the main reason for 1996 being the statistically significant change point. Therefore,
the trend analysis was re-applied to all stations after removing the data set between 1997
and 2009. All stations kept showing decreasing trends; however, only Stations 406214 (at
0.01 significance level), 406226 (at 0.05 significance level), and 406235 (at 0.05 significance
level) indicated statistically significant decreasing trends after applying the trend test with
exclusion of data from 1997 to 2009.

4.3. Stationary and Non-Stationary Flood Frequency Analysis

Covariates need to be incorporated into the location and scale parameters of GEV
models to develop non-stationary GEV models. As explained in the Methodology section,
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time, SOI, TPI, DMI, and SAM index were used as the covariates to relate changes in flood
frequency to time, ENSO, IPO, IOD, and SAM, respectively. Table 5 shows the parameters
(i.e., location, scale, and shape) and goodness of fit test (i.e., AIC and BIC) values of SGEV,
NSGEV5, and NSGEV15 for all stations. In Table 5, there are two columns for the location
(i.e., µ0, µ1) and scale (i.e., φ0, φ1) to explain the varying behaviour of these parameters,
whereas the shape parameter is constant. If the location parameter is varying, µ0 and µ1 are
used to calculate the location parameter as shown in Equation (2); if the location parameter
is constant, only µ0 represents the location parameter. The same approach applies for the
scale parameter. It should be noted that despite 16 GEV models being developed in this
study, only SGEV, NSGEV5, and NSGEV15 are presented in Table 5 since these models
showed the best performances among all the models.

Table 5. Stationary and non-stationary model parameters and performances.

Gauge Number Model Locationµ0 Locationµ1 Ln (Scale) φ0 Ln (Scale) φ1 Shape AIC BIC

406208 SGEV 0.9068 0.4415 1.4555 226 231
406208 NSGEV5 0.8803 0.0226 0.4322 1.4738 228 235
406208 NSGEV15 1.4105 −0.6666 0.7438 −0.6579 1.0779 225 233

406213 SGEV 12.9959 2.8779 1.0512 406 411
406213 NSGEV5 12.6147 0.5300 2.8679 1.0701 408 415
406213 NSGEV15 15.3868 −4.1344 3.0092 −0.4580 0.8058 406 414

406214 SGEV 1.4513 1.1221 2.026 300 305
406214 NSGEV5 1.2899 0.0499 1.0587 2.1561 301 308
406214 NSGEV15 2.3495 −0.9221 1.4599 −0.6661 1.3696 301 309

406226 SGEV 2.1333 1.2295 1.2554 282 287
406226 NSGEV5 2.1347 −0.0004 1.2300 1.2552 284 290
406226 NSGEV15 2.9686 −1.2884 1.3622 −0.5455 0.8445 280 288

406235 SGEV 6.1003 2.0935 0.8171 334 339
406235 NSGEV5 6.5611 −0.4283 2.1262 0.7407 335 342
406235 NSGEV15 7.7278 −3.4482 2.1293 −0.4784 0.5273 330 338

406250 SGEV 5.8260 1.5449 0.1154 249 253
406250 NSGEV5 5.8056 −1.9601 1.4617 0.1721 247 253
406250 NSGEV15 5.7582 −2.1543 1.4527 0.1318 0.1695 248 256

According to the statistical tests (i.e., AIC and BIC) and diagnostic plots of 16 GEV
models, SGEV models show the best performance for Stations 406208, 406213, 406214, and
406226, NSGEV5 is the preferred model for Station 406250, and NSGEV15 is the best model
for Station 406235.

In general, diagnostic plots agree with the statistical tests about goodness of fit of the
GEV models. As an example of diagnostic plots, Figure 3 shows the observed AMF data
and residual P-P and Q-Q plots of the best fitting model (i.e., NSGEV5) for Station 406250.

The purpose of a flood frequency analysis is to derive design floods (return levels)
for different return periods such as 2, 5, 10, 20, 50, and 100 years. As explained in the
Introduction section, a design flood is an essential input for water infrastructure design
and water resource management. In this study, design floods were derived for 2-, 10-, 20-,
and 50-year return periods along with the 90% confidence intervals for all GEV models
at all stations. It is not reasonable to estimate a 100-year design flood with high accuracy,
considering the maximum number of data points employed in this study is 53. As an
example, Table 6 illustrates the 2-, 10-, 20-, and 50-year design floods for Station 406235
derived from SGEV and NSGEV15 (the best performing GEV model). The same information
(design flood estimations from SGEV and NSGEV15 for 2-, 10-, 20-, and 50-year return
periods at Station 406235) is shown in Figure 4, where dashed lines indicate design flood
estimation of SGEV models and dotted lines show design flood estimation of NSGEV
models for abovementioned return periods. As explained in the Methodology section, the
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uncertainty in GEV models was assessed through 90% confidence intervals, and derived
design floods in this study fall into the 90% confidence intervals.

Table 6. Design floods for 2-, 10-, 20-, and 50-year return periods at Station 406235.

Year NSGEV15
(2-Year)

NSGEV15
(10-Year)

NSGEV15
(20-Year)

NSGEV15
(50-Year)

1982 19.7 90.2 143.4 258.8
1983 19.1 86.5 138.6 249.0
1984 18.6 83.5 133.0 241.0
1985 18.1 80.1 128.9 231.1
1986 17.6 77.2 124.5 220.8
1987 17.1 74.6 120.1 212.6
1988 16.5 72.0 115.7 204.2
1989 16.0 69.3 110.6 195.7
1990 15.5 66.5 106.5 188.2
1991 15.0 64.3 102.5 180.4
1992 14.5 61.8 98.5 172.7
1993 14.1 59.4 94.2 165.0
1994 13.6 57.3 90.6 157.6
1995 13.2 55.2 87.2 151.8
1996 12.8 53.2 83.4 146.2
1997 12.4 51.0 80.6 139.9
1998 12.0 48.9 77.5 134.8
1999 11.6 46.9 74.6 129.7
2000 11.2 45.1 72.0 125.3
2001 10.8 43.3 68.6 120.5
2002 10.4 41.7 66.0 114.8
2003 10.0 39.9 63.2 110.0
2004 9.7 38.5 60.5 105.6
2005 9.3 36.8 58.1 101.4
2006 8.9 35.4 55.4 97.4
2007 8.5 33.9 53.1 93.0
2008 8.1 32.4 51.0 89.5
2009 7.7 30.9 48.7 85.7
2010 7.4 29.6 46.8 81.8
2011 7.0 28.4 44.8 78.9
2012 6.6 27.3 43.0 75.3
2013 6.3 26.1 41.2 71.7
2014 5.9 24.9 39.6 69.0
2015 5.5 23.8 37.8 66.3
2016 5.2 22.8 36.1 63.8
2017 4.8 21.7 34.6 61.4
2018 4.4 20.5 33.3 58.7
2019 4.1 19.6 31.9 56.3
2020 3.8 18.6 30.3 54.2
2021 3.4 17.8 28.7 51.8

As can be seen in Table 6 and Figure 4, the design flood estimates of NSGEV15 are
decreasing over time at Station 406235. In Figure 4, the horizontal lines indicate the design
flood estimation from the SGEV model for certain return periods. Design flood estimates of
SGEV for 2-, 10-, 20-, and 50-year return periods at Station 406235 are 9.5 m3/s, 59.2 m3/s,
110.7 m3/s, and 245.5 m3/s, respectively. As the parameters of the SGEV model are constant,
design flood estimates from the SGEV model do not show variation over time. This is
specifically important for Stations 406235 and 406250, where NSGEV outperformed the
SGEV counterpart. For example, the difference between 20-year design floods of SGEV and
NSGEV models at Station 406235 is −74% in 2021. Table 7 indicates the change percentage
of 2-, 10-, 20-, and 50-year design floods in 2021 between SGEV and the best fitting NSGEV
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for the stations where the NSGEV model showed better fitting than the SGEV (i.e., Stations
406235 and 406250).
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Table 7. The change percentage of 2-, 10-, 20-, and 50-year design floods in 2021.

Station 406235 Station 406250

Stationary Non-Stationary Change (%) Stationary Non-Stationary Change (%)

2-year
Design Flood (m3/s) 9.5 3.4 −64 7.6 4.1 −46

10-year
Design Flood (m3/s) 59.2 17.8 −70 17.6 13.9 −21

20-year
Design Flood (m3/s) 110.7 28.7 −74 21.9 18.6 −15

50-year
Design Flood (m3/s) 245.5 51.8 −79 28.1 25.8 −8

As shown in Table 7, the design floods in 2021 derived from non-stationary models
were lower than those derived from stationary models. The difference between non-
stationary and stationary models is particularly significant for Station 406235 where the
NSGEV15 model was the preferred model. In those stations (in which non-stationary
GEV models should be preferred), deriving a design flood from conventional stationary
models will result in overestimation of the design flood. This will cause uneconomical
water infrastructure design and poor water resource planning and management. As
explained in the Methodology section, effects of ENSO, IOD, IPO, and SAM climate drivers
on AMFs were investigated in this study through associating SOI, DMI, TPI, and SAM
index as a physical covariate to the non-stationary GEV models. It is found that none
of the non-stationary GEV models with the physical covariate overperformed the GEV
counterpart models. This is the case for all the stations in the study basin. Therefore,
there is insufficient evidence to express the AMF non-stationarity in relation to the studied
climate drivers. Figure 5 shows the flow data plotted against physical covariates at Station
406208 to examine whether flow is correlated with the covariates used. As can be seen from
Figure 5, there is no strong correlation between AMF and physical covariates (SOI, DMI,
SAM, and TPI).

The methodology developed in this study can be applied to different study areas by
substituting data specific to the region under consideration. This methodology has the
potential to yield more accurate design flood estimations, contributing to the successful
design and operation of water infrastructure systems. In this study, non-stationary models
were developed by considering one covariate at a time for the location and/or scale
parameters, following a similar approach adopted by several studies (e.g., [39,48]) in the
literature. In the next phase, a multivariate linear and non-linear regression analysis of the
covariates in the non-stationary models will be conducted. Furthermore, the performance
of different statistical distributions, such as Log-Pearson Type 3 and Generalized Pareto,
can be investigated in future studies.
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5. Conclusions

In this study, non-stationarity of annual maximum floods (AMFs) was investigated
through a methodology consisting of the MK trend test, Pettitt change point test, and
non-stationary GEV models, and the methodology was applied to Campaspe River Basin
using data from six flow stations located at the outlet of the represented sub-basins. Below
are the main conclusions from this study:

• Statistically significant decreasing trends (at 0.01 and 0.05 significance levels) in AMFs
were detected regarding almost all stations in Campaspe River Basin.

• The year 1996 was identified as the statistically significant change point at almost all
stations.

• Non-stationary GEV models had a time covariate that outperformed the stationary
counterparts for two stations (Stations 406235 and 406250).

• The difference between the design floods of SGEV and NSGEV is particularly impor-
tant for the NSGEV15 model with time-varying location and scale parameters.

• There is not enough evidence to state that ENSO, SAM, IOD, or IPO had significant
effects on AMF non-stationarity in the basin.

In this study, annual average index values (SOI, DMI, TPI, and SAM index) repre-
senting the climate drivers were used. It is worth investigating effects of monthly and/or
seasonal index values on the AMF non-stationarity instead of the averaged index in future
studies. Also, it is recommended to employ other physical covariates such as annual rainfall,
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existence of reservoirs (for the disturbed basins), and land use (change) in non-stationary
GEV models in future studies.
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