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Abstract: Mismanagement of fresh water is a primary concern that negatively impacts agricultural
productivity. Judicious use of water in agriculture is possible by estimating the optimal requirement.
The present practice of estimating crop water requirements is using reference evapotranspiration
(ET0) values, which is considered a standard method. Hence, predicting ET0 is vital in allocating and
managing available resources. In this study, different machine learning (ML) algorithms, namely
random forests (RF), extreme gradient boosting (XGB), and light gradient boosting (LGB), were
optimized using the naturally inspired grey wolf optimizer (GWO) viz. GWORF, GWOXGB, and
GWOLGB. The daily meteorological data of 10 locations falling under humid and sub-humid regions
of India for different cross-validation stages were employed, using eighteen input scenarios. Besides,
different empirical models were also compared with the ML models. The hybrid ML models were
found superior in accurately predicting at all the stations than the conventional and empirical models.
The reduction in the root mean square error (RMSE) from 0.919 to 0.812 mm/day in the humid region
and 1.253 mm/day to 1.154 mm/day in the sub-humid region was seen in the least accurate model
using the hyperparameter tuning. The RF models have improved their accuracies substantially using
the GWO optimizer than LGB and XGB models.

Keywords: evapotranspiration; grey wolf optimizer; machine learning; meta-heuristics; humid;
sub-humid; random forests; boosting

1. Introduction

India is projected to be the World’s most populous country by 2023, surpassing China,
which will have to feed about 1.66 billion people by 2050 [1]. Thus, the pressure on natural
resources and food systems to produce more food would become a reality. Effective plan-
ning on water resource utilization should be the objective for water resource planners. The
per capita availability of water is decreasing day by day due to the increase in population.
According to the Ministry of Jal Shakti, Government of India, the average annual per capita
water availability was 1816 cubic meters, 1545 cubic meters, and 1487 cubic meters for 2001,
2011, and 2021, respectively. It was estimated to further deteriorate to 1367 cubic meters
by 2031.

Efficient water management in agriculture is required in developing nations, which are
disadvantaged due to the lack of infrastructure and scientific advancements [2]. The need
for crop water requirement-based irrigation practices in these nations is high to improve
irrigation efficiency. Various methods and techniques are used to estimate the crop water
requirement, of which the reference evapotranspiration (ET0) is a reliable and standard
practice. ET0 is a parameter that could be employed for all the regions based on the
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local climatic parameters [3]. The estimation of models is classified as (a) fully physically-
based combination models that employ mass and energy conservation principles; (b) semi-
physically based models that consider either mass or energy conservation; and (3) black-box
models that are empirical in nature [4,5]. Many researchers have formulated empirical
and semi-empirical methods to estimate the ET0, like mass transfer based [6–8], radiation
based [9–14], temperature based [15–17], and combination based [18,19]. Some empirical
equations might require extensive agro-meteorological data, which are unavailable for
every region. Therefore, there is a scope for models with less data requirement [20].

ET0 is a phenomenon that depends on various meteorological parameters that give
rise to a complex non-linear problem. Henceforth, machine learning (ML) models have
been extensively used in their estimation which could solve these complex problems [21].
The previous studies available have been discussed below. Various data-driven algorithms
like random forests (RF) [22–27], gradient boosting decision tree (GBDT), extreme gradi-
ent boosting (XGB) [24,27,28], light gradient boosting (LGB) [27,29–31], etc. have been
employed for ET0 estimation. Most of the research did not confine to a single algorithm.
However, a comparison is made either with different machine learning techniques or em-
pirical models. Shiri et al. [22] evaluated 12 different machine learning algorithms like
multivariate adaptive regression spline (MARS), boosted regression tree (BT), random
forest (RF), model tree (MT), support vector machine (SVM), etc., with other optimizers
for stations in Iran using 12-year meteorological data. They have compared two input
scenarios, i.e., radiation and temperature based. A study in Brazil [32] used the machine
learning models like RF, XGB, artificial neural network (ANN), and convolutional neural
network (CNN) models for daily and hourly ET0 estimates. Zhou et al. [27] have used the
agro-meteorological data from twelve stations in China for ET0 prediction. They have tested
the algorithms like extremely randomized trees, RF, and GBDT, and gradient boosting
models like XGB, LGB, and gradient boosting with categorical features support (CatBoost),
factorization machine-based neural network model (DeepFM), and SVM. They have con-
cluded that the CatBoost and LGB models outperformed the other models, followed by
XGB and GBDT.

The evaluation of ET0 models in New Mexico, United States of America, using extreme
learning machine (ELM), genetic programming (GP), RF, and SVM for different climates,
was done by [33]. The results of their study indicated that the models performed in the
order of SVM > ELM > RF > GP. Another study used 14 stations in different climates, i.e.,
arid desert, semi-arid steppe, semi-humid cold-temperate, semi-humid warm temperate,
humid subtropical, and humid tropical regions in China for ET0 prediction [30]. They
have evaluated multi-layer perceptron (MLP), generalized neural network (GRNN) and
adaptive neuro-fuzzy inference system (ANFIS), SVM, kernel-based non-linear extension
of arps decline (KNEA), M5 model tree (M5Tree), XGB and MARS models and suggested
the use of SVM over other models. Wu et al. [34] compared the basic models like RF, SVM,
MLP, and K-Nearest Neighbor (KNN) regression and their stacked and blended ensemble
models using data from five stations in China.

The application of different optimizers in conjunction with machine learning and deep
learning models has been reported in ET0 modelling. These research findings have revealed
an improvement in accuracy over conventional ML models. Yan et al. [35] evaluated the
performance of hybrid XGB coupled with whale optimization algorithm (WOA) for ET0
modelling at humid and arid stations in China. They concluded that hybrid models had
improved the accuracies in both local and external data scenarios. Grey wolf optimizer
(GWO) has been employed with ANN by [36] for modelling purposes in Iran. The results
were compared with least square support vector regression (LS-SVR) and conventional
ANN. They found that the hybrid models were superior in their prediction. Dong et al. [37]
attempted to use four types of bio-inspired optimizers with the kernel-based non-linear
extension of arps decline (KNEA) model for 51 stations in China. The optimizers they
employed were the grasshopper optimization algorithm (GOA), GWO, particle swarm
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optimization algorithm (PSO), and salp swarm algorithm (SSA). They reported that the
GWO-optimized KNEA performed better than other models.

Meta-heuristic optimizers have not been applied widely in Indian conditions, accord-
ing to previous studies. Additionally, the literature lacked information on how to optimize
tree-based ML models. As a result, the goal of this study is to determine if GWO can
improve the efficiency of tree-based models. The specific objectives of this study are (1) to
estimate the ET0 using state-of-the-art machine learning models like RF, XGB, and LGB
for humid and sub-humid climates of India; (2) to couple these models with a heuristic
GWO technique for finding any improvement in the efficiency and (3) to compare various
empirical models with the ML models in the study area.

2. Materials and Methods
2.1. Study Area and Data Collection

Indian climatic conditions can be broadly divided into arid, semi-arid, humid, and
sub-humid regions. The humid zones over Southeast Asia have a length of growing
period (LGP) of more than 270 days and an annual rainfall above 1500 mm, while the
sub-humid zones have an LGP of 180 to 270 days and a rainfall amount between 1000 and
1500 mm annually [38]. The percentage of the total geographical area of sub-humid and
humid regions in India is about 24% and 17%, respectively. Historically, these regions have
recorded high relative humidity and adequate rainfall distribution. However, the change
in bio-climates is evident due to the reduction of sub-humid and humid regions’ areal
extent and subsequent increase in semi-arid and arid regions over India [39]. This poses a
challenge to the water availability in these regions, although with ample resources.

The agro-climatic data of sub-humid and humid regions of India were collected from
the All India coordinated research project on Agro-meteorology, ICAR, from 2001 to 2020.
The locations wherein the data were collected are depicted in Figure 1. The details of the
stations are described in Table 1. The elevations of these stations varied from 17 m in
Mohanpur to 1800 m in Ranichauri. The daily meteorological data consisting of maximum
air temperature (◦C), minimum air temperature (◦C), mean relative humidity (%), wind
speed at 2 m height (m/s), and the number of sunshine hours were collected from the ten
locations from both the regions.

Table 1. Details of the locations of the study area.

S. No. State Station Code AER Latitude (N) Longitude (E) Altitude (m)

1 Assam Jorhat JHT Humid 26◦45′ 94◦12′ 116
2 West Bengal Mohanpur MHP Humid 21◦50′ 87◦15′ 17
3 Himachal Pradesh Palampur PLP Humid 32◦07′ 76◦32′ 1220
4 Kerala Thrissur TRS Humid 10◦31′ 76◦13′ 28
5 Uttar Pradesh Faizabad FZB Sub-humid 26◦46′ 82◦08′ 97
6 Madhya Pradesh Jabalpur JBP Sub-humid 23◦11′ 79◦59′ 412
7 Chattisgarh Raipur RPR Sub-humid 21◦15′ 81◦37′ 290
8 Jharkhand Ranchi RNI Sub-humid 23◦20′ 85◦18′ 651
9 Uttarakhand Ranichauri RCH Sub-humid 30◦19′ 78◦24′ 1800

10 Bihar Samastipur SMP Sub-humid 25◦59′ 85◦40′ 51

These meteorological parameters affect the evapotranspiration rate by imparting the
energy required for vaporization and the rate of water vapour removal from the evaporating
surface. The air temperature surrounding the plant impacts the sensible heat of the air.
The humidity data would affect the difference in the vapour power of the air and the
evaporating surface. The wind speed affects the vapour removal, thereby affecting the
evaporation rate. The sunshine data are utilized to calculate the solar radiation, which
mostly affects the vaporization of the water to vapour.
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2.2. ET0 Estimaton Using FAO-56 Penman-Monteith and Empirical Equations

The ASCE Committee on Irrigation and Water requirements analysed different meth-
ods in estimating ET0. They found that the FAO 56 Penman-Monteith can be used in
all locations. Hence, the standardised equation of reference evapotranspiration is used
as the target variable in the modelling stages. The equation for predicting ET0 by FAO
56 Penman-Monteith is given below. The machine learning models were compared with
different empirical equations. The estimation of ET0 using different empirical equations
using the formulae as described in Table 2.
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Table 2. Formulae for FAO 56 Penman-Monteith and empirical equations used.

Method Symbol and Equations Reference

Target for the Models

FAO-56 Penman-Monteith ETPM =
0.408∆(Rn−G)+γ 900

Tmean+273 u2 (es−ea)

∆+γ(1+0.34 u2)
(1) [40]

Mass Transfer based

Albrecht (ALB) ETALB = F (es − ea)
where F = 0.4 i f u2 ≥ 1 m /s and F = 0.1005 + 0.297 u2, i f u2 < 1 m/s (2) [6]

Mahringer (MAH) ETMAH = 0.15072
√

3.6 u2(es − ea),
where (es − ea) in hPa (3) [7]

Penman (PEN)
ETPEN = 0.35

(
1 + 0.98

100 u2

)
(es − ea),

where (es − ea)in mm Hg and u2 in miles per day
(4) [8,41]

Radiation based

Jensen-Haise (JH) ETJH =
(

Rs
λ

)
(0.025 Tmean + 0.08) (5) [11,42]

Makkink (MAK) ETMAK = 0.61
(

∆
∆+γ

)(
Rs
λ

)
− 0.12 (6) [43]

McGuinness-Bordne (MGB) ETMGB =
(

Ra
λρ

)(
Tmean+5

68

)
(7) [12]

Priestly-Taylor (PT) ETPT = 1.26
(

∆
∆+γ

)(
Rn
λ

)
(8) [13]

Turc (TUR) ETTUR = 0.013
(

Tmean
Tmean+15

)
( 23.8846 Rs + 50), f or RH > 50% = 0.013

(
Tmean

Tmean+15

)
(23.8846 Rs + 50)

(
1 + 50−RH

70

)
, f or RH < 50%

(9) [14]

Temperature based

Hargreaves-Samani (HS) ETH−S = 0.0026
√

Tmax − Tmin ( Tmean + 17.8) (0.408 Ra) (10) [16]

Hargreaves-Samani 1 (HS1) ETHS1 = 0.0030 ( Tmax − Tmin)
0.4 ( Tmean + 20) (0.408 Ra) (11) [17]

Hargreaves-Samani 2 (HS2) ETHS2 = 0.0025
√

Tmax − Tmin ( Tmean + 16.8) (0.408 Ra) (12) [17]

Thorththwaite (Modified)
(THO) ETTHO = 0.533 N

12

(
10 Tmean

33.617

)1.033
(13) [44]

Combination based

Copais (COP)
ETCOP = 0.057 + 0.277(−0.0033 + 0.00812 Tmean + 0.101 Rs + 0.00584 Rs Tmean )+

0.643 (0.6416− 0.00784 RH + 0.372 Rs − 0.00364 RH) + 0.0124 (0.6416− 0.00784 RH+

0.372 Rs − 0.00364 RH)(−0.0033 + 0.00812 Tmean + 0.101 Rs + 0.00584 Rs Tmean )

(14) [18]

Valiantzas 1 (VA1) ETVA1 = 0.0393 Rs
√

Tmean + 9.5 − 0.19Rs
0.6 ϕ0.15 + 0.078 (Tmean + 20)

(
1− RH

100

)
(15) [19]

Valiantzas 2 (VA2) ETVA2 =
0.0393 Rs

√
Tmean + 9.5 − 0.19Rs

0.6 ϕ0.15 + 0.0061 (Tmean + 20)(1.12 Tmean − Tmin − 2 )0.7 (16) [19]

Notes: Units and Description of the parameters unless specified above: ET is the reference evapotranspiration,
mm/day; ∆ is the slope of the vapour pressure curve, kPa/◦C, Rn is the net radiation at the crop surface in MJ/ m2

day, G is the soil heat flux density in MJ/ m2 day, γ is the psychrometric constant in kPa/◦C, es is the saturation
vapour pressure, kPa; ea is the actual vapour pressure, kPa; u2 is the wind speed at 2 m above the ground surface,
m/s; Tmean is the mean daily air temperature,◦C; Rn is the net solar radiation, MJ/m2 day; Rs is the incident
shortwave solar radiation flux, MJ/m2/day; Ra is the extra-terrestrial solar radiation, MJ/m2 day; Tmax is the
maximum daily air temperature, ◦C; Tmin is the minimum daily air temperature, ◦C; N is the maximum possible
duration, hrs; RH is the mean daily relative humidity, %; and ϕ is latitude, Radians.

2.3. Description of Machine Learning Models and Optimizer
2.3.1. Random Forest (RF)

RF model generates output predictions by combining results from several regression
decision trees. RF is capable of capturing complex, non-linear interactions between the
features and produces a powerful prediction model. Being an ensemble method, RF trains
several decision trees in parallel with bootstrapping followed by aggregation (Figure 2a).
The trees in the ‘forest’ are generated based on a random selection of subset data from the
training set, and the bootstrapping ensures that each tree in the forest is unique [45,46].
For the final prediction, the RF regressor aggregates the decision made by individual
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trees. RF is robust to outliers, produces better generalization, and has easily tunable
hyperparameters [47].
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2.3.2. Extreme Gradient Boosting Model (XGB)

XGB provides an efficient and scalable implementation of gradients boosting frame-
work [48] suitable for both regression and classification problems. A typical gradient-
boosting approach is an ensemble of decision trees that are trained in a sequential man-
ner [49]. In gradient boosting, a better model is built by merging previous models until
the best model reduces the cumulative prediction error (Figure 2b). XGB was developed
with optimized and supports distributed computing, additionally improving flexibility and
portability. XGB leverages parallel computation to build trees across different processing
units. The algorithm supports effective pruning of trees for improving the computational
speed and sparsity-aware split finding to handle the missing data.

2.3.3. Light Gradient Boosting Model (LGB)

The LGB model is a gradient-boosting framework built on decision trees that boosts
the model’s effectiveness and consumes less memory. The key characteristic of LGB is that
the trees are grown leaf-wise instead of checking all of the previous leaves for each new
leaf [50]. LGB uses two novel approaches, viz., Gradient-based One Side Sampling and
Exclusive Feature Bundling (EFB), to achieve improved performance. Using the GOSS,
the major portion of the data points with small gradients are eliminated from calculating
the information gain, achieving significant time saving [51]. Using EFB, the mutually
exclusive features are bundled, achieving feature reduction without compromising the
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model performance. The model works effectively on benchmark datasets with increased
training speed compared to the conventional gradient-boosting methods.

2.3.4. Grey Wolf Optimizer (GWO)

GWO is an evolutionary, meta-heuristic algorithm inspired by the structure of the
leadership hierarchy and hunting mechanism of grey wolves in nature [52] and has been
proven to be a more practical and precise method for optimization problems [53]. It has
significant advantages over the other swarm intelligence approaches, such as a reduced
number of parameters and no requirement of derivation information during the initial
search, etc. [54]. In GWO, a grey wolf herd’s members are classified as α, β, δ and ω
and depending on the effectiveness, decision-making ability, and way of advancing in the
hunting process.

The α wolves are the strongest and most powerful, usually serves as the herd’s leader
and should be obeyed by the other wolves in the pack. β wolves act as advisors to the
alpha group, and δ wolves act in the group as guards, sentinels, and hunters. Theω group
of wolves is in the lowest position of decision-making [55] and follows others. The alpha in
GWO is believed to be the best answer. In order of priority, the beta, gamma, and omega
solutions come next. The wolves in GWO iterations assess the potential for a hunt and
adjust their status accordingly (Figure 3).
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2.4. ET0 Estimaton Using ML and Hybrid ML
2.4.1. Input Scenarios

The daily meteorological parameters from 2001 to 2020 at all ten stations are used as
the inputs for the modelling of daily ET0. The inputs consisted of maximum air temperature
(Tmax, ◦C), minimum air temperature (Tmin, ◦C), mean relative humidity (RH, %), wind
speed at 2 m height (u2, m/s), number of sunshine hours (n, hours), solar radiation (Rn,
MJ/m2 day) and extra-terrestrial radiation (Ra, MJ/m2 day).
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A total of 18 combinations were employed. Table 3 depicts the different combinations
used, ranging from two inputs in model index 1 to six inputs in model indices 17 and
18. The target for these models was the daily ET0 calculated from the FAO-56 Penman-
Monteith equation. The statistical indicators of the inputs and output at various stations
are presented in Figure S1. The time series graphs of ET0 from some stations of the study
on a daily basis from 2001 to 2020 were shown in Figure S2 (Supplementary Materials).

Table 3. Data input scenarios.

Model Index Input Combinations Model Index Input Combinations

1 Tmax, Tmin 10 Tmax, Tmin, RH, Ra
2 Tmax, Tmin, RH 11 Tmax, Tmin, U2, Ra
3 Tmax, Tmin, U2 12 Tmax, Tmin, n, Ra
4 Tmax, Tmin, n 13 Tmax, Tmin, RH, U2
5 Tmax, Tmin, Rs 14 Tmax, Tmin, RH, n
6 Tmax, Tmin, Ra 15 Tmax, Tmin, U2, n
7 Tmax, Tmin, RH, Rs 16 Tmax, Tmin, RH, U2, n
8 Tmax, Tmin, U2, Rs 17 Tmax, Tmin, RH, U2, n, Rs
9 Tmax, Tmin, n, Rs 18 Tmax, Tmin, RH, U2, n, Ra

2.4.2. Model Development

The data were normalised, which gives scale uniformity, improving the modelling
capability. The normalised input data were used for modelling purposes [57]. The equation
used for the normalisation of the data is given below:

xnorm =
x0 − xmin

xmax − xmin
(17)

where: xnorm is the normalised value of the input, x0 is the actual value of the input that
is being normalised, and xmax and xmin are the maximum and minimum values of all
the inputs.

Fivefold cross-validation was employed in each of the ML and hybrid ML models,
as shown in Table 4. For example, say in the V1 scenario, 16-year daily data from 2005
to 2020 would be used for the model training, and the rest of the data from 2001 to 2004
would be used for the testing of the model developed. This was done for the rest of
the cross-validation stages as well so that the whole of the data set would be tested for
accuracy. The employment of cross-validation has been found to reduce the over-fitting of
the models [24].

Table 4. Cross-validation stages.

Cross-Validation Training Testing

V1 2005–2020 2001–2004
V2 2001–2004 and 2009–2020 2005–2008
V3 2001–2008 and 2013–2020 2009–2012
V4 2001–2012 and 2017–2020 2013–2016
V5 2001–2016 2017–2020

2.4.3. Hyper Parameter Tuning in Hybrid ML

The hybrid ML models were developed by optimization of the hyperparameters of
RF, XGB, and LGB models using the GWO algorithm. The default values and the range of
hyperparameters used in the study are shown in Table 5. The default values of the hyperpa-
rameters were used in the state-of-the-art ML models, whereas the best hyperparameter set
in each of the ML models was assessed using the GWO to develop the hybrid models, i.e.,
GWORF, GWOXGB, and GWOLGB. The fine-tuning of hyperparameters could potentially
improve the prediction accuracy of hybrid models [58].
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Table 5. Hyperparameter plane for tuning the parameters using GWO.

Model Parameter Default Value Hyperparameter Range for Tuning

RF
n_estimators 100 Range of 10 to 500, increment by 10

min_samples_leaf 1 Range of 1 to 6, increment by 2
max_depth None Range of 2 to 20, increment by 2 and None

XGB
n_estimators 100 Range of 10 to 500, increment by 10
learning_rate 0.3 [0.05, 0.1, 0.15, 0.3]
max_depth 6 Range of 2 to 20, increment by 2 and None

LGB
n_estimators 100 Range of 10 to 500, increment by 10
learning_rate 0.3 [0.05, 0.1, 0.15, 0.3]
max_depth 6 Range of 2 to 20, increment by 2 and None

2.5. Model Performance Indicators

The indicators used in the study were root mean square error (RMSE), coefficient of
determination (R2), mean absolute error (MAE) [27], and agreement index (d) [59]. The
formulae for these indicators are described in Table 6.

Table 6. Statistical indicators.

Indicator Code Formula

Root mean square error RMSE
√

∑N
i=1(Oi−Pi)

2

N
(18)

Coefficient of
determination R2

(
∑N

i=1{(Oi−Oi)(Pi−Pi)}√
∑N

i=1(Oi−Oi)
2 ∑N

i=1(Pi−Pi)
2

)2
(19)

Mean absolute error MAE
∑N

i=1|(Pi−Oi)|
N (20)

Agreement index d 1− ∑N
i=1(Pi−Oi)

2

∑N
i=1(|Pi−Oi|+|Oi−Oi|)2 (21)

Notes: N is the total number of test data, Oi and Pi are the actual ET0 by FAO 56 Penman-Monteith and predicted
values of the models, respectively.

Global Performance Indicator (GPI)

Using different indicators renders a problem in properly selecting or judging the best
models. Hence, a summative index that uses the equation called Global Performance
Indicator is used in the study [36]. All the above indicators, i.e., RMSE, R2, MAE, d, were
normalized between 0 and 1 using Equation (22), and the value of GPI for a model is found
using Equation (23). Higher values of GPI would give the best model compared to other
models [60,61].

Nj =
Sj −min(S)

max(S)−min(S)
(22)

Nj is the normalized statistical index, Sj is the original statistical index, min(S) is
the minimum value in that statistical index, and max(S) is the maximum value in that
statistical index.

GPIi = Σn
j=1
(
Sj − Sij

)
αj (23)

GPIi is the value of the Global Performance Indicator for model i, Sj is the median
value of the statistical indicator j, Sij is the value of the statistical indicator j for model i,
αj is a constant with a value of −1 for R2, d and 1 for MAE, RMSE. The ranking based on
the GPI value was also done.

3. Results
3.1. Comparison of the Empirical Models in Estimating ET0

Evaluation of different empirical models was carried out against the FAO-56 Penman-
Method as the target for the daily data of 20 years at both humid and sub-humid locations.
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The performance indicators of the fifteen models at humid and sub-humid stations were
presented in Tables S1 and S2, respectively. The ranking of the various models at humid
stations based on the GPI is depicted in Table 7. The comparison at various stations
suggests that the radiation-based models were superior at most stations. In contrast,
mass-transfer-based models were found to be of low accuracy. It shows that the Turc
Model was a promising method compared to other models. It was followed by Makkink,
Valiantzas 2, Jensen-Haise. The lowest-performing empirical models in the humid region
were McGuinness-Bordne, Mahringer, and Valiantzas 1. The ranking of the various models
at sub-humid stations is shown in Table 8. The superior models in sub-humid regions
were Turc, Valiantzas 2, Jensen-Haise, and Preistly-Taylor. The worst empirical models
at sub-humid stations were Valiantzas 1, Albrecht, Copias, and Mahringer. The results
indicated that the empirical model performance varied at different stations. Overall, the
Turc model could be used in the study area based on its superior ranking in most stations.

Table 7. Ranking of the best-performing empirical models at humid stations.

Jorhat Mohanpur Palampur Thrissur

RANK MODEL GPI MODEL GPI MODEL GPI MODEL GPI

1 TUR 1.467 MAK 1.521 TUR 1.423 TUR 1.439
2 PT 1.390 TUR 1.508 VA2 1.292 VA2 1.305
3 MAK 1.276 PT 1.330 JH 0.863 PT 0.818
4 VA2 1.216 VA2 1.027 HS 0.783 MAK 0.769
5 JH 0.550 VA1 0.813 PT 0.721 PEN 0.372
6 VA1 0.484 HS 0.361 HS2 0.663 JH 0.154
7 HS −0.265 HS2 0.082 MAK 0.613 ALB 0.034
8 ALB −0.302 HS1 0.052 HS1 0.467 HS 0.028
9 COP −0.370 THO 0.032 THO −0.233 MAH −0.084

10 HS2 −0.488 JH −0.092 MAH −0.516 HS2 −0.111
11 HS1 −0.552 COP −0.812 PEN −0.517 COP −0.171
12 THO −0.579 ALB −1.033 ALB −0.586 HS1 −0.351
13 PEN −0.782 PEN −1.173 COP −1.071 VA1 −0.727
14 MAH −0.807 MAH −1.687 MGB −1.323 THO −0.917
15 MGB −2.238 MGB −1.927 VA1 −2.577 MGB −2.559

Table 8. Ranking of the best-performing empirical models at sub-humid stations.

Faizabad Jabalpur Raipur Ranchi Ranichauri Samastipur

RANK MODEL GPI MODEL GPI MODEL GPI MODEL GPI MODEL GPI MODEL GPI

1 TUR 1.037 TUR 1.234 TUR 1.117 TUR 1.587 VA2 1.487 TUR 1.037
2 JH 0.882 VA2 1.014 VA2 0.969 PT 1.510 TUR 1.468 JH 0.882
3 VA2 0.840 PT 0.887 HS 0.894 VA2 1.294 MAK 1.258 VA2 0.840
4 HS 0.642 HS 0.686 PT 0.784 MAK 1.122 JH 1.048 HS 0.642
5 HS1 0.520 JH 0.646 HS1 0.722 JH 0.347 PT 0.932 HS1 0.520
6 PT 0.517 HS1 0.487 HS2 0.705 HS 0.311 HS 0.875 PT 0.517
7 HS2 0.500 THO 0.444 JH 0.556 THO 0.262 HS2 0.762 HS2 0.500
8 THO 0.390 HS2 0.440 THO 0.414 HS1 −0.059 HS1 0.544 THO 0.390
9 COP 0.119 MAK 0.377 MAK 0.171 HS2 −0.065 THO −0.279 COP 0.119

10 PEN 0.050 PEN −0.150 PEN −0.131 ALB −0.643 ALB −1.032 PEN 0.050
11 MAK −0.007 COP −0.554 COP −0.386 PEN −0.661 MGB −1.038 MAK −0.007
12 MGB −0.737 MAH −0.883 MAH −1.053 MAH −0.729 MAH −1.230 MGB −0.737
13 MAH −1.148 MGB −1.016 MGB −1.106 VA1 −0.744 VA1 −1.552 MAH −1.148
14 ALB −1.212 ALB −1.501 ALB −1.523 COP −1.493 COP −1.567 ALB −1.212
15 VA1 −2.392 VA1 −2.110 VA1 −2.131 MGB −2.041 PEN −1.675 VA1 −2.392
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3.2. Comparison of Various Input Combinations in Conventional ML Models
3.2.1. Best-Performing Models in ML

The three conventional models used in the study, i.e., RF, XGB, and LGB, were eval-
uated with various input combinations. The results in these sections are for the testing
data sets in all the cross-validation stages. The statistical indicators at each station using
the conventional ML models are given in Tables S3–S12. It was observed that the R2 value
has improved with higher inputs, and LGB models were more accurate than other models.
A substantial increase in the accuracy and reduced errors was observed in model indices
8 and 9 across all the stations. The ranking of the eighteen best models (six models in each
ML) at humid locations based on the GPI is shown in Table 9. The results indicated that the
models that used the most inputs (Index 17 and 18) were superior with higher GPI. The
LGB17 and LGB18 performed best in Palampur and Thrissur, whereas the XGB17 was the
best at Jorhat and Mohanpur. It was observed that the XGB8 and LGB8, which used wind
speed and solar radiation data, performed better in all the stations except Palampur, where
the LGB7, RF7, and XGB7 gave accurate estimates. Overall, the performance of RF was
found to be inferior to both XGB and LGB. The lowest error (RMSE = 0.096 mm/day) was
found using XGB17 at Mohanpur station and, the highest R2 value (0.994) was observed at
Palampur and Thrissur for LGB18 and at Mohanpur for LGB17.

Table 9. Ranking of the best-performing ML models at humid stations.

Jorhat Mohanpur Palampur Thrissur

RANK MODEL GPI MODEL GPI MODEL GPI MODEL GPI

1 XGB17 1.889 XGB17 1.941 LGB18 1.952 LGB18 1.199
2 XGB18 1.753 LGB17 1.939 LGB17 1.893 LGB17 1.187
3 LGB17 1.717 LGB18 1.721 XGB18 1.777 XGB17 1.159
4 LGB18 1.716 XGB18 1.691 XGB17 1.755 XGB18 1.118
5 RF17 0.795 RF17 1.424 RF18 1.658 RF17 0.911
6 XGB8 0.748 RF18 1.286 RF17 1.501 RF18 0.769
7 LGB8 0.721 LGB8 0.853 LGB7 −0.063 LGB16 0.224
8 RF18 0.582 XGB8 0.702 RF7 −0.146 LGB8 0.130
9 RF8 0.309 RF9 0.607 XGB7 −0.258 XGB16 0.077

10 RF9 0.304 RF8 0.598 LGB16 −0.337 XGB8 0.067
11 LGB12 −0.699 LGB9 −1.208 RF16 −0.527 RF16 −0.008
12 LGB9 −0.726 LGB12 −1.369 XGB16 −0.628 RF8 −0.010
13 RF12 −1.040 RF12 −1.439 LGB8 −1.070 RF9 −0.017
14 XGB9 −1.231 LGB7 −1.546 RF8 −1.191 LGB15 −0.413
15 XGB12 −1.321 XGB9 −1.619 RF9 −1.212 RF15 −0.536
16 LGB7 −1.633 RF7 −1.712 XGB8 −1.373 XGB15 −0.558
17 RF7 −1.806 XGB12 −1.815 LGB12 −1.684 LGB7 −2.499
18 XGB7 −2.079 XGB7 −2.053 XGB12 −2.048 XGB7 −2.801

The eighteen best-ranking models at sub-humid locations are shown in Table 10. It
could be seen that the LGB17 and LGB18 were the best performing at all the six stations.
The performance of the model indices 8, 9, and 16 was quite promising at all the stations
except at Ranichauri, wherein the index 7 models were accurate. It was observed that
the addition of solar radiation as an input considerably increased the performance of the
models. The models that correlated with the FAO-56 Penman-Monteith are in the order of
LGB, XGB, and RF. The LGB18 at Jabalpur station performed well (R2 = 0.995), whereas the
least RMSE (0.094 mm/day) was recorded at Ranichauri for LGB17.
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Table 10. Ranking of the best-performing ML models at sub-humid stations.

Faizabad Jabalpur Raipur Ranchi Ranichauri Samastipur

RANK MODEL GPI MODEL GPI MODEL GPI MODEL GPI MODEL GPI MODEL GPI

1 LGB17 1.752 LGB18 1.265 LGB18 1.265 LGB17 1.637 LGB17 2.374 LGB17 1.908
2 LGB18 1.682 LGB17 1.222 LGB17 1.248 XGB17 1.593 LGB18 2.303 LGB18 1.821
3 XGB17 1.630 XGB18 1.138 XGB18 1.197 LGB18 1.566 XGB17 2.207 XGB17 1.761
4 XGB18 1.561 XGB17 1.137 XGB17 1.191 XGB18 1.546 XGB18 2.034 XGB18 1.583
5 RF17 1.373 RF17 0.993 RF17 1.036 RF17 1.147 RF18 1.693 RF17 1.397
6 RF18 1.321 RF18 0.965 RF18 0.973 RF18 1.065 RF17 1.531 RF18 1.041
7 LGB16 0.162 LGB16 0.347 LGB16 0.473 LGB8 0.463 LGB7 0.216 LGB8 0.282
8 XGB16 −0.027 XGB16 0.195 XGB16 0.323 RF8 0.321 RF7 −0.005 RF9 0.135
9 LGB8 −0.125 RF16 0.112 RF16 0.247 RF9 0.304 XGB7 −0.071 RF8 0.128

10 RF9 −0.156 LGB8 0.079 LGB8 −0.070 XGB8 0.281 LGB9 −1.159 XGB8 0.037
11 RF8 −0.195 RF8 0.016 RF9 −0.131 LGB16 −0.394 LGB8 −1.164 LGB16 −0.586
12 RF16 −0.289 RF9 0.015 RF8 −0.140 XGB16 −0.601 LGB12 −1.237 RF16 −0.746
13 XGB8 −0.298 XGB8 −0.076 XGB8 −0.193 RF16 −0.749 RF9 −1.358 XGB16 −0.888
14 LGB15 −1.194 LGB15 −0.608 LGB15 −0.607 LGB15 −1.136 RF8 −1.388 LGB7 −1.211
15 XGB15 −1.460 RF15 −0.769 RF15 −0.771 RF15 −1.357 RF12 −1.416 RF7 −1.354
16 RF15 −1.520 XGB15 −0.845 XGB15 −0.851 XGB15 −1.361 XGB9 −1.459 XGB7 −1.502
17 LGB13 −1.970 LGB13 −2.450 LGB13 −2.455 LGB12 −1.962 XGB8 −1.474 LGB15 −1.713
18 XGB13 −2.248 XGB13 −2.735 XGB13 −2.735 XGB12 −2.363 XGB12 −1.626 XGB12 −2.092

3.2.2. Least-Performing Models in ML

The ranking of the low-performing models at humid locations of all the conventional
model and their input combinations are shown in Table 11. The results showed that model
indices 1, 2, 3, and 6 were the least ranked models. It was obvious that the model that used
the least number of inputs (only temperature data) was the worst model in estimating ET0.
The RF models had the lowest GPI values compared to other models’ counterparts at most
stations, indicating their higher errors. It was observed that the LGB models performed
better than other ML models using the same input combinations. The error was found to
be highest (RMSE = 0.919 mm/day) at Thrissur using RF1, whereas the least R2 (0.371) was
seen at Jorhat for RF1. The model combination that used extra-terrestrial radiation, i.e.,
model indices 10 and 11, did not yield accurate results.

Table 11. Ranking of the least-performing ML models at humid stations.

Jorhat Mohanpur Palampur Thrissur

RANK MODEL GPI MODEL GPI MODEL GPI MODEL GPI

54 RF1 −2.139 RF1 −2.503 RF1 −2.748 RF1 −2.429
53 XGB1 −1.541 XGB1 −1.401 XGB1 −2.185 XGB1 −1.862
52 LGB1 −1.099 RF2 −1.098 LGB1 −1.766 LGB1 −1.542
51 RF3 −0.885 XGB2 −0.907 RF3 −0.781 RF6 −1.450
50 XGB3 −0.743 LGB1 −0.789 XGB3 −0.390 XGB6 −1.296
49 XGB6 −0.458 RF3 −0.404 RF6 −0.249 LGB6 −1.054
48 LGB3 −0.405 LGB2 −0.208 XGB6 −0.071 RF2 −0.006
47 RF6 −0.403 XGB3 −0.142 LGB3 −0.042 XGB2 0.111
46 XGB11 −0.036 RF6 0.032 LGB6 0.410 XGB10 0.332
45 RF11 −0.028 XGB6 0.117 RF4 0.497 LGB2 0.334
44 LGB6 0.029 XGB13 0.513 RF2 0.607 RF10 0.362
43 LGB11 0.198 LGB3 0.533 XGB4 0.704 LGB10 0.569
42 RF2 0.649 RF13 0.728 XGB11 0.733 RF3 1.111
41 XGB2 0.682 LGB6 0.813 XGB2 0.807 XGB3 1.130
40 LGB2 1.076 XGB10 0.884 RF11 0.976 LGB3 1.335
39 XGB10 1.532 RF10 1.141 LGB4 1.110 XGB13 1.372
38 RF10 1.709 LGB13 1.192 LGB11 1.190 RF5 1.413
37 LGB10 1.861 LGB10 1.497 LGB2 1.197 LGB5 1.571

The results at the sub-humid stations were found to be quite similar to that of humid
locations (Table 12). The model indices 1, 2, 6, and 3 were ranked the lowest in most stations.
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The highest RMSE of 1.253 mm/day was observed at Faizabad station using the RF1 model,
whereas the lowest R2 (0.631) was reported at Samastipur with the same set of ML model.

Table 12. Ranking of the least-performing ML models at sub-humid stations.

Faizabad Jabalpur Raipur Ranchi Ranichauri Samastipur

RANK MODEL GPI MODEL GPI MODEL GPI MODEL GPI MODEL GPI MODEL GPI

54 RF1 −2.377 RF1 −2.344 RF1 −2.271 RF1 −2.028 RF1 −2.560 RF1 −2.505
53 XGB1 −1.815 XGB1 −1.787 XGB1 −1.686 XGB2 −1.328 XGB1 −1.774 XGB1 −1.999
52 LGB1 −0.991 LGB1 −1.128 LGB1 −0.998 RF2 −1.215 LGB1 −1.307 LGB1 −1.514
51 XGB2 −0.618 XGB2 −1.103 XGB2 −0.758 XGB1 −1.164 RF3 −1.065 RF6 −0.654
50 RF2 −0.471 RF2 −0.919 RF2 −0.629 LGB2 −0.549 XGB3 −1.047 XGB6 −0.624
49 RF6 −0.439 XGB6 −0.504 XGB6 −0.544 LGB1 −0.509 LGB3 −0.596 XGB2 −0.315
48 XGB4 −0.407 LGB2 −0.475 RF6 −0.524 XGB10 −0.480 XGB2 −0.131 RF2 −0.202
47 XGB6 −0.388 RF6 −0.283 LGB2 −0.302 XGB6 −0.419 RF2 −0.075 LGB6 −0.161
46 RF4 −0.171 LGB6 0.106 XGB10 −0.096 RF6 −0.268 LGB2 0.287 XGB3 0.053
45 LGB2 −0.021 XGB10 0.132 LGB6 0.072 RF10 −0.097 XGB6 0.497 LGB2 0.172
44 LGB6 0.068 RF10 0.479 RF10 0.333 LGB10 0.354 RF6 0.560 RF3 0.224
43 LGB4 0.357 LGB10 0.601 XGB4 0.449 LGB6 0.419 XGB13 0.641 LGB3 0.523
42 XGB14 0.792 XGB4 0.842 LGB10 0.615 XGB3 0.629 RF13 0.790 XGB11 0.790
41 RF14 1.069 RF4 0.912 RF4 0.713 RF3 0.677 LGB6 0.843 RF11 1.055
40 XGB10 1.185 LGB4 1.255 LGB4 1.088 XGB13 1.228 LGB13 1.026 XGB10 1.115
39 LGB14 1.263 XGB3 1.277 XGB5 1.178 LGB3 1.306 XGB11 1.104 LGB11 1.232
38 RF5 1.339 RF3 1.285 RF5 1.632 RF13 1.473 RF11 1.366 RF10 1.316
37 LGB10 1.623 LGB14 1.656 LGB14 1.729 LGB13 1.972 LGB11 1.440 LGB10 1.495

3.3. Empirical Models v/s Conventional ML Models

The conventional ML models were compared with the empirical equations that em-
ployed a similar combination of inputs for modelling. The results at humid (Table 13) and
sub-humid locations (Table 14) depicted that the ML models outperformed the empirical
models with high GPI values at all combinations and locations. It could be observed that in
indices 13, 5, 6, and 7, the models performed in the order of LGB, RF, and XGB.

Table 13. Comparison of the empirical models with conventional ML models (Humid).

Jorhat Mohanpur Palampur Thrissur

Inputs used RANK MODEL GPI MODEL GPI MODEL GPI MODEL GPI

Tmax, Tmin, RH, U2

1 LGB13 1.708 LGB13 1.696 LGB13 1.908 LGB13 1.802
2 RF13 1.576 RF13 1.639 RF13 1.844 RF13 1.690
3 XGB13 1.561 XGB13 1.612 XGB13 1.808 XGB13 1.639
4 ALB −0.988 ALB −1.315 MAH −1.786 PEN −1.195
5 PEN −1.823 PEN −1.501 PEN −1.849 ALB −1.842
6 MAH −2.034 MAH −2.132 ALB −1.925 MAH −2.093

Tmax, Tmin, Rs

1 LGB5 0.824 LGB5 0.982 LGB5 1.037 LGB5 0.942
2 RF5 0.792 RF5 0.974 XGB5 0.990 RF5 0.907
3 XGB5 0.786 XGB5 0.966 RF5 0.975 XGB5 0.902
4 PT 0.560 MAK 0.501 JH 0.178 PT 0.337
5 MAK 0.410 PT 0.435 PT −0.001 MAK 0.293
6 JH −0.246 JH −0.870 MAK −0.216 JH −0.323
7 MGB −3.126 MGB −2.988 MGB −2.963 MGB −3.058

Tmax, Tmin, Ra

1 LGB6 2.110 LGB6 1.864 LGB6 1.306 LGB6 1.678
2 RF6 1.483 XGB6 1.660 XGB6 1.071 XGB6 1.525
3 XGB6 1.369 RF6 1.635 RF6 0.984 RF6 1.436
4 HS −0.676 HS −0.685 HS 0.352 HS −0.212
5 HS1 −1.245 HS2 −1.400 HS2 −0.163 HS2 −0.746
6 HS2 −1.328 HS1 −1.416 HS1 −0.856 HS1 −1.398
7 THO −1.713 THO −1.657 THO −2.694 THO −2.282

Tmax, Tmin, RH, Rs

1 LGB7 1.272 LGB7 1.219 LGB7 1.177 LGB7 1.235
2 RF7 1.230 RF7 1.206 RF7 1.168 RF7 1.227
3 XGB7 1.162 XGB7 1.180 XGB7 1.156 XGB7 1.199
4 TUR 0.731 TUR 0.361 TUR 0.880 TUR 0.854
5 VA2 0.177 VA2 −0.368 VA2 0.760 VA2 0.638
6 VA1 −1.113 VA1 −0.455 COP −1.439 COP −1.656
7 COP −2.728 COP −2.781 VA1 −2.823 VA1 −2.643
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Table 14. Comparison of the empirical models with conventional ML models (Sub-humid).

Faizabad Jabalpur Raipur Ranchi Ranichauri Samastipur

Inputs used RANK MODEL GPI MODEL GPI MODEL GPI MODEL GPI MODEL GPI MODEL GPI

Tmax, Tmin, RH, U2

1 LGB13 1.535 LGB13 1.502 LGB13 1.523 LGB13 1.860 LGB13 1.763 LGB13 1.425
2 RF13 1.517 RF13 1.465 RF13 1.498 RF13 1.746 RF13 1.705 RF13 1.404
3 XGB13 1.507 XGB13 1.458 XGB13 1.487 XGB13 1.690 XGB13 1.668 XGB13 1.317
4 PEN −0.909 PEN −0.982 PEN −0.970 PEN −1.665 ALB −1.308 PEN −0.827
5 MAH −1.687 MAH −1.336 MAH −1.433 ALB −1.720 MAH −1.590 MAH −1.464
6 ALB −1.962 ALB −2.107 ALB −2.104 MAH −1.910 PEN −2.237 ALB −1.854

Tmax, Tmin, Rs

1 LGB5 1.303 LGB5 1.210 LGB5 1.280 LGB5 0.960 LGB5 0.913 LGB5 1.536
2 RF5 1.211 RF5 1.175 RF5 1.253 RF5 0.924 RF5 0.882 RF5 1.496
3 XGB5 1.196 XGB5 1.156 XGB5 1.189 XGB5 0.918 XGB5 0.881 XGB5 1.490
4 JH 0.465 PT 0.064 PT 0.002 PT 0.582 MAK 0.424 JH −0.090
5 PT −0.483 JH −0.131 JH −0.141 MAK 0.159 JH 0.058 PT −0.749
6 MAK −1.162 MAK −0.684 MAK −0.862 JH −0.503 PT −0.071 MAK −1.365
7 MGB −2.530 MGB −2.790 MGB −2.720 MGB −3.040 MGB −3.087 MGB −2.318

Tmax, Tmin, Ra

1 LGB6 1.866 LGB6 1.741 LGB6 1.716 LGB6 1.517 LGB6 1.138 LGB6 1.917
2 XGB6 1.615 RF6 1.613 RF6 1.531 RF6 1.280 RF6 0.992 XGB6 1.559
3 RF6 1.593 XGB6 1.539 XGB6 1.523 XGB6 1.226 XGB6 0.960 RF6 1.535
4 HS −0.667 HS −0.636 HS −0.367 HS −0.514 HS 0.522 HS −0.772
5 HS1 −1.265 THO −1.342 HS1 −1.161 THO −0.632 HS2 0.036 HS1 −1.147
6 HS2 −1.365 HS1 −1.386 HS2 −1.201 HS1 −1.429 HS1 −0.785 HS2 −1.246
7 THO −1.777 HS2 −1.530 THO −2.040 HS2 −1.448 THO −2.862 THO −1.845

Tmax, Tmin, RH, Rs

1 LGB7 0.946 LGB7 1.071 RF7 1.063 LGB7 1.156 LGB7 0.979 LGB7 1.141
2 RF7 0.938 RF7 1.063 LGB7 1.061 RF7 1.132 RF7 0.966 RF7 1.131
3 XGB7 0.875 XGB7 1.039 XGB7 1.021 XGB7 1.103 XGB7 0.962 XGB7 1.120
4 TUR 0.477 TUR 0.675 TUR 0.544 TUR 0.724 VA2 0.794 TUR 0.143
5 VA2 0.275 VA2 0.436 VA2 0.387 VA2 0.441 TUR 0.776 VA2 −0.028
6 COP −0.457 COP −1.354 COP −1.139 VA1 −1.982 COP −2.163 COP −0.648
7 VA1 −3.054 VA1 −2.929 VA1 −2.937 COP −2.574 VA1 −2.312 VA1 −2.859

3.4. Comparison of Various Input Combinations in GWO Hybrid ML Models
3.4.1. Best-Performing Models in Hybrid ML

The results of the best hyperparameters in each of the models are attached in Tables
S13 to S18. These hyperparameters were used to develop the hybrid ML models at all the
stations of humid and sub-humid zones. The statistical indicators at each of the stations
using the hybrid ML models are given in Tables S19–S28. The six accurate models in each
of the ML models were employed in assessing the best-performing models. The ranking
of the best of all the hybrid ML models and their combinations at humid locations based
on the GPI is shown in Table 15. The results indicated that the models that used the most
inputs (Index 17 and 18) were superior with higher GPI. The GWOXGB17 and GWOXGB18
performed best in all the stations, whereas the GWOLGB18 was the second best at Palampur
and Thrissur. It was observed that indices 7, 8, and 9, which solar radiation data performed
better in most of the stations. The superiority of RF models in these combinations was
observed in all the stations except at Thrissur. The performance of the model GWOXGB18
at Thrissur was the best of the models with an RMSE of 0.073 mm/day and R2 of 0.997.

Of the 54 hybrid models evaluated, the eighteen best-ranking hybrid ML models at
sub-humid locations are shown in Table 16. The performance of the models was in the
order of indices: 17, 18, and 16 at the Faizabad, Jabalpur, and Raipur stations. The accuracy
of the models with indices 7, 8, and 9 is also high compared to the models that used a higher
number of inputs. This could be attributed to the incorporation of solar radiation data.
The model indices 15 and 13 also found a place in the best-performing models, with wind
speed as a common input. The lowest RMSE (0.083 mm/day) was observed at Ranichauri,
which used GWOLGB17, while the R2 was found to be the highest (0.997) at Jabalpur for
both GWOLGB18 and GWOLGB17. The overall performance of the hybrid models is in the
order of GWOXGB > GWOLGB > GWORF at most stations.
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Table 15. Ranking of the best-performing GWO–ML models at humid stations.

Jorhat Mohanpur Palampur Thrissur

RANK MODEL GPI MODEL GPI MODEL GPI MODEL GPI

1 GWOXGB17 2.175 GWOXGB17 2.176 GWOXGB18 2.078 GWOXGB18 1.376
2 GWOXGB18 2.134 GWOXGB18 2.072 GWOLGB18 2.078 GWOLGB18 1.360
3 GWOLGB18 1.843 GWOLGB17 2.052 GWOXGB17 2.038 GWOXGB17 1.287
4 GWOLGB17 1.747 GWOLGB18 1.798 GWOLGB17 2.030 GWOLGB17 1.271
5 GWOXGB8 0.854 GWORF17 1.209 GWORF18 1.621 GWORF17 0.820
6 GWORF17 0.530 GWORF18 1.079 GWORF17 1.466 GWORF18 0.687
7 GWOLGB8 0.469 GWOXGB8 0.812 GWOXGB7 −0.197 GWOLGB16 0.220
8 GWORF18 0.313 GWOLGB8 0.731 GWOLGB7 −0.207 GWOXGB16 0.183
9 GWORF8 0.041 GWORF8 0.421 GWORF7 −0.252 GWOLGB8 0.101

10 GWORF9 −0.167 GWORF9 0.357 GWOLGB16 −0.457 GWOXGB8 0.059
11 GWOLGB12 −0.835 GWOLGB9 −1.312 GWOXGB16 −0.468 GWORF16 −0.103
12 GWOLGB9 −0.886 GWOXGB9 −1.368 GWORF16 −0.705 GWORF8 −0.123
13 GWOXGB9 −0.912 GWOLGB12 −1.496 GWOLGB8 −1.258 GWORF9 −0.203
14 GWORF12 −0.971 GWORF12 −1.599 GWORF8 −1.295 GWOXGB15 −0.513
15 GWOXGB12 −0.983 GWOLGB7 −1.673 GWORF9 −1.318 GWOLGB15 −0.538
16 GWOLGB7 −1.765 GWOXGB12 −1.726 GWOXGB8 −1.372 GWORF15 −0.650
17 GWOXGB7 −1.782 GWOXGB7 −1.749 GWOLGB12 −1.861 GWOLGB7 −2.610
18 GWORF7 −1.807 GWORF7 −1.786 GWOXGB12 −1.922 GWOXGB7 −2.624

3.4.2. Least Performing Models in Hybrid ML

The least-performing models of the hybrid ML at humid stations are presented in
Table 17. The six least accurate models in each hybrid ML, i.e., GWORF, GWOXGB, and
GWOLGB, were used to analyse all the combinations. The models with the lowest GPI
values were found in the order of the model indices 1, 3, and 6 in all the hybrid ML at
most stations. The models with indices 10 and 11 that used extra-terrestrial radiation as
input were also placed in the least-ranking hybrid models at all the stations. There was no
specific order found in the accuracy of the various models. The performance ranking of the
least accurate hybrid models is given in Table 18. The model GWORF1 at Thrissur station
gave the highest RMSE (0.812 mm/day) of all the models, whereas the lowest R2 (0.478)
was observed at Jorhat stations with the same model combination.

The least ranked models in the sub-humid stations were similar to that of the results of
humid stations. Models 1, 2, 3, and 6 were the least accurate in most sub-humid locations.
Of the four input combination methods, the models with the indices 10, 14, 11, and 13
found a place in the least ranked models. The performance of the different hybrid models
did not show any specific trend at this level of comparison in all the stations. The error was
observed highest (1.154 mm/day) at Faizabad for both GWOLGB1 and GWOXGB1. The R2

was found to be the least at Samastipur station, with a value of 0.693. The RF models have
got the advantage of improving their efficiency by the hyperparameter tuning by GWO
than the XGB and LGB models.



Water 2023, 15, 856 16 of 32

Table 16. Ranking of the best-performing GWO–ML models at sub-humid stations.

Faizabad Jabalpur Raipur Ranchi Ranichauri Samastipur

RANK MODEL GPI MODEL GPI MODEL GPI MODEL GPI MODEL GPI MODEL GPI

1 GWOXGB17 1.865 GWOLGB18 1.366 GWOXGB17 1.412 GWOXGB18 1.856 GWOLGB17 2.504 GWOXGB17 1.985
2 GWOXGB18 1.855 GWOXGB18 1.361 GWOXGB18 1.384 GWOXGB17 1.847 GWOXGB17 2.486 GWOLGB17 1.982
3 GWOLGB17 1.826 GWOLGB17 1.360 GWOLGB17 1.332 GWOLGB17 1.747 GWOLGB18 2.476 GWOXGB18 1.883
4 GWOLGB18 1.759 GWOXGB17 1.350 GWOLGB18 1.310 GWOLGB18 1.696 GWOXGB18 2.439 GWOLGB18 1.868
5 GWORF17 1.207 GWORF17 0.900 GWORF17 0.929 GWORF17 0.996 GWORF18 1.547 GWORF17 1.286
6 GWORF18 1.160 GWORF18 0.877 GWORF18 0.866 GWORF18 0.947 GWORF17 1.393 GWORF18 0.985
7 GWOLGB16 0.215 GWOLGB16 0.378 GWOXGB16 0.519 GWOXGB8 0.348 GWOLGB7 0.060 GWOLGB8 0.186
8 GWOXGB16 0.176 GWOXGB16 0.358 GWOLGB16 0.483 GWOLGB8 0.321 GWOXGB7 0.054 GWOXGB8 0.122
9 GWOXGB8 −0.214 GWORF16 0.007 GWORF16 0.149 GWORF8 0.166 GWORF7 −0.176 GWORF8 0.011

10 GWOLGB8 −0.255 GWOXGB8 −0.009 GWOLGB8 −0.113 GWORF9 0.063 GWOLGB8 −1.359 GWORF9 0.004
11 GWORF8 −0.359 GWOLGB8 −0.013 GWOXGB8 −0.142 GWOXGB16 −0.338 GWOXGB8 −1.365 GWOLGB16 −0.653
12 GWORF9 −0.376 GWORF8 −0.092 GWORF8 −0.259 GWOLGB16 −0.423 GWOLGB9 −1.369 GWOXGB16 −0.762
13 GWORF16 −0.447 GWORF9 −0.201 GWORF9 −0.363 GWORF16 −0.904 GWOLGB12 −1.399 GWORF16 −0.894
14 GWOXGB15 −1.269 GWOXGB15 −0.724 GWOXGB15 −0.730 GWOXGB15 −1.253 GWOXGB9 −1.422 GWOXGB7 −1.330
15 GWOLGB15 −1.325 GWOLGB15 −0.764 GWOLGB15 −0.762 GWOLGB15 −1.304 GWOXGB12 −1.455 GWOLGB7 −1.357
16 GWORF15 −1.679 GWORF15 −0.898 GWORF15 −0.903 GWORF15 −1.488 GWORF9 −1.457 GWORF7 −1.475
17 GWOXGB13 −2.011 GWOLGB13 −2.625 GWOXGB13 −2.522 GWOLGB12 −2.131 GWORF12 −1.464 GWOLGB15 −1.837
18 GWOLGB13 −2.128 GWOXGB13 −2.630 GWOLGB13 −2.588 GWOXGB12 −2.144 GWORF8 −1.496 GWOXGB9 −2.001
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Table 17. Ranking of the least-performing GWO–ML models at humid stations.

Jorhat Mohanpur Palampur Thrissur

RANK MODEL GPI MODEL GPI MODEL GPI MODEL GPI

54 GWORF1 −1.832 GWOXGB1 −2.195 GWOXGB1 −2.715 GWOXGB1 −2.220
53 GWOLGB1 −1.798 GWOLGB1 −2.163 GWOLGB1 −2.690 GWORF1 −2.217
52 GWOXGB1 −1.789 GWORF1 −2.158 GWORF1 −2.666 GWOLGB1 −2.183
51 GWOLGB3 −0.965 GWORF2 −1.330 GWOXGB3 −0.542 GWORF6 −1.687
50 GWORF3 −0.944 GWOLGB2 −1.314 GWOLGB3 −0.523 GWOLGB6 −1.648
49 GWOXGB3 −0.802 GWOXGB2 −1.142 GWORF3 −0.513 GWOXGB6 −1.584
48 GWORF6 −0.413 GWORF3 −0.257 GWORF6 −0.002 GWORF2 0.139
47 GWOXGB6 −0.361 GWOXGB3 0.095 GWOXGB6 0.044 GWOLGB2 0.172
46 GWOLGB6 −0.339 GWOLGB3 0.159 GWOLGB6 0.131 GWOXGB2 0.180
45 GWORF11 −0.271 GWORF6 0.487 GWORF4 0.922 GWORF10 0.422
44 GWOLGB11 −0.189 GWOLGB6 0.576 GWOXGB4 0.924 GWOLGB10 0.475
43 GWOXGB11 0.065 GWOXGB6 0.600 GWOXGB11 0.953 GWOXGB10 0.490
42 GWORF2 1.016 GWORF13 0.955 GWOLGB4 0.957 GWORF3 1.447
41 GWOLGB2 1.072 GWOLGB13 1.301 GWORF11 1.066 GWOLGB3 1.495
40 GWOXGB2 1.139 GWOXGB13 1.362 GWOLGB11 1.070 GWOXGB3 1.503
39 GWORF10 2.119 GWORF10 1.560 GWORF2 1.108 GWORF11 1.711
38 GWOLGB10 2.134 GWOLGB10 1.679 GWOXGB2 1.234 GWOXGB13 1.727
37 GWOXGB10 2.157 GWOXGB11 1.786 GWOLGB2 1.241 GWOLGB13 1.777
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Table 18. Ranking of the least-performing GWO–ML models at sub-humid stations.

Faizabad Jabalpur Raipur Ranchi Ranichauri Samastipur

RANK MODEL GPI MODEL GPI MODEL GPI MODEL GPI MODEL GPI MODEL GPI

54 GWOXGB1 −2.067 GWOXGB1 −2.069 GWOXGB1 −2.052 GWOXGB2 −1.696 GWOLGB1 −2.296 GWOLGB1 −2.328
53 GWOLGB1 −2.059 GWORF1 −2.025 GWOLGB1 −2.029 GWOLGB2 −1.618 GWORF1 −2.272 GWORF1 −2.322
52 GWORF1 −1.942 GWOLGB1 −2.018 GWORF1 −1.977 GWORF2 −1.599 GWOXGB1 −2.257 GWOXGB1 −2.276
51 GWORF6 −0.563 GWORF2 −1.151 GWOXGB2 −0.901 GWOXGB1 −1.542 GWORF3 −1.348 GWORF6 −0.666
50 GWOLGB2 −0.460 GWOXGB2 −1.084 GWORF2 −0.900 GWORF1 −1.535 GWOLGB3 −1.296 GWOLGB6 −0.583
49 GWOLGB6 −0.404 GWOLGB2 −1.063 GWOLGB2 −0.853 GWOLGB1 −1.535 GWOXGB3 −1.218 GWOXGB6 −0.552
48 GWOXGB2 −0.402 GWOXGB6 −0.375 GWOLGB6 −0.579 GWORF10 −0.354 GWORF2 0.031 GWOXGB2 −0.230
47 GWOXGB6 −0.373 GWORF6 −0.300 GWOXGB6 −0.548 GWORF6 −0.304 GWOXGB2 0.032 GWORF2 −0.195
46 GWORF2 −0.252 GWOLGB6 −0.273 GWORF6 −0.514 GWOXGB10 −0.148 GWOLGB2 0.046 GWOLGB2 −0.165
45 GWORF4 −0.238 GWOXGB10 0.356 GWOXGB10 0.422 GWOLGB10 −0.106 GWORF6 0.776 GWOXGB3 0.321
44 GWOXGB4 −0.143 GWORF10 0.462 GWORF10 0.429 GWOXGB6 −0.023 GWOLGB6 0.790 GWOLGB3 0.337
43 GWOLGB4 −0.139 GWOLGB10 0.503 GWOLGB10 0.534 GWOLGB6 0.035 GWOXGB6 0.799 GWORF3 0.368
42 GWOXGB14 1.105 GWORF4 1.126 GWORF4 1.036 GWORF3 1.161 GWORF13 0.956 GWORF11 1.073
41 GWOLGB14 1.180 GWOXGB4 1.265 GWOLGB4 1.083 GWOXGB3 1.365 GWOLGB13 1.136 GWOXGB11 1.127
40 GWORF14 1.239 GWOLGB4 1.286 GWOXGB4 1.108 GWOLGB3 1.404 GWOXGB13 1.143 GWOLGB11 1.240
39 GWOXGB10 1.791 GWORF14 1.757 GWOXGB14 1.904 GWORF13 1.959 GWORF11 1.640 GWORF10 1.534
38 GWORF5 1.817 GWOXGB14 1.782 GWORF14 1.915 GWOXGB13 2.237 GWOXGB11 1.645 GWOLGB10 1.651
37 GWOLGB10 1.909 GWOLGB3 1.823 GWOLGB14 1.922 GWOLGB13 2.299 GWOLGB11 1.692 GWOXGB10 1.665
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3.5. Best-Performing Models across Conventional and Hybrid MLs

Table 19 depicts the best 36 models out of 108 models that compare all the conventional
and hybrid ML at humid locations. The plots showing the RMSE and R2 at different
locations in the humid region are shown in Figures 4 and 5, respectively. The results
indicate that the hybrid models outperformed their conventional ML counterparts in most
of the combinations. The models that used the six inputs were the superior, followed by the
models with indices 7, 8, 9, 16, and 12. The accuracy of the XGB and LGB models was higher
than RF models at almost all stations. The use of solar radiation could be attributed to the
excellent performance of models 7, 8, and 9 than the other models that have employed
more inputs.

Table 19. Ranking of the best-performing models in conventional and hybrid MLs at humid stations.

Jorhat Mohanpur Palampur Thrissur

RANK MODEL GPI MODEL GPI MODEL GPI MODEL GPI

1 GWOXGB17 2.031 GWOXGB17 2.077 GWOXGB18 1.953 GWOXGB18 1.302
2 GWOXGB18 1.995 GWOXGB18 1.982 GWOLGB18 1.953 GWOLGB18 1.288
3 GWOLGB18 1.740 GWOLGB17 1.964 GWOXGB17 1.916 GWOXGB17 1.222
4 GWOLGB17 1.656 GWOLGB18 1.732 GWOLGB17 1.909 GWOLGB17 1.207
5 XGB17 1.538 XGB17 1.635 LGB18 1.810 LGB18 1.062
6 XGB18 1.419 LGB17 1.633 LGB17 1.754 LGB17 1.051
7 LGB17 1.388 LGB18 1.439 XGB18 1.642 XGB17 1.025
8 LGB18 1.388 XGB18 1.413 XGB17 1.621 XGB18 0.987
9 GWOXGB8 0.869 GWORF17 1.193 GWORF18 1.537 GWORF17 0.799

10 GWORF17 0.589 RF17 1.176 RF18 1.528 RF17 0.793
11 RF17 0.579 GWORF18 1.075 GWORF17 1.395 GWORF18 0.679
12 GWOLGB8 0.533 RF18 1.054 RF17 1.376 RF18 0.661
13 XGB8 0.533 GWOXGB8 0.829 GWOXGB7 −0.110 GWOLGB16 0.252
14 LGB8 0.510 GWOLGB8 0.755 GWOLGB7 −0.119 GWOXGB16 0.220
15 GWORF18 0.399 LGB8 0.673 LGB7 −0.129 LGB16 0.152
16 RF18 0.392 XGB8 0.540 GWORF7 −0.159 GWOLGB8 0.150
17 GWORF8 0.159 GWORF8 0.473 RF7 −0.210 GWOXGB8 0.112
18 RF8 0.148 RF9 0.454 XGB7 −0.318 LGB8 0.063
19 RF9 0.144 RF8 0.445 GWOLGB16 −0.348 XGB16 0.015
20 GWORF9 −0.023 GWORF9 0.414 GWOXGB16 −0.358 XGB8 0.005
21 GWOLGB12 −0.607 GWOLGB9 −1.103 LGB16 −0.393 GWORF16 −0.037
22 GWOLGB9 −0.652 GWOXGB9 −1.154 GWORF16 −0.571 GWORF8 −0.050
23 GWOXGB9 −0.675 LGB9 −1.169 RF16 −0.577 RF16 −0.065
24 GWORF12 −0.726 GWOLGB12 −1.270 XGB16 −0.673 RF8 −0.069
25 GWOXGB12 −0.736 LGB12 −1.313 GWOLGB8 −1.068 RF9 −0.075
26 LGB12 −0.739 GWORF12 −1.363 GWORF8 −1.101 GWORF9 −0.123
27 LGB9 −0.762 RF12 −1.376 LGB8 −1.102 GWOXGB15 −0.407
28 RF12 −1.040 GWOLGB7 −1.433 GWORF9 −1.122 GWOLGB15 −0.430
29 XGB9 −1.208 LGB7 −1.469 GWOXGB8 −1.171 LGB15 −0.445
30 XGB12 −1.288 GWOXGB12 −1.478 RF8 −1.218 GWORF15 −0.529
31 GWOLGB7 −1.422 GWOXGB7 −1.501 RF9 −1.238 RF15 −0.561
32 GWOXGB7 −1.436 GWORF7 −1.535 XGB8 −1.394 XGB15 −0.581
33 GWORF7 −1.458 XGB9 −1.537 GWOLGB12 −1.611 GWOLGB7 −2.275
34 LGB7 −1.564 RF7 −1.617 GWOXGB12 −1.665 GWOXGB7 −2.288
35 RF7 −1.717 XGB12 −1.712 LGB12 −1.694 LGB7 −2.413
36 XGB7 −1.958 XGB7 −1.923 XGB12 −2.047 XGB7 −2.698
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Figure 5. R2 values at humid locations of all ML models at (a) Jorhat, and Mohanpur; (b) Palampur,
and Thrissur.

The results of the overall best-performing models in conventional and hybrid models
at the sub-humid stations are presented in Table 20. The plots showing the RMSE and R2

at different locations in the humid region are shown in Figures 6 and 7, respectively. The
observed results at the sub-humid locations were in good resonance with that of the humid
locations. The models with indices 17, 18, and 16 were also predicting with greater accuracy
at these locations. The solar radiation data used in models 7, 8, and 9 were also ranked best
in comparison. The application of GWO has improved the accuracy of the ML models in
all the combinations at all stations. The higher GPI values were observed in LGB and XGB
when compared with the RF models using a similar set of inputs.
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Table 20. Ranking of the best-performing models in conventional and hybrid MLs at sub-humid stations.

Faizabad Jabalpur Raipur Ranchi Ranichauri Samastipur

RANK MODEL GPI MODEL GPI MODEL GPI MODEL GPI MODEL GPI MODEL GPI

1 GWOXGB17 1.810 GWOLGB18 1.315 GWOXGB17 1.368 GWOXGB18 1.739 GWOLGB17 2.383 GWOXGB17 1.944
2 GWOXGB18 1.801 GWOXGB18 1.311 GWOXGB18 1.343 GWOXGB17 1.731 GWOXGB17 2.366 GWOLGB17 1.941
3 GWOLGB17 1.774 GWOLGB17 1.310 GWOLGB17 1.295 GWOLGB17 1.642 GWOLGB18 2.357 GWOXGB18 1.847
4 GWOLGB18 1.711 GWOXGB17 1.301 GWOLGB18 1.273 GWOLGB18 1.595 GWOXGB18 2.323 GWOLGB18 1.834
5 LGB17 1.556 LGB18 1.146 LGB18 1.120 LGB17 1.434 LGB17 2.136 LGB17 1.726
6 LGB18 1.491 LGB17 1.104 LGB17 1.105 XGB17 1.394 LGB18 2.069 LGB18 1.644
7 XGB17 1.443 XGB18 1.025 XGB18 1.056 LGB18 1.369 XGB17 1.980 XGB17 1.588
8 XGB18 1.378 XGB17 1.023 XGB17 1.052 XGB18 1.352 XGB18 1.818 XGB18 1.421
9 RF17 1.203 GWORF17 0.887 GWORF17 0.921 RF17 0.985 GWORF18 1.505 GWORF17 1.284

10 GWORF17 1.199 RF17 0.887 RF17 0.907 GWORF17 0.964 RF18 1.499 RF17 1.245
11 GWORF18 1.155 GWORF18 0.866 GWORF18 0.863 GWORF18 0.921 GWORF17 1.364 GWORF18 1.002
12 RF18 1.155 RF18 0.860 RF18 0.849 RF18 0.910 RF17 1.347 RF18 0.909
13 GWOLGB16 0.278 GWOLGB16 0.406 GWOXGB16 0.540 GWOXGB8 0.382 GWOLGB7 0.144 GWOLGB8 0.247
14 GWOXGB16 0.241 GWOXGB16 0.388 GWOLGB16 0.507 GWOLGB8 0.358 GWOXGB7 0.139 LGB8 0.194
15 LGB16 0.073 LGB16 0.270 LGB16 0.381 LGB8 0.357 LGB7 0.114 GWOXGB8 0.187
16 XGB16 −0.103 XGB16 0.125 XGB16 0.241 RF8 0.226 GWORF7 −0.071 GWORF8 0.083
17 GWOXGB8 −0.119 GWORF16 0.066 GWORF16 0.199 GWORF8 0.219 RF7 −0.094 GWORF9 0.077
18 GWOLGB8 −0.157 GWOXGB8 0.053 RF16 0.169 RF9 0.210 XGB7 −0.156 RF9 0.055
19 LGB8 −0.196 GWOLGB8 0.050 GWOLGB8 −0.042 XGB8 0.189 GWOLGB8 −1.152 RF8 0.048
20 RF9 −0.225 RF16 0.045 GWOXGB8 −0.069 GWORF9 0.127 GWOXGB8 −1.158 XGB8 −0.038
21 GWORF8 −0.253 LGB8 0.014 LGB8 −0.128 GWOXGB16 −0.234 GWOLGB9 −1.161 GWOLGB16 −0.541
22 RF8 −0.262 GWORF8 −0.022 GWORF8 −0.175 GWOLGB16 −0.310 LGB9 −1.178 LGB16 −0.627
23 GWORF9 −0.269 RF8 −0.047 RF9 −0.185 LGB16 −0.432 LGB8 −1.183 GWOXGB16 −0.642
24 GWORF16 −0.335 RF9 −0.047 RF8 −0.193 XGB16 −0.624 GWOLGB12 −1.189 GWORF16 −0.767
25 RF16 −0.348 GWORF9 −0.121 XGB8 −0.243 GWORF16 −0.741 GWOXGB9 −1.210 RF16 −0.779
26 XGB8 −0.358 XGB8 −0.135 GWORF9 −0.272 RF16 −0.760 GWOXGB12 −1.240 XGB16 −0.913
27 GWOXGB15 −1.096 GWOXGB15 −0.602 GWOXGB15 −0.612 GWOXGB15 −1.053 GWORF9 −1.242 GWOXGB7 −1.176
28 GWOLGB15 −1.148 GWOLGB15 −0.638 LGB15 −0.631 GWOLGB15 −1.098 GWORF12 −1.248 GWOLGB7 −1.201
29 LGB15 −1.196 LGB15 −0.644 GWOLGB15 −0.642 LGB15 −1.118 LGB12 −1.252 LGB7 −1.219
30 XGB15 −1.445 GWORF15 −0.760 GWORF15 −0.771 GWORF15 −1.263 GWORF8 −1.277 GWORF7 −1.312
31 GWORF15 −1.476 RF15 −0.798 RF15 −0.785 RF15 −1.323 RF9 −1.366 RF7 −1.355
32 RF15 −1.501 XGB15 −0.871 XGB15 −0.860 XGB15 −1.326 RF8 −1.393 XGB7 −1.495
33 GWOXGB13 −1.783 GWOLGB13 −2.335 GWOXGB13 −2.261 GWOLGB12 −1.831 RF12 −1.420 GWOLGB15 −1.653
34 GWOLGB13 −1.891 GWOXGB13 −2.340 GWOLGB13 −2.322 GWOXGB12 −1.843 XGB9 −1.461 LGB15 −1.695
35 LGB13 −1.923 LGB13 −2.411 LGB13 −2.368 LGB12 −1.888 XGB8 −1.475 GWOXGB9 −1.805
36 XGB13 −2.183 XGB13 −2.684 XGB13 −2.632 XGB12 −2.261 XGB12 −1.617 XGB12 −2.054
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3.6. Least-Performing Models across Conventional and Hybrid MLs

Based on the least GPI values, the six least-performing models from each conventional
and hybrid ML model were combined to assess the ranking of all the models. Table 21
illustrates the worst ranking models at the humid stations. It was observed from the results
that the models with indices 1, 2, 3, and 6 were found to be the least-ranked models. The
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conventional ML models were less accurate than their hybrid models. In most instances,
the XGB and LGB models were slightly more accurate than the RF models. A similar
observation was noted at sub-humid locations, tabulated in Table 22. The combination of
inputs that consisted of two and three inputs was the least ranked at almost all the stations.
The advantage of using hybrid models could be seen with the higher GPI values of those
models than the conventional ML models. The results at sub-humid locations also indicate
the inferior accuracy of RF when compared to the boosting models, i.e., LGB and XGB.
The addition of extra-terrestrial radiation did not increase the accuracy of the models to a
greater extent, which could be observed from the model indices 10 and 11 securing least
ranking than other 4-input combination models.

Table 21. Ranking of the least performing models in conventional and hybrid ML at humid stations.

Jorhat Mohanpur Palampur Thrissur

RANK MODEL GPI MODEL GPI MODEL GPI MODEL GPI

108 RF1 −2.443 RF1 −2.685 RF1 −2.858 RF1 −2.488
107 XGB1 −1.829 XGB1 −1.645 XGB1 −2.313 XGB1 −1.934
106 LGB1 −1.374 RF2 −1.357 LGB1 −1.909 LGB1 −1.620
105 GWORF1 −1.158 XGB2 −1.176 GWOXGB1 −1.811 GWOXGB1 −1.543
104 RF3 −1.150 LGB1 −1.066 GWOLGB1 −1.793 GWORF1 −1.541
103 GWOLGB1 −1.134 GWOXGB1 −0.891 GWORF1 −1.774 RF6 −1.530
102 GWOXGB1 −1.128 GWOLGB1 −0.875 RF3 −0.956 GWOLGB1 −1.515
101 XGB3 −1.001 GWORF1 −0.871 XGB3 −0.578 XGB6 −1.380
100 XGB6 −0.703 RF3 −0.703 RF6 −0.439 LGB6 −1.144
99 LGB3 −0.655 LGB2 −0.517 XGB6 −0.266 GWORF6 −1.143
98 RF6 −0.644 XGB3 −0.455 LGB3 −0.242 GWOLGB6 −1.114
97 GWOLGB3 −0.504 GWORF2 −0.413 GWOXGB3 −0.202 GWOXGB6 −1.066
96 GWORF3 −0.488 GWOLGB2 −0.405 GWOLGB3 −0.188 RF2 −0.120
95 GWOXGB3 −0.379 GWOXGB2 −0.310 GWORF3 −0.180 XGB2 −0.006
94 XGB11 −0.264 RF6 −0.292 LGB6 0.198 XGB10 0.210
93 RF11 −0.259 XGB6 −0.212 GWORF6 0.201 LGB2 0.211
92 LGB6 −0.200 XGB13 0.163 GWOXGB6 0.235 GWORF2 0.221
91 GWORF6 −0.078 GWORF3 0.180 RF4 0.281 RF10 0.239
90 GWOXGB6 −0.040 LGB3 0.182 GWOLGB6 0.299 GWOLGB2 0.246
89 LGB11 −0.025 RF13 0.367 RF2 0.386 GWOXGB2 0.252
88 GWOLGB6 −0.024 GWOXGB3 0.374 XGB4 0.481 GWORF10 0.431
87 GWORF11 0.028 GWOLGB3 0.409 XGB11 0.511 LGB10 0.442
86 GWOLGB11 0.090 LGB6 0.446 XGB2 0.580 GWOLGB10 0.470
85 GWOXGB11 0.284 XGB10 0.513 RF11 0.744 GWOXGB10 0.481
84 RF2 0.450 GWORF6 0.593 LGB4 0.873 RF3 0.971
83 XGB2 0.484 GWOLGB6 0.640 GWORF4 0.882 XGB3 0.989
82 LGB2 0.888 GWOXGB6 0.653 GWOXGB4 0.883 LGB3 1.189
81 GWORF2 1.004 RF10 0.756 GWOXGB11 0.906 GWORF3 1.192
80 GWOLGB2 1.045 LGB13 0.804 GWOLGB4 0.908 XGB13 1.226
79 GWOXGB2 1.097 GWORF13 0.848 LGB11 0.952 GWOLGB3 1.228
78 XGB10 1.359 GWOLGB13 1.038 LGB2 0.957 GWOXGB3 1.234
77 RF10 1.540 GWOXGB13 1.071 GWORF11 0.990 RF5 1.269
76 LGB10 1.695 LGB10 1.092 GWOLGB11 0.993 GWORF11 1.387
75 GWORF10 1.826 GWORF10 1.183 GWORF2 1.019 GWOXGB13 1.398
74 GWOLGB10 1.837 GWOLGB10 1.250 GWOXGB2 1.113 LGB5 1.423
73 GWOXGB10 1.854 GWOXGB11 1.312 GWOLGB2 1.118 GWOLGB13 1.435
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Table 22. Ranking of the least-performing models in conventional and hybrid MLs at sub-humid stations.

Faizabad Jabalpur Raipur Ranchi Ranichauri Samastipur

RANK MODEL GPI MODEL GPI MODEL GPI MODEL GPI MODEL GPI MODEL GPI

108 RF1 −2.488 RF1 −2.511 RF1 −2.473 RF1 −2.276 RF1 −2.703 RF1 −2.620
107 XGB1 −1.954 XGB1 −1.969 XGB1 −1.909 XGB2 −1.606 XGB1 −1.931 XGB1 −2.127
106 LGB1 −1.173 LGB1 −1.330 LGB1 −1.246 RF2 −1.498 LGB1 −1.471 LGB1 −1.656
105 GWOXGB1 −1.140 XGB2 −1.304 GWOXGB1 −1.036 XGB1 −1.449 GWOLGB1 −1.322 GWOLGB1 −1.492
104 GWOLGB1 −1.135 RF2 −1.126 GWOLGB1 −1.020 LGB2 −0.861 GWORF1 −1.305 GWORF1 −1.487
103 GWORF1 −1.058 GWOXGB1 −1.119 XGB2 −1.013 LGB1 −0.823 GWOXGB1 −1.295 GWOXGB1 −1.454
102 XGB2 −0.819 GWORF1 −1.090 GWORF1 −0.986 XGB10 −0.793 RF3 −1.233 RF6 −0.818
101 RF2 −0.679 GWOLGB1 −1.086 RF2 −0.889 XGB6 −0.735 XGB3 −1.215 XGB6 −0.789
100 RF6 −0.648 XGB6 −0.719 XGB6 −0.806 GWOXGB2 −0.690 LGB3 −0.772 XGB2 −0.488
99 XGB4 −0.618 LGB2 −0.695 RF6 −0.787 GWOLGB2 −0.643 GWORF3 −0.698 RF2 −0.379
98 XGB6 −0.599 GWORF2 −0.520 LGB2 −0.574 GWORF2 −0.631 GWOLGB3 −0.665 LGB6 −0.339
97 RF4 −0.394 RF6 −0.504 XGB10 −0.372 GWOXGB1 −0.597 GWOXGB3 −0.614 GWORF6 −0.293
96 LGB2 −0.253 GWOXGB2 −0.477 GWOXGB2 −0.297 GWOLGB1 −0.593 XGB2 −0.313 GWOLGB6 −0.234
95 LGB6 −0.167 GWOLGB2 −0.463 GWORF2 −0.296 GWORF1 −0.593 RF2 −0.258 GWOXGB6 −0.212
94 GWORF6 −0.139 LGB6 −0.127 GWOLGB2 −0.266 RF6 −0.591 LGB2 0.098 XGB3 −0.131
93 GWOLGB2 −0.075 XGB10 −0.100 LGB6 −0.212 RF10 −0.427 GWOXGB2 0.203 LGB2 −0.016
92 GWOXGB2 −0.036 GWOXGB6 −0.009 GWOLGB6 −0.088 LGB10 0.005 GWORF2 0.203 GWOXGB2 0.015
91 GWOLGB6 −0.034 GWORF6 0.040 GWOXGB6 −0.068 LGB6 0.066 GWOLGB2 0.213 RF3 0.035
90 GWOXGB6 −0.014 GWOLGB6 0.057 GWORF6 −0.044 GWORF10 0.121 XGB6 0.304 GWORF2 0.040
89 GWORF2 0.063 RF10 0.236 RF10 0.040 GWORF6 0.151 RF6 0.366 GWOLGB2 0.062
88 GWORF4 0.074 LGB10 0.354 XGB4 0.152 GWOXGB10 0.246 XGB13 0.445 LGB3 0.326
87 LGB4 0.106 GWOXGB10 0.468 LGB10 0.313 XGB3 0.267 RF13 0.592 GWOXGB3 0.412
86 GWOXGB4 0.137 GWORF10 0.536 RF4 0.405 GWOLGB10 0.271 LGB6 0.645 GWOLGB3 0.423
85 GWOLGB4 0.139 GWOLGB10 0.563 GWOXGB10 0.556 RF3 0.313 GWORF6 0.696 GWORF3 0.446
84 XGB14 0.520 XGB4 0.585 GWORF10 0.559 GWOXGB6 0.321 GWOLGB6 0.706 XGB11 0.586
83 RF14 0.783 RF4 0.652 GWOLGB10 0.626 GWOLGB6 0.356 GWOXGB6 0.711 RF11 0.844
82 XGB10 0.893 GWORF4 0.964 LGB4 0.767 XGB13 0.840 GWORF13 0.810 XGB10 0.903
81 LGB14 0.967 LGB4 0.986 XGB5 0.857 LGB3 0.915 LGB13 0.825 GWORF11 0.954
80 GWOXGB14 0.967 XGB3 1.006 GWORF4 0.942 GWORF3 1.036 XGB11 0.902 GWOXGB11 0.993
79 GWOLGB14 1.017 RF3 1.014 GWOLGB4 0.972 RF13 1.075 GWOLGB13 0.927 LGB11 1.016
78 RF5 1.039 GWOXGB4 1.055 GWOXGB4 0.986 GWOXGB3 1.159 GWOXGB13 0.932 GWOLGB11 1.074
77 GWORF14 1.054 GWOLGB4 1.068 RF5 1.293 GWOLGB3 1.183 RF11 1.159 RF10 1.098
76 LGB10 1.309 LGB14 1.377 LGB14 1.387 GWORF13 1.519 LGB11 1.232 LGB10 1.271
75 GWOXGB10 1.420 GWORF14 1.378 GWOXGB14 1.504 LGB13 1.552 GWORF11 1.263 GWORF10 1.287
74 GWORF5 1.439 GWOXGB14 1.394 GWORF14 1.511 GWOXGB13 1.687 GWOXGB11 1.266 GWOLGB10 1.370
73 GWOLGB10 1.497 GWOLGB3 1.417 GWOLGB14 1.514 GWOLGB13 1.724 GWOLGB11 1.297 GWOXGB10 1.380
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4. Discussion

Reference evapotranspiration estimation is essential in various applications ranging
from agricultural water management, hydrological balancing across basins and water allo-
cation, etc. The study used various empirical, ML and hybrid ML models that were tested
across the humid and sub-humid stations across the Indian subcontinent. Among empirical
equations, the Turc model was found to be the most reliable method in empirical models
used. Similar results were reported in [62,63], wherein the radiation-based Turc model
performed better. Many studies have proven that the empirical equations underperformed
the ML models, which was also observed in this study. [64] assessed different artificial
intelligence models with empirical models like Turc, Ritchie, Thornthwaite, and Valiantzas
methods. Their results indicated the supremacy of the ML models in predicting ET0. The
comparison between the conventional ML models based on the performance indicators
showed that the XGB and LGB models showed similar accuracies. [30] have also indicated
that both of these models exhibited the same model efficacy. The boosting methods were to
be a potential tool for humid regions according to [65]. RF models were found to be less
accurate than the other boosting models, as reported in [24,29].

The model accuracy increased as increasing the inputs, which was exhibited in most
of the studies. The models that used solar radiation have performed reasonably well in
both the regions, i.e., humid and sub-humid. [29] also found that the addition of solar
radiation improved the accuracy. The models in the sub-humid regions that used wind
speed data were found to be of better accuracy. These results were similar that were found
in Bangladesh [64]. The best and least performing models’ results have been found to vary
slightly across the stations. However, the four input combination models, indices 7 and 8,
were found to be consistently performing well in both regions. Applying these data-driven
models with lower inputs could be promising for developing nations.

The hybrid ML models further enhanced the predictability of the models, which
could be possible by proper hyperparameter tuning. This is evident from the observation
of the improvement in the GWORF model performance over the conventional RF. RF
models showed a greater improvement due to the optimization than the XGB and LGB
models. A similar study by [61] reported an improvement in all the combinations of
inputs when employing PSO. The hyperparameter values varied considerably in all the
combinations and stations. There is no fixed set of hyperparameters for all the ML models
and their input combinations that could be suggested for optimal results, as suggested
in [36]. Nevertheless, these models have proven to be of good accuracy, and there is a
scope for further improvement if different optimizers could be tested across the regions of
the World.

5. Conclusions

This study evaluated the ET0 modelling capabilities of tree-based ML like RF, XGB,
and LGB in addition to the GWO-optimized tree-based ML for ten locations in humid and
sub-humid regions across India. The daily data from 2001 to 2020 of agro-meteorological
parameters like maximum temperature, minimum temperature, wind speed, relative hu-
midity, number of sunshine hours, solar radiation and extra-terrestrial radiation were
employed for modelling purposes. The FAO-56 Penman-Monteith was used as the target
value. Different input combinations were tested at all the stations using a cross-validation
strategy. The comparison of the empirical equations was also made for the ML that used the
same input combinations. The ranking of the models based on GPI value for comparison at
each level was considered. The conclusions that could be drawn from the study are below.

1. The LGB and XGB models outperformed the RF models, while all the ML models
were found to be more accurate than empirical models.

2. Among the empirical methods investigated in the study, the Turc model was deter-
mined to have the greatest performance with higher GPI values.

3. Solar radiation was adjudged to be an important parameter that could improve the
prediction capability.
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4. The GWO hybrid ML models had the highest prediction efficiencies at all the locations,
with RF models improving considerably well.

5. The study consolidated the fact that the use of optimizers would substantially reduce
the modelling error.

6. Further studies could be done using cross-station data and other optimizers to improve
the accuracy.
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