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Abstract: The heavy metal adsorbents developed based on biomass resources have valuable applica-
tion prospects due to the characteristics of rich sources, renewability and low cost. In the present work,
a carboxyl functioned loofah fiber (LF@AA) was synthesized via UV-induced polymerization, and its
adsorption capacity for cadmium (Cd2+) was investigated systematically. This modification resulted
in the effective combination of a loofah fiber template and polyacrylic acid (PAA), which promoted its
adsorption of Cd2+ to significantly increase to 339.3 mg·g−1, and the applicable pH range was 4.0~7.0.
Furthermore, the adsorbability of LF@AA remained stable at a high level after eight consecutive
cycles. The adsorption kinetics and isotherm parameters revealed that the adsorption characteristics
of cadmium conformed to the Weber–Morris and pseudo-second-order kinetics equations, and the
adsorption process of cadmium conformed to Redlich–Peterson and Langmuir models. In addition,
consequences of EDS, FTIR, and Zeta potential analysis reflected that the main adsorption mechanism
should be ion exchange. Cd2+ was drawn to the adsorbent surface by electrostatic binding, and
ion exchange occurred to form a bidentate chelate. This study suggests that it is reasonable and
feasible to use natural biomass materials to develop efficient adsorbents to treat heavy metal pollution
in wastewater.

Keywords: adsorption; Cd2+; biomass fiber; modification; kinetics

1. Introduction

With the rapid development of industry, the discharge of industrial wastewater con-
taining high-density heavy metals has caused serious water pollution. Cadmium is exten-
sively used in the field of alloy manufacturing, plastic stabilizer manufacturing, pigments
and batteries; however, cadmium is very highly toxic, and causes grave harm to living
organisms, because it is easily enriched in the vital organs of organisms and has potential
carcinogenicity. The European Union treats cadmium as a high-risk carcinogen and toxic
agent. The Environmental Protection Agency (EPA) had set its maximum concentrations
in drinking water at 10 µg/L and planned to prune it down to 5 µg/L [1]. Therefore, it is
meaningful to consider the removal of cadmium from wastewater. Various purification
methods have been proposed for the treatment of heavy metals, e.g., chemistry precip-
itation, reverse osmosis, electrochemical treatment, and so forth [2]. Aside from these,
adsorption is highly recommended because it is clean, requires low investment, highly
efficient, and easy to operate [3].

Recently, there is a growing interest in the utilization of agricultural by-products or
agricultural and forest product processing wastes, such as sugarcane bagasse, pineapple
peel, fruit peel, straw, seed shells, and rice husks, to exploit cost-effective adsorbents for the
separation and enrichment of heavy metal [4–7]. It is known that a biomass resource has
splendid material sources, it is renewable, is low cost, and has particular properties, such as
biodegradability, biocompatibility and homogeneity. However, most of these adsorbents do
not have superlative performance in adsorption and/or reuse. Many studies on adsorbent
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modification methods have recently been carried out, such as heat treatment [8,9], acid
treatments, grafting [10], metal oxide loading, and organic compound coating [11]. Among
them, UV-induced polymerization is considered to have excellent efficacy because the
grafted polymer contains abundant functional groups, resulting in the muscular coordina-
tion ability for metal ions [12]. This modification can form a uniform micro-villous layer on
the surface without damaging the original structure of the substrate. Specifically, benefitting
from properties of the elastic design, convenient control, and tight binding, the UV-induced
polymerization not only can realize efficient adsorbent capacity but also keep the excellent
properties of the selected substrate [13]. It has been reported that excellent adsorbents have
been prepared based on natural minerals and natural polymers (e.g., attapulgite, diatomite,
biomass fiber, and silica fume) by UV-induced polymerization [12–15].

Loofah sponge fiber (LF), which is the vascular bundle of the dried ripe fruit of Luffa
cylindrica (L.) Roem is known for its complex interconnecting porous structure, which
has conspicuous mechanical properties and practical surface chemistry characteristics at
remarkably low densities [16–18]. Furthermore, LF is often used as a natural adsorbent due
to its numerous advantages, including effectiveness, being innoxious, cost-effectiveness,
multi-hole properties, ruggedness, and biodegradability [19,20]. At present, due to its
microsponge structure and large number of micro-cell fibers, natural LF can be nominated
as a great candidate for the separation of pollutants from aqueous solutions in the field
of environmental protection. Researchers have used natural LF as an adsorbent or carrier
to remove heavy metals, COD, and nitrogen from wastewater and have achieved good
treatment results [21–24].

Natural LF is mainly composed of cellulose/hemicellulose, hemicellulose, lignin,
extractives, and ashes, which do not include functional groups of adsorption, as well as
ion exchange. However, the LF is rich in hydroxyl groups, which are easily modified by
amino groups or carboxylate groups. Several strategies have been suggested to improve
the adsorption capacity of natural LF, such as ultraviolet radiation grafts [15,25], microbion-
ation [26,27], composite materials [28–30], activated carbon [31], and modified biochar [32].
However, the literature on the removal of cadmium by these agricultural by-products-based
adsorbents is still scarce, and to the best of our knowledge, the adsorbent functionalized
loofah sponge structure with carboxyl groups (LF@AA) for the recovery of cadmium has
not been reported.

This paper aims to prepare LF@AA supported on LF’s three-dimensional natural
polymer networks via UV-induced polymerization and verify its removal ability of Cd2+

from wastewater. The physical and chemical characterization of LF@AA was conducted.
Several batches of adsorption experiments were carried out to study the effects of pH, ionic
strength, cycle number, kinetics, and isotherms on adsorption. The regeneration of the
materials was also studied for potential practical applications. Through this study, the
mechanisms for Cd2+ removal were better understood.

2. Materials and Methods
2.1. Materials

The LF was obtained from Hubei Province, southern China. Sodium hydroxide
(NaOH), acrylic acid (AA), ethanol, acetone, benzophenone (BP), hydrochloric acid (HCl),
ferrous ammonium sulfate ((NH4)2Fe(SO4)2·6H2O), and cadmium nitrate (Cd(NO3)2) were
of analytical grade and used as received.

2.2. Synthesis of LF@AA

Typically, the LF washed with ethanol and distilled water was dried at 105 ◦C for 12 h,
and then, particles of 0.05–0.2 cm were screened. The LF&BP was prepared by immersing
a certain quality of LF in a certain concentration of BP ethanol solution and drying it at
323.15 K in a vacuum environment. The grafting solution was produced by dissolving a
certain amount of AA and ferrous ammonium sulfate into a 25% ethanol solution. The
LF&BP soaked (24 h) in the grafting solution was irradiated with ultraviolet light (25 min)
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and then washed clean with boiling water to obtain the clean product (LF@AA). LF@AA
was then soxhlet extracted (24 h) with acetone, soaked (30 min) in 2.0% NaOH solution,
washed, and dried (8 h) in a vacuum at 80 ◦C. The graft ratio (%) was calculated as follows:

Grafting yield = (W2 − W1)× 100/W1 (1)

where W1 (g) and W2 (g) represent the original weight and the grafted weight of the
sample, respectively.

2.3. Characterization Analysis

The microscopic characteristics of the samples were respected by scanning electron
microscopy (SEM, SU8010, Hitachi, Ltd., Tokyo, Japan) with an energy-dispersive X-ray
spectroscopy (XPS, MULT1LAB2000, Thermo Fisher Scientific Inc., Waltham, MA, USA).
The spectral changes of samples at different stages were observed via Fourier transform
infrared spectrometry (FTIR, Nicolet iS50, Thermo Fisher Scientific Inc., Waltham, MA,
USA), the spectra were implemented based on ATR (Attenuated Total Reflection), and the
recording range was 4000 to 400 cm−1.

2.4. Factors Affecting Adsorption Properties

The effects of the Cd2+ concentration, pH value, interfering ions, and temperature on
the adsorption performance of LF@AA were evaluated through adsorption experiments.
The Cd2+ solution was prepared by dissolving Cd(NO3)2 salt into deionized water.

Typically, the LF@AA (1.0 g·L−1) was added to a certain concentration of the Cd2+

solution and stirred for 4 h (150 rpm, 25 ◦C). After filtration, the concentration of Cd2+ in
the supernatant was monitored with an inductively coupled plasma emission spectrom-
eter (ICP-8100, Shimadzu Co., Ltd., Kyoto, Japan). The sorption capacity was calculated
(Equation (2)).

qe = (C0 − Ce)× V/m (2)

where qe is the saturated adsorption capacity (mg·g−1), C0 is the initial concentration of
Cd2+ (mg·L−1), Ce is the equilibrium concentration of Cd2+ (mg·L−1), V is the volume of
Cd2+ solutions, and m is the mass of the sorbent (g).

The pH of the solution was adjusted to a range of 2.0–7.0 with 1 M NaOH or HCl. The
effect of interfering ions on Cd2+ adsorption was determined by adding the adsorbent to
Erlenmeyer flasks filled with Cd2+ solution (400 mg·L−1) and interfering ions (K+, Na+) of
different concentrations from 0 to 100 mmol·L−1.

2.5. Adsorption: Kinetic Study

Adsorption kinetics have always been considered an important tool to characterize
the adsorption efficiency and application prospects of an adsorbent. In this work, the
adsorption kinetics were assessed at regular intervals with Cd2+ concentrations of 200,
300, and 400 mg·L−1; the pseudo-first-order and pseudo-second-order kinetic models are
summarized as follows [33,34]:

qt = qe ×
(

1 − e−k1t
)

(3)

qt = k2q2
e t/1 + k2qet (4)

where qt (mg·g−1) is the Cd2+ adsorption capacity at time t, t (min) is the contact time,
and k1 (min−1) and k2 (g·mg−1·min−1) are the rate constants of pseudo-first-order and
pseudo-second-order adsorption, respectively.

Furthermore, the Weber–Morris diffusion model was also used to fit the experimental
data, to evaluate the rate-limiting step during the overall adsorption process [35]. The
Langmuir, Freundlich, and Redlich–Peterson isotherm models were tested, and the specific
methods are referred to related studies [36,37].
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2.6. Adsorption: Equilibrium Study

The adsorption isotherms on LF@AA were obtained with different Cd2+ concentrations
from 0 to 500 mg·L−1 at 25, 35, and 45 ◦C. In this work, the Langmuir, Freundlich, and
Redlich–Peterson isotherm models were tested, and the nonlinear forms are as follows:

qe =
qmKLCe

1 + KLCe
(5)

qe = KFC1/n
e (6)

qe =
KRPCe

1 + aRPCβ
e

(7)

where Ce is the equilibrium concentration of Cd2+ (mg·L−1), qe is the amount of Cd2+

adsorbed at equilibrium (mg·g−1), qm is the maximum adsorption capacity (mg·g−1),
and KL (L·mg−1) is the Langmuir binding constant, which is related to the energy of
adsorption; KF (mg1−1/n·L1/n·g−1) and 1/n are Freundlich constants representing the
adsorption capacity and adsorption intensity, respectively; KRP (L·g−1), aRP ((L·mg−1)β),
and β (0 < β < 1) are Redlich−Peterson isotherm constants.

2.7. Regeneration

Eight cycles of regeneration and reutilization were performed to investigate the
reusability of LF@AA. Typically, 20 mg of adsorbent was added to 20 mL of Cd2+ so-
lution (400 mg/L), shaken (150 rpm) for 4 h, and separated by filtration. After filtration,
the adsorption capacity of LF@AA was obtained by measuring the concentration of Cd2+

in the supernatant. Afterward, the adsorbent was washed alternately with 0.1 M HCl
(desorption agent) and 0.1 M NaOH (active agent). After washing, the adsorbent continued
to be reused. The regeneration study was conducted by suspending adsorbent-saturated
Cd2+ into eluted solution with different concentrations (0.1–1.5 mol·L−1) and vibrating at
25 ◦C for 6 h. Then, the adsorbent was separated via filtration, and the Cd2+ concentration
was determined using the aforementioned determinate methods.

The desorption rate was calculated as follows:

Desorption rate (%) = CnV/mqn−1 × 100% (8)

where m (g) is the adsorbent weight, qn (mg/g) is the adsorption capacity, Cn (mg/L) is the
equilibrium concentration of Cd2+ at cycle number n, and V (L) is the solution volume.

3. Results and Discussion
3.1. Adsorbent Characterization

After modification, the fiber of LF@AA was uniformly thickened, and after drying, it
could be found that LF@AA still maintained the natural three-dimensional spongy structure
of Luffa, which indicated that the ultraviolet photocatalytic grafting technology could be
used to uniformly graft polyacrylic acid on the Luffa fiber skeleton. SEM/EDS analysis
results of the loofah fiber samples at different stages are shown in Figure 1. Noteworthy
differences were observed between the surface topography of the LF (Figure 1a) and that of
LF@AA (Figure 1b). As represented in Figure 1a, the surface of LF was moderately smooth
and has no discernible porous structures on it, whereas the LF@AA (Figure 1b) surface
was rougher, irregular, striped, and porous, the porosity of the adsorbent was increased
significantly, and the specific surface area and pore volume were increased correspondingly.
The results of energy spectrum analysis showed that the composition of elements on the
surface of LF had changed obviously. The proportion of C and O elements on the surface
of LF was 45.96% and 54.04%, while the proportions of C and O elements became 32.62%
and 34.89% after modification, and a large number of Na elements were discovered. This is
because LF is mainly composed of cellulose, and its surface elements are mainly C and O.
The grafting successfully introduced -COOH of polyacrylic acid. After NaOH treatment,
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carboxyl groups on the surface of LF existed in the form of -COO-Na, thus affecting the
element composition of the surface of LF, which also indicates that successful grafting had
occurred on the surface of LF [38].
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Figure 1. SEM/EDS analysis of LF (a), LF@AA (b), and Cd2+ adsorbed LF@AA (c).

It was revealed that the change in surface structure was due to the successful attach-
ment of polymer chains to the surface [12,38,39]. Furthermore, after the adsorption was
completed, EDS showed that the Cd element appeared on the surface of LF@AA (Figure 1c),
with content as high as 31.63%, while Na content decreased significantly, indicating that
ion exchange had occurred at the adsorption site [14]. Meanwhile, fiber bundles of LF@AA
and Cd2+-adsorbed LF@AA were looser than natural loofah, suggesting that UV-induced
polymerization has good effects on the disaggregation of fiber bundles.

Figure 2 shows the FTIR spectrum of natural loofah samples; for LF, some absorption
peaks could be identified at ca. 3337 cm−1 (the stretching vibration of –OH and -NH2), ca.
2892 and 1638 cm−1 (the stretching vibrations of the C–H bond and carbonyl stretching
of para-substituted ketones or aryl aldehydes) [40], and ca. 1162, 895, and 1018 cm−1

(belonged to asymmetric bridge C–O–C stretching, ß-glucoside linkage, and C–O, C–C
stretching vibrations or C–OH bending in hemicelluloses, respectively) [39]. In the FTIR
spectra of LF@AA, there appeared to be three new characteristic absorption peaks at 1696,
1450, and 1162 cm−1, which are related to the stretching vibration of C=O, stretching
vibration, and symmetrical stretching of -COO groups [41], reflecting that carboxyl groups
were grafted onto the LF. After Cd2+ adsorbed, the C=O stretching peak of LF@AA red-
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shifted about 94 cm−1 to 1602 cm−1. With a new peak at 1317 cm−1, it could be concluded
that the carboxyl salt was established [42,43]. Meanwhile, the peak at 1160 cm−1 was no
longer obvious, indicating that the adsorbed Cd2+ has formed a bidentate chelation with
-COO- sites.
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3.2. Effect of pH

The pH value of the working solution is one of the steering parameters that affect the
adsorption capacity of adsorbate onto the adsorbent by influencing the degree of ionization,
protonation of the functional groups of the adsorbents, adsorbent surface charge, and the
types of metal [19]. Figure 3a demonstrates the effect of pH on the adsorption capacity
of LF@AA and natural LF. To prevent the formation of precipitates by the combination
of metal ions and hydroxyl ions, the initial pH was below 7.0. Under strongly acidic
conditions (pH = 2.0), the adsorption capacity of LF and LF@AA for Cd2+ was at a low
level, which was 24.1 mg/g and 143.7 mg/g, respectively. With the increase in pH, the
adsorption capacity of LF@AA increased substantially, while that of LF did not increase
significantly. In the pH range of 4–7, the adsorption capacity of LF@AA for Cd2+ could be
kept at 315.0 mg/g, which is about 9 times that of LF. The adsorption capacity of LF@AA
for Cd2+ was significantly increased compared with that of natural LF, indicating that
the carboxyl group was effectively grafted with LF. The adsorption capacity of LF@AA
was minimum at pH 2.0, which may be because there are countless positive charges (H+)
on the surface of the adsorbent under strongly acidic conditions, and H+ has a higher
concentration and mobility, which is preferentially adsorbed and competes with Cd2+

cations, hinders its adsorption, and thus provides a huge static repulsive force [19]. In
addition, at low pH, the Coulomb repulsion also hinders the adsorption of metal ions.

The results of the Zeta potential measurement (Figure 3b) showed that the surface of
LF@AA was negatively charged, the charge intensity built up over the increase in pH, and
correspondingly, the adsorption capacity of positively charged Cd2+ was also enhanced. As
expected, the adsorption capacity of LF@AA increased sharply with the increase in pH and
reached a higher level at pH 4.0–7.0, indicating that the LF@AA could effectively remove
Cd2+ from wastewater in a wide range of pH values. When the pH value is higher, the
weak acidic carboxyl group is deprotonated, more negative binding sites are produced,
the attraction for positively charged metal ions is correspondingly enhanced, and the
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adsorption capacity is enhanced [44]. On the other hand, the adsorption of the exposed
surface functional groups, porous structure, and -COO- groups from grafting may enhance
the adsorption capacity of LF@AA.
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3.3. Effect of Ionic Strength

In a check to see the practical application properties of LF@AA, and offers further
reveal the adsorption principle, the effects of ionic strength were studied. The result
(Figure 4) showed that the adsorption efficiency of LF@AA is negatively correlated with the
concentration of alkali metal ions. During the adsorption, the main adsorption mechanism
should be ion exchange. Cd2+ was drawn to the adsorbent surface by electrostatic binding,
and then, ion exchange occurred to form a bidentate chelate. When a large number of
impurities in cations coexisted in an aqueous solution, there would be fierce competition
between the target adsorbate and impurity cations. Moreover, as the main driving force
between Cd2+ and LF@AA, electrostatic binding plays an important role. In the presence of
Na+ and K+, the electrostatic shielding effect should be one of the principal factors leading
to the obvious decrease in the adsorption of LF@AA [12,45]. Nevertheless, it was relevant
that the adsorption capacity is maintained a high level, even when the alkaline metal ion
concentration is approximately 25 times the initial concentration of Cd2+. This also suggests
that the affinity of Cd2+ in the adsorption site is stronger than that of Na+ and K+ due to
the higher valence, and it is preferred to form bidentate chelation with -COO- sites.
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3.4. Kinetic Study

The adsorption equilibrium time is one of the crucial factors affecting the mass pro-
duction of an adsorbent. The effect of different reaction times (1–480 min) and different
pollutant concentrations (200–400 mg·L−1) on the adsorption capacity was investigated.
The results (Figure 5) indicated that the adsorption capacity of Cd2+ increased rapidly at
the beginning of the reaction, and the adsorption capacity was close to saturation at 50 min.
After 50 min, the adsorption capacity increased slowly with the increase in contact time,
and the adsorption reaction gradually approached equilibrium. The saturated adsorption
capacity increased with the increasing initial Cd2+ concentration. When the initial Cd2+

concentration increased from 200 mg·L−1 to 400 mg·L−1, the saturated adsorption capacity
correspondingly increased from 180.8 mg·L−1 to 330.9 mg·L−1. This suggests that the
porous structure of modified LF@AA and a large number of -COO- groups produced by
grafting provide convenient conditions for the adsorption of Cd2+.
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The change tendency of the adsorption rate may be explained by the following reasons:
firstly, under the action of ion exchange and charge neutralization, Cd2+ quickly migrated
and adsorbed to the adsorbent surface. While the adsorption capacity on the adsorbent
surface was close to saturation, the metal ions diffused into the pores of LF@AA and were
gradually adsorbed on the inner surface. Internal diffusion is more difficult than surface
adsorption, and this adsorption process takes a longer time, and a prolonged adsorption
process leads to slow growth of the adsorption capacity in the later period [46].

To further explore the adsorption mechanism of LF@AA for Cd2+, the kinetic model
and intraparticle diffusion model were carried out to fit the adsorption process. Table 1
and Figure 6a shows the results of the pseudo-first-order and pseudo-second-order kinetic
models fitting in three different initial Cd2+ concentrations. The constants of these kinetic
models (Table 2) show that compared with qe,calc,1, qe,calc,2 comes closer to the experimental
value (qe,exp). Moreover, compared with the pseudo-first-order equation, the pseudo-
second-order equation had larger R2 values (0.9974~0.9862), which suggests that the pseudo-
second-order equation had a better fitting effect on the adsorption process of Cd2+. To be
more specific, chemisorption may be the rate-determining step in Cd2+ adsorption, which
involves the exchange of electrons between heavy metal ions and LF@AA. In addition,
the adsorption rate is in direct proportion to the square of the number of free sites, which
accords with the term (qe − qt)2 in the pseudo-second-order model [46].
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Table 1. Coefficients of kinetic models.

C0.
(mg·L−1)

qe,exp
(mg·g−1)

Pseudo-First-Order Model Pseudo-Second-Order Model

k1
(min−1)

qe,cal,1
(mg·g−1) R2 SSE

(%) k2 (g·mg−1·min−1)
qe,cal,2

(mg·g−1) R2 SSE
(%)

200 181.2 0.05318 172.4 0.9794 8.8 0.000447 184.4 0.9974 3.2
300 279.5 0.04791 257.9 0.9733 21.6 0.000234 281.3 0.9964 1.8
400 337.0 0.04459 314.9 0.9632 22.1 0.000188 340.1 0.9862 3.1
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Table 2. Parameters of Weber–Morris model.

C0 (mg·L−1)
First Stage (External Diffusion) Second Stage (Intraparticle Diffusion)

ki,1(mg·g−1·min−0.5) R2 ki,2 (mg·g−1·min−0.5) R2

200 24.23 0.9833 150.12 0.9051
300 34.87 0.9862 205.12 0.9188
400 42.15 0.9854 244.12 0.9469

The relationship between qt and t0.5 of Cd2+ adsorption under different pollutant
concentrations was studied. The results (Figure 6b) showed that despite the different initial
concentrations, the qt and t0.5 could be fitted by a high slope straight line and a low slope
straight line in turn. In the first stage, the adsorption rate was fast, and the adsorption
capacity reached about 75% of the equilibrium adsorption capacity in the first 40 min,
which was due to the rapid binding of adsorption sites on the adsorbent surface with Cd2+

in this stage. With the progress of adsorption, a large number of sites on the surface of
the adsorbent were occupied. To achieve further adsorption, Cd2+ needs to diffuse into
the pores of the adsorbent to complete the adsorption. Therefore, the rate control step in
the second stage is mainly the internal diffusion process, and the adsorption rate becomes
slower. The relevant parameters of the Weber–Morris model are contained in Table 2. It
can be seen that R2 was greater than 0.9 under different initial pollutant concentrations,
indicating that the Weber–Morris model is suitable for fitting the adsorption process of
LF@AA. Furthermore, inner diffusion is more time-consuming than outer diffusion [47].
Therefore, the results of the kinetic analysis showed that both external and internal diffusion
played a part in the process of cadmium adsorption by LF@AA, and the internal diffusion
should be dominant.

3.5. Adsorption Isotherms

The effect of temperature on the adsorption properties of LF@AA was analyzed. The
results (Figure 7) showed that the saturated adsorption capacity was positively correlated
with temperature. When the temperature increased from 303.15 K to 313.15 K and 323.15 K,
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the saturated adsorption capacity increased from 345.0 mg·g−1 to 347.7 and 352.8 mg·g−1,
respectively. The adsorption capacity was increased with the increase in temperature, but
the effect was not significant. Generally speaking, the activity of metal ions and adsorbents
increased with the increase in temperature, and the interaction between solvent and solid
surface decreased with the increase in temperature. Therefore, the higher the temperature,
the easier the transfer and diffusion of adsorbates to the adsorbent surface and the more
adsorption sites are exposed, which enhances the possibility of adsorbent adsorption.
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Redlich–Peterson, Langmuir, and Freundlich models were utilized to fit the isotherm
adsorption curve of Cd2+. The fitted-curve and model parameters are shown in Figure 8
and Table 3, respectively. The results showed that the average R2 values of the Redlich–
Peterson and Langmuir models were greater than 0.97, indicating a significant correlation.
In addition, the error between the calculated values of qm of Langmuir fitted-curve and
the experimental results was less than 3%, indicating that the adsorption characteristic
of LF@AA is consistent with monolayer adsorption. The Redlich–Peterson isotherm has
the has the characteristics of both Langmuir and Freundlich isotherms [37]. The β values
of Redlich–Peterson and Langmuir isotherms converged with the increase in tempera-
ture, which may be due to the uniform distribution of binding sites on the surface of the
adsorption medium.
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Table 3. Parameters of the adsorption isotherm.

T (K)

Langmuir Isotherm Constants Freundlich Isotherm Constants Redlich−Peterson Isotherm Constants

qm
(mg·g−1)

KL
(L·mg−1) R2 KF

(mg1−1/n·L1/n·g−1) 1/n R2 KRP(m·mg−1) αRP
(Lβ·mg-β) β R2

25 ◦C 335.9 1.0201 0.9706 162.28 0.1756 0.8339 421.57 1.4757 0.9584 0.9768
35 ◦C 339.6 1.0278 0.9699 163.80 0.1776 0.8309 427.22 1.4781 0.9581 0.9760
45 ◦C 345.2 1.1386 0.9723 168.22 0.1761 0.8231 447.53 1.4540 0.9698 0.9736

3.6. Regeneration

Reusability is an important consideration in determining whether a new adsorbent
can be used in practice. The reusability of LF@AA was verified based on eight consecutive
adsorption cycles. The result (Figure 9) shows that the total adsorption capacity of LF@AA
for Cd2+ decreased slightly from 339.3 to 318.8 mg/g after eight consecutive cycles, only
decreasing by 6.0%, indicating that LF@AA had a stable adsorption efficiency in the reuse
process. Compared with the reported results, the reusability of LF@AA is also quite
satisfactory [21,48]. Therefore, LF@AA has a large adsorption capacity and can be reused
many times, which has the potential to become a cost-effective heavy metal adsorbent.
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4. Conclusions

In this work, a novel three-dimensional natural polymer network-based adsorbent
was successfully prepared via UV-induced polymerization, allowing a uniform polymer
brush on the matrix to be obtained, which resulted in an outstanding adsorption capacity of
339.3 mg·g−1 and widely applicative pH range (4.0–7.0) for the removal of Cd2+. Moreover,
the coexistence of cations (Na+ and K+) in solutions is unfavorable to the adsorption of
Cd2+, and the order is Na+ > K+. According to the characterization analysis, the main
adsorption mechanism should be ion exchange. The Cd2+ electrostatically adsorbed on
the surface of the adsorbent was synthesized into a bidentate chelate under the action of
ion exchange. The results of the adsorption kinetics analysis showed that the adsorption
process of Cd2+ was divided into external diffusion and internal diffusion and followed the
pseudo-second-order kinetic and the Weber–Morris equations. The adsorption isotherm pa-
rameters showed that the adsorption process followed the Langmuir and Redlich–Peterson
models. In addition, the excellent reusability of LF@AA was also confirmed after eight-time
regeneration. The excellent adsorption performance of LF@AA makes it an attractive adsor-
bent for the treatment of water contaminated with Cd2+ and realizes the high added-value
utilization of natural cellulose.
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