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Abstract: Water quality monitoring is crucial in managing water resources and ensuring their safety
for human use and environmental health. In the Al-Jawf Basin, we conducted a study on the
Quaternary aquifer, where various techniques were utilized to evaluate, simulate, and predict the
groundwater quality (GWQ) for irrigation. These techniques include water quality indices (IWQIs),
geochemical modeling, multivariate statistical analysis, geographic information systems (GIS), and
adaptive neuro-fuzzy inference systems (ANFIS). Physicochemical analysis was conducted on the
collected groundwater samples to determine their composition. The results showed that the order of
abundance of ions was Ca2+ > Mg2+ > Na+ > K+ and SO4

2− > Cl− > HCO3
− > NO3

−. The assessment
of groundwater quality for irrigation based on indices such as Irrigation water quality index (IWQI),
sodium adsorption ratio(SAR), sodium percent (Na%), soluble sodium percentage (SSP), potential
salinity (PS), and residual sodium carbonate RSC, which revealed moderate-to-severe restrictions
in some samples. The Adaptive Neuro-Fuzzy Inference System (ANFIS) model was then used to
predict the IWQIs with high accuracy during both the training and testing phases. Overall, these
findings provide valuable information for decision-makers in water quality management and can aid
in the sustainable development of water resources.
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1. Introduction

Groundwater (GW) is a crucial natural resource for the socioeconomic development
of nations, but agriculture is identified as its primary global consumer [1]. GW is essential
for sustained growth in various sectors in the long term, and a reliable water supply is
vital for the economy, industry, and agriculture, relying on favorable GW attributes such
as extensive coverage and superior quality [2–5]. Unfortunately, groundwater quality
(GWQ) has deteriorated significantly in the past few decades due to factors such as pop-
ulation growth, industrial and agricultural expansion, and the impact of climate change.
Inadequate management of natural resources caused by poor coordination and strategy
integration exacerbates the situation leading to water crises and quality issues in many
nations, especially those with arid and semi-arid climates [2–4].

Yemen is located in a region prone to water shortage due to insufficient rainfall
and poor distribution, making it one of the top ten countries with water scarcity [6].
Yemen is among the most severely water-stressed countries in the Middle East and faces a
severe water crisis due to the over-extraction of GW, inadequate infrastructure, and poor
management practices, leading to the rapid depletion of aquifers [7,8]. Water resources
in Yemen are primarily used in agriculture, and recent conflicts have disrupted food
production and access to safe drinking water. Many farmers have been forced to abandon
their land because of a lack of water, while urban areas rely heavily on GW, and rural
regions depend on wells and conventional water collection techniques [9]. The country has
limited water resources, with 1.5 billion m3 of renewable groundwater, 1.0 billion m3 of
surface water, and 3.4 billion m3 of water demand [10]. Recent population growth, coupled
with an increased demand for water for agricultural purposes, particularly farming, and
the absence of rainfall, has resulted in the overuse of GW [11]. The growing population
combined with water shortages poses substantial socioeconomic and political challenges to
the country and threatens its environmental stability [12].

GW chemical composition results from long-term interactions with the surround-
ings, and geological, climatic, and human factors profoundly affect the types and levels
of substances found in the GW [13,14]. Physical and chemical patterns resulting from
geological and anthropogenic activities affect GW quality [15]. Recharging, aquifer metrics,
contact time, and particular geochemical mechanisms such as mineral solubility, dissolu-
tion, and ion exchange processes influence the geochemical properties of the GW [16–18].
Statistical analysis, Piper diagrams, Gibbs diagrams, Chadha diagrams, and ion ratios
are effective methods to analyze the chemical features of GW and the factors governing
them [19–22]. Geochemical models can help compute chemical reactions occurring in GW
systems, such as dissolution and precipitation of solids, ion exchange, and sorption by
clay minerals [23–25]. Statistical correlation analysis, which is an appropriate method for
determining connections between various physicochemical factors, may be a distinguish-
ing step toward GWQ management. Moreover, multivariate techniques such as cluster
analysis (CA) and principal component analysis (PCA) are useful for identifying important
physicochemical properties and the relationships among these factors to comprehend the
primary elements affecting the distribution of physicochemical water parameters [26–28].

The sustainability of irrigation water quality is a crucial area of research worldwide,
and various studies have produced hydrochemical indices for comprehensive assessments.
Irrigation water quality indices (IWQIshave emerged as the preferred method for evaluating
water quality and have been developed by numerous scientists [2,13]. IWQIs depend on
the quantity and type of salts present in the water, and concerns associated with water
quality degradation include increased salinity, diminished permeability, and exposure to
highly toxic ions. Various techniques have been employed to assess irrigation water quality,
including the use of IWQIs. IWQIs combine several physicochemical elements to create a
single value that represents the suitability of water quality for irrigation [27,29,30]. Several
studies have focused on using IWQI and other indices such as SAR, Na%, SSP, PS, and RSC
to evaluate the suitability of groundwater (GW) for irrigation [31,32]. Furthermore, GIS
can aid in mitigating some of these problems, particularly by integrating a water quality
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assessment methodology with a spatial analysis tool, which can substantially enhance the
visualization of research findings [33].

However, conventional techniques for assessing water quality can be costly and
labor-intensive, particularly for farmers in developing nations. To address this challenge,
machine learning (ML) models have been increasingly used in recent years to predict
IWQIs of aquifer systems using physical characteristics as features. ML has been used
more frequently in recent years to evaluate water quality in numerous research studies
due to its effectiveness in resolving intricate issues and highlighting how input and output
data are related [34–36]. To predict IWQIs for irrigation, ANFIS was used in this study.
ANFIS has been used in a variety of hydrological applications, including the simulation
of runoff and rainfall, stream flow prediction, and drought prediction [37–41]. These
applications utilize the ability of ANFIS to model nonlinear and complex relationships
between input and output variables, which is often the case in hydrological systems. One
of the benefits of ANFIS in hydrology is its ability to handle uncertainty and imprecision
in input data. This is achieved using fuzzy logic, which allows for the representation
of vague and uncertain information in a mathematically tractable form. In addition,
ANFIS can be easily integrated with other computational tools, such as evolutionary
algorithms and swarm intelligence methods, to further improve its performance [42–44].
A decline in the quality of drinking water negatively impacts human health and the
sustainable development of society. This problem has worsened in many regions owing
to urbanization and population growth, leading to increased groundwater contamination.
This contamination is mainly caused by the mismanagement of groundwater resources
and the release of sewage from households and industries into the groundwater system.
Contaminants in shallow aquifers can deteriorate deep aquifers and change geochemical
conditions along this pathway [45,46].

Consequently, the purposes of this study were to: (1) study the characterization of
GW in the Al-Jawf region, water types, and their geochemical processes; (2) determine the
chemical composition of the GW used for irrigation in the Al-Jawf Basin; (3) evaluate the
suitability of GW for irrigation across the Quaternary aquifer in the Al-Jawf Basin using
IWQIs such as IWQI, SAR, Na %, SSP, PS, and RSC; and (4) evaluate the effectiveness of
ANFIS modeling for the reliable prediction of IWQIs.

2. Materials and Methods
2.1. Site Descriptions and Hydrogeological Settings

The Al-Jawf Governorate is a province located in northwest Yemen, along the border
with Saudi Arabia, approximately 170 km from Sana’a, the capital of Yemen. With an area
of about 30,620 square kilometers and a population of around 663,147 people [47], it is ad-
ministratively divided into twelve districts: Alhazm, Khab, and Alsha’af; Alghayl, Alkhalq,
Barat Aleinan, Rajoozah, Kharab Almarashi, Almasloob, Almutun, Alzahir, Alhamidat,
and Almatamah. The economy of the governorate is predominantly agricultural, with
crops such as wheat, corn, fodder, and barley, and it also has small-scale industries such as
textiles and food processing. The terrain of the Al-Jawf Governorate is characterized by
plains, as it overlaps with the desert of the Empty Quarter and has a desert climate [48].

The study area is located in the northwestern part of Al-Jawf Governorate and includes
five districts: Almasloob, Almutun, Alzahir, Alhamidat, and Almatamah. It is situated
between the longitudes of 44◦20′–44◦40′ E and the latitudes of 16◦10′–16◦20′ N (Figure 1).
The depth of the sampling wells ranged from 18 to 150 m below the ground’s surface
and penetrated the shallow Quaternary aquifer, which is unconfined and consists of sand
intercalated with clays and carbonates [49].
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Figure 1. Location map and sampling sites of the research study area.

2.2. Geological and Hydrogeological Settings

According to Alaug [49], the subsurface geology of the Al-Jawf Basin is composed of a
sedimentary succession that is characterized by alternating transgressive and regressive
depositional cycles. These successions resulted from different rift phases and consisted
of clastic rocks and carbonates. The succession can be summarized from youngest to
oldest, as shown in (Figure 2). The Quaternary deposits in the region include the untied
Tawilah Group (Cretaceous), Nayfa Formation (Berriasian-Hauterivian), Madbi Forma-
tion (Kimmeridgian), Shuqra Formation (Bathonian-Oxfordian), Kuhlan Formation (Early
Middle Jurassic), and Wajid and/or Akbara Formations (Paleozoic) [49].

Water 2023, 15, x FOR PEER REVIEW 5 of 30 
 

 

 
Figure 2. Geological, Hydrogeological units in the study area. 

 
Figure 3. The Quaternary aquifer’s groundwater flow direction. 

2.3. Water Sampling and Analysis 
The groundwater samples, totaling 27, were collected from wells and boreholes lo-

cated throughout the Quaternary Aquifer in the Al-Jawf region. Non-acidified water sam-
ples were collected and stored in approximately 1.5 dm3 polyethylene bottles, which were 
then kept at 4 °C. The chemical composition of the water was analyzed to determine the 
presence of Mg2+, Ca2+, K+, Na+, SO42−, HCO3−, Cl−, and NO3−. The ionic balance (IB) was 
calculated as a percentage difference between the total amount of positively charged ions 
(cations) and negatively charged ions (anions) present in water using the following for-
mula (Equation (1)): 

IB = (TC − TA)/(TC + TA) × 100  (1)

where TC represents the total amount of cations and TA represents the total amount of 
anions, both measured in milliequivalents per liter. To confirm the assessment of water 
quality, an acceptable range for IB is within ±5 [50]. 
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The elevation of the water level in this region ranges from 1089 to 1247 m above sea
level, and the GW flows from northwest to southeast. However, excessive abstraction of
GW in the central part of the study area has led to a rapid decrease in the water level,
as seen on the map as a cone of depression from the local flow direction (Figure 3). The
Wadi Al-Jawf region is known for its low rainfall rates, which means that there is limited
GW recharge from precipitation. Instead, the main source of GW recharge in this area is
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believed to be surface water, which flows from neighboring mountainous regions into the
valleys and plains. This surface flow then percolates into the ground, replenishing the GW
aquifers. This method is referred to as the diffuse recharge method and is a vital recharge
source in arid and semi-arid regions with low precipitation rates. However, this method is
less consistent and depends on the intensity of precipitation in mountainous areas and the
effectiveness of infiltration. The main aquifer in the current study is composed of sandstone
intercalated with shale, clay, and carbonate minerals such as limestone [49].
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2.3. Water Sampling and Analysis

The groundwater samples, totaling 27, were collected from wells and boreholes located
throughout the Quaternary Aquifer in the Al-Jawf region. Non-acidified water samples
were collected and stored in approximately 1.5 dm3 polyethylene bottles, which were
then kept at 4 ◦C. The chemical composition of the water was analyzed to determine the
presence of Mg2+, Ca2+, K+, Na+, SO4

2−, HCO3
−, Cl−, and NO3

−. The ionic balance (IB)
was calculated as a percentage difference between the total amount of positively charged
ions (cations) and negatively charged ions (anions) present in water using the following
formula (Equation (1)):

IB = (TC − TA)/(TC + TA) × 100 (1)

where TC represents the total amount of cations and TA represents the total amount of
anions, both measured in milliequivalents per liter. To confirm the assessment of water
quality, an acceptable range for IB is within ±5 [50].

Water analyses were conducted in May 2021 using the following procedures: Bicar-
bonates were determined by titration with the methyl orange endpoint immediately upon
sampling. The chloride content was estimated using Mohr titration and precipitation of
AgCl until the appearance of silver chromate [51]. The nephelometric technique was used to
calculate sulfate [52], while colorimetric analysis was performed to examine the nitrates [53].
Complex metric titration was used to estimate the amounts of calcium and magnesium,
and emission spectrometry was used to measure the concentrations of Na and K [51].

2.4. Multivariate Statistical Methods and Data Treatments
2.4.1. Cluster Analysis

CA is an unsupervised pattern recognition approach that classifies an enormous
volume of data from each entity into multiple clusters and identifies the characteristics of



Water 2023, 15, 1496 6 of 28

each group [54,55]. It is frequently used for hydrochemical investigations to categorize
hydrogeochemical processes in groundwater by grouping collected water samples into
significant geological and hydrogeological groups [56]. The outcomes of CA are displayed
in a dendrogram [57], which considerably reduces the complexity of the original data while
still showing the groupings and their closeness, providing a visual picture of the clustering
activities [58].

2.4.2. Principal Component Analysis/Factor Analysis

PCA is a linear structure used for analyzing complex multivariate datasets statistically
without losing information [59]. It is a method of compressing data and estimating the
number of variables required to elucidate observed fluctuations in the data. PCA can
reduce the number of variables required while still capturing the same amount of variation
with fewer variables [60]. The PC that contributes significantly to illustrating the variance
in the measured data in traditional PCA has a greater eigenvalue. Moreover, PCA helps in
comprehending the relationships between fundamental and indirect observable aspects of
data [61].

2.5. Indexing Approach
2.5.1. Index of the Processes Influencing Groundwater Chemistry

Another approach to identifying the origin and interrelationships among major ele-
ments is by using [SO4

2−] versus [Ca2+], [HCO3
− + SO4

2−] versus [Ca2+ + Mg2+], [Na+]
versus [Cl−], and [HCO3

−] versus [Ca2+ + Mg2+]. The chloralkaline indices (CAI-I and
CAI-II) (Equations (2) and (3)) were used in this study to determine the minerals in the
aquifers and GW-exchange ions [62].

CAI− I =
Cl− −

(
Na+ + K+

)
Cl−

(2)

CAI− II =
Cl− −

(
Na+ + K+

)
So4

2− + Hco3
− + Co3

2− + No3
2− (3)

2.5.2. Saturation Index (SI)

Additionally, a speciation model was used to determine the saturation index (SI) of
minerals in GW samples from the Al-Jawf Basin. The SI of a mineral indicates its saturation
level relative to the surrounding system. It was used in this study to predict the presence
of reactive minerals in aquifers based on water samples without requiring solid-phase
samples or mineral analysis [63].

Equation (4) was used to calculate the SI;

SI = log (IAP/Ksp) (4)

IAP expresses for “ion activity product,” and Ksp expresses for “solubility product” at
a particular temperature. An SI of 0 indicates that the water is saturated and in equilibrium
with the minerals; a positive value indicates oversaturation, and a negative value represents
undersaturation.

2.5.3. Irrigation water Quality Indices (IWQIs)

The physicochemical characteristics of the GW were used to compute the six IWQIs,
as shown in Table 1.
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Table 1. The calculation methods of the irrigation indices.

IWQIs Formula References

IWQI
n
∑

i=1
Qi ×Wi [31]

SAR
(

Na+√
(Ca2++Mg2+)/2

)
× 100 [64]

Na % (Na++K+)
(Ca2++Mg2+)+(Na++K+)

× 100 [65]

SSP Na+

Ca2++Mg2++Na+
× 100 [66]

PS Cl− +

(
SO2−

4
2

)
[67]

RSC
(

HCO−3 + CO−3
)
−
(

Ca2+ + Mg2+
)

[66]

Note: The IWQIs are determined in meq/L, except IWQI in mg/L.

Irrigation Water Quality Index (IWQI)

The EC, SAR, Na+, Cl−, and HCO3
− variables were used to generate the non-dimensional

IWQI scale (Equations (5)–(7)), which has a range of 0–100 [31].

IWQI =
n

∑
i=1

Qi ×Wi (5)

where Qi is the value of the quality measurement according to the tolerance thresholds,
and Wi is the set weight of each parameter (Table 2).

Qi = Qmax −


[(

Xij − Xinf
)
×Qimap

]
Xamp

 (6)

where Xinf is the value that matches the lower limit of the class, Xij is the observed value
for each parameter, Qimap is the class amplitude, and Xamp is the amplitude class within
which the parameter falls.

Table 2. The range of limit values of the parameters used in the computation of quality measure-
ment (Qi).

Qi SAR EC (µs/cm) HCO3− (meq/L) Na+ (meq/L) Cl− (meq/L) HCO3− (meq/L)

0–35 SAR > 2 or
SAR ≥ 12

EC < 200 or
EC ≥ 3000

HCO3 < 1 or
HCO3 ≥ 8.5

Na < 2
or SAR ≥ 9

Cl < 1 or
Cl ≥ 10

HCO3 < 1 or
HCO3 ≥ 8.5

35–60 6 ≤ EC < 12 1500 ≤ EC < 3000 4.5 ≤ HCO3 < 8.5 6 ≤ Na < 9 7 ≤ Cl < 10 4.5 ≤ HCO3 < 8.5

60–85 3 ≤ EC < 6 750 ≤ EC < 1500 1.5 ≤ HCO3 < 4.5 3 ≤ Na < 6 4 ≤ Cl < 7 1.5 ≤ HCO3 < 4.5

85–100 2 ≤ EC < 3 200 ≤ EC < 750 1 ≤ HCO3 < 1.5 2 ≤ Na < 3 1 ≤ Cl < 4 1 ≤ HCO3 < 1.5

Finally, Equation (6) was used to obtain the Wi values:

Wi =
∑k

j=1 FjAij

∑k
j=1 ∑n

i=1 FjAij
(7)

where i represents the account of physicochemical variables selected by the model, with a
range of 1 to n, j is the number of factors selected by the model, between 1 and k, and F is
the auto value of component 1. A = parameter i substantially limited by factor j.

2.6. Adaptive Neuro-Fuzzy Inference System (ANFIS)

An ANFIS is an artificial neural network that uses fuzzy logic to make decisions [68,69].
It integrates the learning ability of a neural network with its ability to interpret fuzzy logic.
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ANFIS is used for both classification and regression tasks and can be used to simulate
intricate nonlinear input-output interactions. The methodology of using ANFIS can be
divided into several steps [70–72].

1. Model design: In this step, the ANFIS model is designed, including the number
of input and output variables, the number of fuzzy rules, and the structure of the
adaptive network layer. Based on the complexity of the interactions between the
input and output variables, the structure of the ANFIS model can be selected, and the
number of fuzzy rules can be determined according to the number of input variables
and the desired level of detail in the model;

2. Fuzzy partitioning: In this step, the input space is divided into a set of fuzzy regions
using fuzzy partitioning techniques such as clustering or grid partitioning. The
objective of fuzzy partitioning is to divide the input space into regions such that the
input variables in each region are similar with respect to their relationships with the
output variable;

3. Rule-based generation: In this step, a set of fuzzy rules is generated based on fuzzy
partitions and relationships between the input and output variables. Each fuzzy rule
consists of an antecedent (the if part of the rule) and a consequent (the then part of
the rule), and the antecedent typically consists of a set of fuzzy membership functions
that describe the relationship between the input variables and fuzzy regions;

4. Model training: In this step, the ANFIS model is trained using a set of training data and
an optimization algorithm, such as gradient descent or particle swarm optimization, to
adjust the model parameters and improve performance. The objective of the training
is to minimize the error between the predicted and observed output values, which
can be achieved using a variety of optimization algorithms and loss functions.

The relationships between IWQIs and water quality measures were established using
ANFIS and represented as fuzzy if-then rules (Figure 4). The ANFIS models employed
Sugeno-type FIS of a bell as input membership functions, with five functions. However,
the outputs had linear membership functions. Figure 5 illustrates the ANFIS model, which
includes a multilayer feedforward architecture and incoherent x- and y-input networks.
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This study utilized ANFIS to determine the relationships between IWQIs and water
quality metrics. The relationships between IWQIs and water quality parameters were de-
scribed as if-then fuzzy rules, which can predict IWQIs based on input variables (Figure 5).
The rule foundation of the Sugeno model (Figure 5) is as follows (Equations (8) and (9)):

If a = A1 and b = B1 we have f1 = p1 × a + q1 × b + r1 (8)

While, if a = A2 and b = B2 we have f2 = p2 × a + q2 × b + r2 (9)

The ANFIS system consists of five layers, as shown in Figure 6. The membership
functions for fuzzy sets A and B are denoted by are µAi and µBi, respectively. A and
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B are orders of magnitude, and a and b are indicators of indirect identification function.
The forward pass of the training algorithm modifies the relevant constraints p, q, and r,
whereas output fi falls within an inconsistent region defined by the FIS concept. Khadr [28]
provided additional information on the ANFIS.
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2.7. Performance Evaluation of the Simulation Models

To determine the accuracy and effectiveness of the ANFIS model for predicting the
IWQs, several statistical measures were used for performance evaluation. These mea-
sures are commonly employed to compare the output of a model with the actual data
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or the output of other models. They provided quantitative insights into the predictive
capability, reliability, and accuracy of the model. These measures include the following
(Equations (10)–(13)):

(a) Nash–Sutcliffe efficiency coefficient (NSE)

E = 1−

∑n
i=1

(
IWoi − IW f i

)2

∑n
i=1(IWoi − IWo)

2

 (10)

(b) The mean absolute error (MAD)

MAD =
∑n

i=1

∣∣∣IWoi − IW f i

∣∣∣
n

(11)

(c) The absolute variance fraction, R2

R2 = 1−
∑n

i=1

(
IWoi − IW f i

)2

∑n
i=1(IWoi)

2 (12)

(d) The root-mean-square error (RMSE)

RMSE =

√√√√∑n
i=1

(
IWoi − IW f i

)2

n
(13)

IWo is the observed IWQ index, n is the number of data points, IWf is the predicted
IWQ index, and IW is the average observed Irrigation water quality index. Figure 7
illustrates the model architecture used by the ML algorithms.
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2.8. Data Analysis, Processing, and Spatial Distribution

Statistical analyses were performed on the physicochemical characteristics and IWQIs
using SPSS software version 22. According to the compositions of cations and anions,
Piper, Chadha, and Gibbs diagrams were used to identify hydrogeochemical evolution
and water types and to show the relationship between the characteristics of aquifers
and water chemistry using OriginPro 2022 v.9.90 [21,73]. To identify the key elements
in the water and improve water quality evaluation by simplifying the data analysis into
understandable patterns, CA and PCA were utilized with the aid of statistical software
(Version 8). These techniques enable the extraction of important information from large and
complex datasets and facilitate the identification of underlying patterns and relationships
among variables [74]. To establish the spatial relationships among the chemical properties
of the data collected from various sample sites, several water quality indices (IWQIs)
were developed. The purpose of these indices was to provide a framework for spatially
connecting chemical properties. To visualize these indices, ArcGIS 10.5 was used to produce
maps using raster interpolation and spatial analysis techniques, specifically the inverse
distance weighted (IDW) method. IDW is generally a good choice when dealing with
widely spaced data points or local variations in the data and when it is important to
preserve abrupt changes in the data, which is the case in the current study. In contrast,
kriging is better suited for smoothly varying data with a clear spatial correlation.

3. Results and Discussion
3.1. Hydrochemical Characteristics of Groundwater

The physicochemical characteristics of the Al-Jawf groundwater were examined to
analyze the physicochemical quality of the Quaternary aquifer waters. Samples of GW had
an average temperature of 20.7 ◦C. The pH of the water indicated that the type of terrain
being traversed affected whether it was acidic or alkaline. TDS concentrations vary from
378.42 and 5012 mg/L. The GW samples may be classified as fresh to moderately saline by
TDS, and 18.5% of them exceeded the FAO [75] water criteria. The measured water had a
pH between 6.5 and 7.5, with a mean of 7.13. The FAO [75] standards were met based on
these results (Table 3). The pH value also showed that the water was low in alkalinity and
that the mechanisms that fix dolomite and calcite predominated between the pH values of
6.5 and 8.5. S19 well had the highest pH value, whereas S7 had the lowest.

Table 3. Descriptive results of the groundwater samples with the standard limit for irrigation
purposes.

Parameter Unit FAO Min Max Average

pH - 8.5 6.5 7.5 7.13
Temp. (◦C) - 11.5 27.1 20.7
TDS (mg/L) 2000 378.42 5012 1685
EC (µS/cm) 3000 542 6628 2361.72

Ca2+ (mg/L) 400 40 460 179.69
Mg2+ (mg/L) 60 32.81 328 114.5

K+ (mg/L) 2 2.34 23.40 9.54
Na+ (mg/L) 919 24.15 724.5 197.2

HCO3
− (mg/L) 610 150 915 408.18

Cl− (mg/L) 1036 35.5 1136 395
SO4

2− (mg/L) 960 19.2 1939 392
NO3

− (mg/L) 10 0.1 6 2.21

As a result, the EC provides data on the degree of water mineralization. With a range
of 542–6628 µS/cm, GW has an average EC of 2361.72 µS/cm. Notably, this study found
results above the FAO recommendation of 3000 S/cm in 18.5% of the water samples [75].
All GW in the Al-Jawf region had higher EC ratings when the subsurface flows were
directed toward the discharge areas southwest of Al-Jawf. The Ca2+ levels in the water
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samples ranged from 40 to 460 mg/L. For irrigation water, the FAO establishes a 400 mg/L
maximum acceptable threshold. The average number of water sites was below the FAO
recommendation, with Mg2+ concentrations ranging from 32.81 and 328 mg/L [75]. Water
hardness is primarily caused by high amounts of alkaline earth elements. Soil type affected
their concentrations. The amount of Ca2+ reached its peak towards the southeast and
southwest. Similarly, the southeast and southwest of the Al Jawf area had the highest Mg2+

concentrations, reaching a maximum of 114.5 mg/L. The dolomites from the Cretaceous
and Tawilah groups were altered and dissolved, resulting in this concentration. In general,
the breakdown of dolomitic rocks (CaMg (CO3)2), gypsum (CaSO4), and calcium carbonate
(CaCO3) in the aquifer produces Ca2+ (Equations (14)–(16)):

CaCO3 → Ca2+ + CO2 + H2O (14)

CaMg(CO3)2 → Ca2+ + Mg2+ + CO2 + H2O (15)

CaSO4 → Ca2+ + SO4
2+ (16)

The alkaline elements Na+ and K+ are naturally found in irrigation water and the
Earth’s crust. The Na+ concentration in the Al-Jawf GWvaried from 24.15 to 724.5 mg/L.
All the examined water samples were below the FAO limit of 919 mg/L [75]. The K+

concentrations ranged from 2.34 to 23.40 mg/L. The Food and Agriculture Organization
(FAO) standard establishes a maximum permissible concentration of 2 mg/L for irrigation
water. The breakdown of KCl and NaCl in rock-water interactions, saline seeps, and minor
air inputs are the causes of this enrichment [76]. The highest potassium concentrations were
found in samples collected from wells in the central and southern parts of the study area.

The concentration of Cl− ranged from 35.5 to 1136 mg/L, with the latter being the
maximum value. A previous study [52] suggested that the high chloride concentration
could be due to the types of formations through which the water passes, or it may be a result
of inadequate sewage waste treatment. Some numbers do not meet the FAO requirements
(1036 mg/L) [75]. In the water boreholes, the highest Cl− concentrations were found in
two samples from the southwest of the study area. High Cl− concentrations make metals
rust, make water taste salty, and reduce the strength of concrete.

The FAO guidelines [75] state that the HCO3
− concentration should be approximately

610 mg/L. Nevertheless, the GW samples from the study area revealed levels between
150 and 915 mg/L, which fell within the previously specified range, except for four samples
that exceeded the limit. The samples with the highest HCO3

− contents were S7, S17, S22,
and S23, with values of 915, 730, 780, and 823.5 mg/L. In this study, SO4

2− levels varied
from 19.2 and 1939 mg/L and complied with FAO standards except for two samples in
the southwest of the Al-Jawf region that exceeded the limits [75]. The use of chemical
fertilizers by farmers, which is an intensive agricultural practice, has led to an increase
in the concentration of SO4

2− [77]. High concentrations of sulfate in irrigation water can
seriously harm public health [78]. In the southwestern part of the research area, SO4

2−

concentrations were the highest. These typically increase in the direction of the subsurface
flow. The gypsum and anhydrite in the mineral dissolved, resulting in the highest SO4

2−

concentrations. Sulfate ions can also be derived from the weathering of sulfide minerals
such as pyrite, which requires further investigation to confirm the presence of pyrite in the
aquifer [79].

The water samples analyzed in the Al-Jawf region had NO3
− concentrations ranging

from 0.1 to 6 mg/L. These values were below the recommended FAO range (10 mg/L) [75].
According to Table 3, the low value of nitrates in the study area indicates that there was no
nitrate contamination from anthropogenic activities. Figure 8 shows the distribution maps
of the physicochemical parameters in the study area.
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3.2. Groundwater Facies and Processes Influencing Groundwater Chemistry

Hydrochemical processes occurring in aquifers may affect groundwater chemistry [80].
The distribution of groundwater facies is primarily attributed to local geology and lithology,
particularly in arid to semi-arid regions [81]. Major ions regulate hydrochemical processes,
which is why Chadha’s diagram and the Piper diagram [20,22] were employed in this study
(Figure 9a,b). The relative composition of the GW can be determined based on cation-anion
pairings and the position of the plot [82]. Most of the samples used in this investigation
fell into Field 3, and only two samples fell into Field 2 in Chadha’s diagram (Figure 9b). In
the Piper diagram (Figure 9a), 25 samples fell into zone 1 and two samples into zone 2 of
the diamond shape. Both diagrams confirm the same water type, which is represented by
the Ca-Mg-Cl/SO4 type and Ca-Mg-HCO3 type, respectively, where alkaline metals are
more abundant than alkaline earth metals and weakly acidic anions are more prevalent
than strongly acidic anions. Several diagrams have been used by different researchers to
determine the chemical composition of groundwater or water types, such as the TIS salinity
diagram [83], ionic ratio relationships, Chadha’s diagram, and the Piper diagram. Ionic
ratios, gibbs diagram, and chadha’s diagram were applied alongside the Piper diagram to
show the geochemical evolution of groundwater from the recharge area to the discharge
area. The results revealed that the water type in the recharge area was Ca-Mg-HCO3, and
during the flow and water-rock interaction, the water type changed to Ca-Mg-Cl/SO4 in
the discharge zone. Furthermore, saturation indices could reflect the mineral composition
of the aquifer. A Gibbs diagram could reflect the relationship between the ionic ratio
and salinity.
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Analysis of the local concentrations of several elements revealed that the cations de-
veloped as follows: Ca2+ > Mg2+ > Na+ > K+, whereas the anion evolution was as follows:
SO4

2− > Cl− > HCO3
− > NO3

−. The breakdown of evaporitic deposits revealed calcium
and magnesium sulfate facies in the chemical profile. The lithology of the region and anthro-
pogenic factors, such as unrestricted fertilization and irrigation water quality, significantly
affect the distribution of major ions (Ca2+, Mg2+, and SO4

2−). Calcium and magnesium
sulfates can provide both calcium and magnesium upon breakdown. Nevertheless, the
change from one dominant ion to another might have been caused by dilution following
the mixing or precipitation of one of the ions.

The two primary sources of SO4
2− that have been identified are organic matter decom-

position in the soil and the addition of leachable organic matter in the highly intensively
cultivated regions of the Al-Jawf plain. The dissolution of gypsum is also recognized as
a secondary source of sulfate [84]. According to Equation (17), the evaporite sequence’s
existence permits the dissolution of gypsum.

CaSO4 + 2H2O→ Ca2+ + SO4
2− + 2H2O (17)
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The fundamental mechanisms governing the evolution of water and the numerous
hydrogeochemical processes affecting GW chemistry in the study region were examined
using Gibbs plots [21]. Evaporation and rock weathering are significant components in
the evolution of water chemistry, as shown by the Gibbs plots (Figure 9c,d), which show
that the majority of the GW samples under study lie in the top portion of the diagrams
(evaporation-dominant), and five samples fall in the rock weathering zone.

Figure 9c,d shows that the evaporation process is responsible for the plots’ redirection
to the Al-Jawf plain’s evaporation dominance zone, which is located in a region with an arid
climate and shallow GWat depth. However, human activity can also affect the groundwater
hydrochemical evolutionary processes, which Gibbs diagrams cannot explain [85].

Nonetheless, the shallow water depth in the area was related to the improvement in
water levels caused by increased irrigation and effective rainfall. The ion concentrations
were primarily influenced by evaporation. In addition, the approaching saturated zone is
particularly wet and rich in evaporites, which causes the evaporites to precipitate through
evaporation and ultimately leak into the saturated zone. The upshot of this is an increase in
salinity (TDSmax = 5012 mg/L) as evaporation from the earth becomes more severe as the
water level increases, and sulfate GW is more influenced by evaporation than bicarbonate
GW [86]. These results are complemented by other experiments that demonstrated that the
sulfate-type GW in the alluvial plain is subject to high evaporation [87].

The lack of a balanced association between Na+ and Cl− ions indicated that there
was no equilibrium between them. This could be attributed to the prevalent sources of
these ions, including halite dissolution. Only a few samples fell on the 1:1 line graph
(Figure 10a). The majority of the samples fell below the 1:1 line graph, suggesting an excess
of chloride, indicating either an additional source of chloride ions or the removal of Na+

from the GW via ion exchange. The high levels of chloride might be ascribed to human
activities such as waste disposal, seepage of excess irrigated water from agricultural land,
or deposition of chloride from the atmosphere. Anthropogenic disturbances, rather than
variability in climate parameters, have been identified as the primary cause of surface
freshwater shortage in the country, rather than variability in climate parameters [88]. Both
reverse ion exchange and ion exchange have an impact on aquifer chemistry in the research
region of Al-Jawf, as illustrated in Figure 10b through the scatter plot between Ca2+ +
Mg2+ and HCO3

− + SO4
2−. The samples that were close to the 1:1 line demonstrated

that the most frequent reactions in the research region system were calcite, dolomite,
and gypsum dissolution. However, below the 1:1 line, the ion exchange mechanism
is evident, with Ca2+ remaining in the soil and Na+ returning to the GW. In contrast,
those above line 1:1 show reverse ion exchange, in which Na+ was held in the soil, and
Ca2+ was released into the GW. The samples with ratios above 1:1 were calcium- and
magnesium-enhanced. This suggests that evaporites are a better source of Ca2+ and
Mg2+ than carbonates. The Ca2+ + Mg2+ interactions of most of the GW samples with
HCO3

− + SO4
2− did not indicate that carbonate weathering was the primary process in the

study area, as shown in Figure 10b). Additionally, the plot of Ca2+ + Mg2+ versus HCO3
−

(Figure 10c) shows an excess of Ca2+ and Mg2+ caused by silicate weathering, which is a
key process in releasing HCO3

− into the GW [89]. Figure 10d, which displays the ratios of
SO4

2−/Ca2+, supports this. With a coefficient of correlation value of 0.6 between SO4
2−

and Ca2+, there is a strong association between the two ions as an indication of gypsum
and anhydrite dissolution. Most samples were above the equiline 1:1 in the scatter plot
between Ca2+ and SO4

2− (Figure 10d), suggesting that another source of calcium, calcite,
and dolomite, was dissolved in the GW [28]. Samples that deviated from the line 1:1 point
to a source of SO4

2− other than agriculture, such as mineral weathering, ion exchange
reactions, or mineral processes.

Chloro-alkaline was used to identify if ion exchange or reverse ion exchange had a
greater contribution as a controlling mechanism between the minerals in the aquifer and
water [90,91]. In general, the CAI values, such as CAI-I and CAI-II, were positive for all
water samples (Figure 10e,f), indicating a significant tendency for reverse ion exchange
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between Na+ and K+ in the groundwater of the study area and Ca2+ and Mg2+ in the
surrounding rock. From the different ionic ratios relationship, The reverse ion exchange
was the main controlling process governing the groundwater chemistry.
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3.3. Statistical Analysis
3.3.1. Cluster Analysis

Integration of the Ward linkage approach and Euclidean distance was used to de-
termine the similarity of the GW samples. A dendrogram is shown in Figure 11 that
categorizes the various physicochemical factors in the acquired GW samples. For statistical
purposes, standard scores (Z-scores) were obtained for each variable and applied [92].
All variables were logarithmically transformed, and nearly matched normally distributed
data were used. Three primary groups have been identified in the dendrogram of the
nine physicochemical parameters (HCO3

−, SO4
2−, Cl−, Mg2+, Ca2+, K+, Na+, and TDS)

(Figure 11). A specific phenon line was selected at a connection distance of 5, and the
specified phenon line [93] was selected. The hydrochemical characteristics of the groups are
separated at this distance. Based on the results, the height variables were divided into two
clusters managed by the TDS (Figure 11). These are the groups: Ca2+, Mg2+, Na+, K+, and
NO3

− are practically all carbonate components in the compound G1. G2 contains SO4
2−

and Cl− evaporites. TDS (G3) has two separate sources, the first of which is evaporitic
and the second of which is carbonate. The substantial dominance of Mg2+ and Ca2+ in the
chemical makeup of groundwater, such as sulfates, anhydrite, and calcium sulfates, led
to G1, revealing a strong link between the characteristics of the carbonate [94]. However,
the G2 showed a strong correlation between evaporite characteristics like SO4

2− and Cl−,
showing that chlorides and salts were primarily responsible for this groundwater’s salinity
in the research region. Both G1 and G2 showed that the Quaternary aquifer waters in
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Al-Jawf were primarily mineralized owing to their lithological components. Finally, G3
demonstrated that all metrics had varied associations with salinity in this region.
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3.3.2. Principal Component Analysis (PCA)

PCA revealed the retention of three components (F1, F2, and F3) with eigenvalues
greater than 1 (Figure 12a). F1 accounted for 55.55% of the variability in the dataset, whereas
F2 and F3 accounted for 17.376% and 13.086%, respectively (Figure 12b). Table 4 lists the
variable loading values. There was a strong connection between the factors and variables,
as indicated by a value close to 1. According to [95], these loads are further divided into
three categories: high (>0.75), moderate (from 0.75 to 0.50), and weak (from 0.50 to 0.30).
F1 exhibited a strong positive relationship with Mg2+, Ca2+, Na+, Cl−, SO4

2−, and TDS.
Possible sources of SO4

2− include oxidation of sulfur compounds and fertilizer-derived
SO4

2−. However, anthropogenic causes, including irrigation water quality, household
waste, and uncontrolled fertilization, may be responsible for Ca2+, Na+, and Mg2+. In
addition, the development of salts and soil weathering may have been the cause of the
chlorides. A moderate association between F2 and K+ and a strong correlation between F3
and NO3

− indicate that alkaline water moved through the rocks and soil. These findings
illuminate the processes through which human behavior occurs.

Table 4. Correlation between the parameters and factors.

Parameters F1 F2 F3

Ca2+ 0.770 0.450 0.133
Mg2+ 0.939 0.196 0.012
Na+ 0.912 0.191 0.056
K+ 0.514 0.637 −0.294

HCO3
− 0.176 0.887 0.111
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Table 4. Cont.

Parameters F1 F2 F3

Cl− 0.900 0.261 0.192
SO4

2− 0.934 −0.090 −0.235
CO3

2− 0.142 0.375 0.781
TDS 0.944 0.316 0.016
EC 0.955 0.287 0.036

NO3
− −0.044 −0.205 0.785

Eigenvalue 6.111 1.911 1.439
Variance % 55.556 17.376 13.086
Cumulative 55.556 72.932 86.018
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3.4. Geochemical Modeling and Mineral Saturation

The mineral concentrations, saturation indices, and tendency of the GW to dissolve
or precipitate minerals were assessed using the PHREEQC model [96]. The model out-
puts included the saturation indices of relevant minerals such as calcite, dolomite, halite,
gypsum, aragonite, and anhydrite, as well as the partial pressure of CO2. The input data
used included physical and chemical parameters, such as temperature, pH, EC, TDS, and
major cations and anions, as shown in Figure 5. The findings for the selected groundwater
samples from the Quaternary aquifer are shown in Table 5 and Figure 13. The partial
pressure of CO2 was negative and below saturation, indicating that the amount of water
recharged was lower than the quantity of water extracted from the production wells in
the Quaternary aquifer. The study also showed that carbon dioxide decreases with the
direction of water flow, owing to the same-direction decline in ground water recharging.

Table 5. Statistical description of the mineral SI for the obtained GW samples.

SI Anhydrite Aragonite Calcite Dolomite Gypsum Halite CO2 (g)

Min. −2.79 −0.41 −0.27 −0.29 −2.57 −7.64 −2.32
Max. −0.44 0.49 0.63 1.45 −0.19 −4.77 −0.63
Mean −1.501 0.003 0.151 0.404 −1.269 −6.075 −1.649

Water quality can be affected by the presence of various solutes originating from soil
erosion, atmospheric deposition, and rock weathering [97]. The dissolution of minerals in
water occurs primarily through water-rock interactions, and if water becomes oversaturated
with a particular mineral, precipitation can occur [98].

The minimum, maximum, and average SI values for calcite, dolomite, halite, gypsum,
aragonite, anhydrite, and CO2 are listed in Table 5. According to the SI results of the
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groundwater in the Quaternary aquifer, all water samples were undersaturated with halite,
anhydrite, and gypsum minerals, which means that the GW could dissolve more of these
minerals. However, most of the water samples were oversaturated with calcite, dolomite,
and aragonite, indicating the possibility of water precipitating these mineral species. This
finding is consistent with the Gibbs plot results. Only nine, eight, and 12 samples had
negative values for calcite, dolomite, and aragonite, respectively, and these samples were
located in the central part of the Al-Jawf area. The semi-arid climate in the study area may
have led to the precipitation of dolomite, calcite, and aragonite owing to low rainfall and
high evaporation. Calcium, sodium, sulfate, and chloride components are not limited by
the mineral equilibrium with anhydrite, gypsum, and halite [99].
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3.5. Irrigation Water Quality Indices

Several key indicators need to be studied to determine the impact of agricultural soil
water quality on the quality of the produced crops. These indicators can either be individual
chemical indicators [100,101] or a group of indicators [31,102]. From the results of these
indicators, decision-makers can develop an appropriate method for managing irrigation
water, which the current study deals with through the following indicators: Considering
the typical value intervals for the parameters, the water quality classification for irrigation
was applied using the six IWQIs (Table 6).

The IWQI, which was calculated using the equation in Table 1 [31], showed that the
water quality in the study area was classified into five criteria [75] and arranged according
to the percentage of total samples as follows: 14.8% of samples had a low restriction for
irrigation, 14.8% of samples had a moderate restriction for irrigation, 25.9% of samples
were highly restricted, and 18.5% of samples were severely restricted, as shown on the
map (Figure 14a). The values of the first indicator range from a small value to a maximum
value, as shown in Table 6, as follows: 17.03–96.77, with an average of 61.03. Water
deterioration, according to the IWQ indicator, was recorded in the far north and southwest
of the study area.



Water 2023, 15, 1496 20 of 28

Table 6. Statistical analysis and classes of IWQIs.

Criteria Min Max Mean Range Class Number of Samples (%)

IWQI

17.03 96.77 61.03 85–100 No restriction 7 (25.920%)
70–85 Low restriction 4 (14.81%)
55–70 Moderate restriction 4 (14.81%)
40–55 High restriction 7 (25.92%)
0–40 Severe restriction 5 (18.51%)

SAR

0.63 6.30 2.56 <10 Excellent 27 (100%)
10–18 Good 0 (0%)
19–26 Fair Poor 0 (0%)
>26 Unsuitable 0 (0%)

Na%

11.35 49.73 28.29 <20% Excellent 10 (37%)
21–40% Good 13 (48.14%)
41–60% Permissible 4 (14.81%)
61–80% Doubtful 0 (0%)
>80% Unsuitable 50 (100%)

SSP
10.39 49.45 27.57 <60 Suitable 27 (100%)

>60 Unsuitable 0 (0%)

PS
1.2 52.20 15.23 PS < 3.0 Excellent to good 2 (7.40%)

PS = 3.0–5.0 Good to injurious 3 (11.11%)
PS > 5.0 Injurious to unsatisfactory 22 (81.48%)

RCS
−43.21 −1.96 −11.89 <1.25 Good 27 (100%)

1.25–2.5 Doubtful 0 (0%)
>2.5 Unsuitable 0 (0%)
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The quality of irrigation water plays an important role in the composition of the soil
and its ability to improve or deteriorate agricultural production, as it affects the permeability,
rate of filtration, and aeration through the chemical characteristics of irrigation water [103].
Among the constituent elements of water, the concentration of sodium ions is the most
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influential on agricultural soils because high concentrations of sodium in irrigation water
reduce the filtration rate through soil adsorption of sodium and removal of calcium and
magnesium ions [98]. Therefore, SAR, Na%, and SSP indicators were calculated to estimate
the water quality through the concentrations of sodium, calcium, and magnesium to
determine whether it is suitable for irrigation of agricultural lands [64–66] and to determine
the most affected and degraded areas to implement appropriate management to avoid soil
degradation. Table 1 shows the method for calculating the four indicators and distributing
their values on the maps to determine the areas where soil degradation is expected. The
results of the indicators, Table 6, confirmed that all water samples were classified as
excellent for the SAR, permissible to excellent for the Na%, and suitable for the SSP index.
The average SAR, Na %, and SSP values were 2.56, 28.29, and 27.57%, respectively. From
the index distribution maps, Figure 14b–d), it is evident that every sample of water is
appropriate for the irrigation of agricultural regions, that there is no negative effect on
the soil permeability and infiltration rate, and that there is no need for the application of
calcium fertilizers due to the low sodium concentrations in the irrigation water.

The quality of irrigation water can deteriorate in the case of precipitation of alkali
elements such as calcium and magnesium. This is due to the increase in the concentration of
carbonates in relation to calcium and magnesium in the irrigation water. The concentration
of sodium ions increased, followed by an increase in the sodium absorption ratio in the
irrigation water due to the precipitation of calcium and magnesium ions in the form of
carbonate minerals. Therefore, it is necessary to calculate the RSC index, which evaluates
whether water is suitable for irrigation because an increase in the concentration of RSC can
cause the dissociation of organic matter and deterioration of the physical properties of the
soil, ultimately leading to the appearance of black stains on the surface of the soil when it
dries [104,105]. The value of the RSC indicator, Table 1, was calculated to determine the
probability of calcium and magnesium ion precipitation on soil surface particles and their
removal from the soil solution. The results of the indicator in all study samples, Table 6,
and its distribution on the map (Figure 14f), confirmed that the water in the study area is
suitable for the irrigation of agricultural lands, as all samples belong to a good classification,
and the indicator value ranges from −43.21 to −1.96. Another indicator, the potential
salinity index (PS), depends on the calculation of the concentrations of chloride and sulfate
ions [67] to assess the suitability of water for the irrigation of agricultural lands. According
to its value (Table 6), it is divided into three categories: Excellent to Good (PS < 3.0), Good
to Injurious (PS = 3.0–5.0), and Injurious to Unsatisfactory (PS > 5.0). The PS index results
showed that two samples belonged to the Excellent to Good classification, three samples
belonged to the good class, and 22 samples belonged to the Injurious to unsatisfactory
(Figure 14e).

3.6. Simulation Model (ANFIS)

Because the ANFIS model makes predictions based on patterns in the data, the first
step in ANFIS prediction is to identify the input variables that will be used for the prediction.
These variables should be carefully chosen because they have a direct impact on prediction
accuracy. Therefore, a correlation analysis between the input data and the desired output
was performed to select the best input variable. This step was repeated for each IWQ index
(output), as shown in Figure 5. Once the preprocessing was complete, the best-performing
model was selected using ANFIS training for each IWQ index. After the training was
complete, the model was tested against new data to determine the accuracy of predicting
future values. The values of the IWQ indices predicted during the training and testing
phases are listed in Table 7. Figures 15–17 show the results of the predictions of IWQI,
SAR, and CO2 in the training and testing phases, respectively. Figures 15–17 show a
strong overlap between the predicted and actual values, with some deviations from the
measured values. Excellent agreement between the observed and predicted IWQI values as
indicated by the high R2 value (>0.95). In terms of performance evaluation metrics for the
ANFIS model, the ANFIS model had a good fit for IWQIs in both the training and testing
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stages, as evidenced by the E values in Table 7 being over 0.90. The ANFIS model was
successfully used in terms of accuracy for all the indices. The performance of the ANFIS
model decreased slightly from the training phase to the testing phase, as indicated by the
R2, RMSE, and MAD values in Table 7. Figures 13 and 14 depict the differences between the
predicted and measured IWQIs in the training and testing stages, respectively, as well as
the comparative scatter plots. The ANFIS model effectively captured the varying patterns
of the observed IWQI data in the time-series plots. The findings of our study support and
agree with those of previous studies [38–41,106], which reported that employing the ANFIS
model enhanced the prediction accuracy of the standalone model. Overall, the ANFIS is a
powerful tool for predictive modeling owing to its ability to capture nonlinear relationships
between inputs and outputs while also being able to adapt quickly when new data points
are added or removed from the training set.

Table 7. Performance criteria of the simulation models for IWQIs prediction.

Index
Performance Criteria

R2 RMSE MAD E

Tr
ai

ni
ng

Se
ri

es

IWQI 0.999 2.393 1.691 0.999
SAR 0.973 0.098 0.067 0.973
SSP 0.996 11.202 8.802 0.996

Anhydrite 0.970 0.003 0.002 0.971
Aragonite 0.955 0.001 0.001 0.955
Dolomite 0.988 0.001 0.000 0.980

Halite 0.985 0.007 0.003 0.980
Gypsum 0.976 0.002 0.001 0.979

CO2 0.9 80 0.002 0.001 0.985

Te
st

in
g

Se
ri

es

IWQI 0.960 5.670 3.665 0.949
SAR 0.940 0.479 0.222 0.868
SSP 0.892 11.667 9.880 0.864

Anhydrite 0.895 0.354 0.159 0.775
Aragonite 0.908 0.071 0.032 0.886
Dolomite 0.878 0.318 0.114 0.443

Halite 0.932 0.860 0.275 0.070
Gypsum 0.964 0.174 0.056 0.958

CO2 0.879 0.019 0.007 0.999
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4. Conclusions

In this study, water quality for irrigation across the Quaternary aquifer in the Al-Jawf
Basin, Yemen, was assessed using multivariate statistical analysis, geochemical modeling,
IWQIs, ANFIS, and GIS techniques. The results of the physicochemical analysis showed
that the GWin in the study area had the following ion sequences: Ca2+ > Mg2+ > Na+ > K+

and SO4
2− > Cl− > HCO3

− > NO3
−, indicating that the water types were Mg-Ca-Cl/SO4

and Ca-Mg-HCO3 because of the predominance of sandstone, limestone, and clay minerals
under the influence of human activities, rock weathering, ion dissolution, and direct and
reverse ion exchange. This was performed using multivariate statistical analysis. The pri-
mary conclusion was that the PCA demonstrated the three most crucial components, with
an overall variance of 86.018%. Factors 1, 2, and 3 are, respectively, 55.556%, 17.376%, and
13.086%. The findings demonstrated a substantial relationship between the variables and
factors. These findings suggest that the chemical composition is influenced by geochemical
characteristics such as the interaction of water and rock and the dissolution of evaporat-
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ing mineral deposits. However, the PCA revealed that these two groups were under the
supervision of TDS and EC. High correlations between Ca2+, Mg2+, Na+, K+, and NO3

−

were observed in G1. G2 is represented by SO4
2− and Cl− atoms and is supported by the

evaporite component. The SI value revealed that the GW was supersaturated with calcite,
dolomite, and aragonite, providing the ability of water to precipitate these minerals. Halite,
gypsum, and anhydrite remain undersaturated, and water can dissolve these minerals. The
IWQI results showed that 25.9% of the samples had no restriction for irrigation, 14.8% had
a low restriction for irrigation, 14.8% had a moderate restriction for irrigation, 25.9% were
highly restricted, and 18.5% were severely restricted. However, the findings obtained using
other techniques, such as SAR, Na%, SSP, and RSC, indicated that they ranged from good
to excellent, except for the PS method, which revealed outcomes of 2% (great), 3% (good to
harmful), and 22% (injurious to unsatisfactory). An evaluation of the ANFIS simulation
model demonstrated that it could accurately simulate IWQIs. For example, the IWQI can be
predicted with reasonable overall accuracy in both the learning (R2 = 0.980) and validation
phases (R2 = 0.916). Therefore, combining physicochemical parameters, IWQIs, ANFIS,
and GIS approaches is efficient and provides a complete picture of the appropriateness
of GW for irrigation and its controlling factors. Furthermore, the techniques proposed in
this study should be further investigated to enhance their reliability for GW under various
conditions and encourage decision-makers to implement different technologies for water
quality planning and management.
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