
Citation: Wang, X.; Ghanizadeh, H.;

Khan, S.; Wu, X.; Li, H.; Sadiq, S.; Liu,

J.; Liu, H.; Yue, Q. Immobilization of

Horseradish Peroxidase and

Myoglobin Using Sodium Alginate for

Treating Organic Pollutants. Water

2024, 16, 848. https://doi.org/

10.3390/w16060848

Academic Editor: Yung-Tse Hung

Received: 7 January 2024

Revised: 7 March 2024

Accepted: 8 March 2024

Published: 15 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Immobilization of Horseradish Peroxidase and Myoglobin Using
Sodium Alginate for Treating Organic Pollutants
Xinyu Wang 1,†, Hossein Ghanizadeh 2,† , Shoaib Khan 3, Xiaodan Wu 1, Haowei Li 4, Samreen Sadiq 5,
Jiayin Liu 6,*, Huimin Liu 3 and Qunfeng Yue 1,*

1 College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150030, China;
xinyu4533@gmail.com (X.W.); smile_200325@163.com (X.W.)

2 School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand;
h.ghanizadeh@massey.ac.nz

3 College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China;
shoaibkhanagriculture@gmail.com (S.K.); liuhm0423@163.com (H.L.)

4 College of Food Science, Northeast Agricultural University, Harbin 150030, China; lhw1661800871@163.com
5 School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China;

samreensadiq2022@gmail.com
6 College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
* Correspondence: liujiayin@neau.edu.cn (J.L.); qunfengyue@126.com (Q.Y.)
† These authors contributed equally to this work.

Abstract: Removing organic pollutants from wastewater is crucial to prevent environmental con-
tamination and protect human health. Immobilized enzymes are increasingly being explored for
wastewater treatment due to their specific catalytic activities, reusability, and stability under various
environmental conditions. Peroxidases, such as horseradish peroxidase (HRP) and myoglobin (Mb),
are promising candidates for immobilized enzymes utilized in wastewater treatment due to their abil-
ity to facilitate the oxidation process of a wide range of organic molecules. However, the properties
of the carrier and support materials greatly influence the stability and activity of immobilized HRP
and Mb. In this research, we developed immobilized HRP and Mb using support material composed
of sodium alginate and CaCl2 as carriers and glutaraldehyde as a crosslinking agent. Following
this, the efficacy of immobilized HRP and Mb in removing aniline, phenol, and p-nitrophenol was
assessed. Both immobilized enzymes removed all three organic pollutants from an aqueous solution,
but Mb was more effective than HRP. After being immobilized, both enzymes became more resilient
to changes in temperature and pH. Both immobilized enzymes retained their ability to eliminate
organic pollutants through eight treatment cycles. Our study uncovered novel immobilized enzyme
microspheres and demonstrated their successful application in wastewater treatment, paving the
way for future research.

Keywords: immobilization; peroxidase; sodium alginate; reusability; organic pollutants

1. Introduction

Enzymes are biochemical catalysts that are very selective for the substrates on which
they act [1]. Peroxidase is a class of enzyme capable of catalyzing the oxidation of aromatic
compounds [2]. The roots of horseradish plants (Armoracia rusticana, syn. Cochlearia armora-
cia) contain horseradish peroxidase (HRP), which is utilized extensively in environmental
protection, wastewater treatment, and biotechnology [3,4]. Myoglobin (Mb) is an abundant
iron-containing heme protein in vertebrate cardiac and skeletal muscle [5] which has per-
oxidase activity [6]. Both HRP and Mb catalyze organic compounds, including phenolic
compounds, aniline, and dyes [7–10]. HRP is a multifunctional peroxidase that oxidizes
substrates in the presence of hydrogen peroxide [11]. The efficiency of HRP in breaking
down a wide range of contaminants has been demonstrated, thereby making a valuable
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contribution to environmental remediation [12]. Mb can bind and transport oxygen, sug-
gesting it has potential applications in enzymatic degradation [13]. Due to its strong affinity
for contaminant binding, Mb can be exploited to efficiently remove pollutants [14].

Both HRP and Mb are highly substrate-specific, environmentally friendly, and require
mild catalytic conditions and low energy [15], making them ideal for enzymatic wastewater
treatment and organic pollutant removal [9]. Nevertheless, the application of unbound
HRP and Mb for wastewater treatment is not cost-effective [16]. In addition, unbound
HRP and Mb are unstable and sensitive to denaturants, such as temperature, pH, metal
ions, and surfactants [16–18]. Additionally, free enzymes, particularly those that are more
costly and difficult to purify, have a restricted capacity for a single application [19]. Enzyme
immobilization is a potent method for overcoming these drawbacks and providing superior
features for practical applications of peroxidases [20–23]. Immobilization improves the
stability, storage, recovery, and recycling of peroxidases [22].

The stability and activity of immobilized enzymes are largely determined by the
characteristics of the carrier, reaction conditions, the nature of binding (e.g., the number of
bonds formed), the microenvironment of the enzyme molecule, and the characteristics of
the spacer connecting enzyme molecules to the carrier [24]. An ideal immobilization carrier
needs to be cost-effective, biodegradable and non-toxic [25]. Various carriers, including
silica nanoparticles [26], mesoporous carbon [27], carbon nanotubes [28], and alginate
microspheres [29], have been employed for enzyme immobilization. Alginate is a naturally
derived biocompatible and non-toxic biopolymer which provides a suitable environment
for enzyme immobilization [30]. Alginate is frequently combined with calcium chloride
(CaCl2) and glutaraldehyde for enzyme immobilization. Calcium chloride is employed in
the synthesis of alginate gels or microspheres due to its low toxicity [31]. Glutaraldehyde
is a cross-linking agent that forms covalent bonds between amino groups of enzymes
and functional groups in alginate [32,33] to efficiently impeded enzyme leaching, hence
prolonging the functionality of immobilized enzymes [34–38].

Wastewater, particularly industrial wastewater, often contains organic contaminants
such as aniline, phenol, and p-nitrophenol, as these compounds are frequently used in
manufacturing and can be released into water supply through industrial discharges [39].
Aniline is an aromatic amine which is used in the production of various chemicals, dyes,
and pharmaceuticals [40]. Phenol, chemically referred to as carbolic acid, is a crystalline
solid that possesses a white coloration and is predominantly employed in the manufactur-
ing processes of pharmaceuticals, polymers, and resins [41]. p-Nitrophenol is a substituted
phenol and is primarily utilized in the synthesis of dyes, pesticides, and pharmaceuti-
cals [42]. When remain untreated, these three organic substances are capable of disturbing
the balance of microbial communities and harming aquatic organisms, both of which are
detrimental to aquatic ecosystems [39]. In addition, because of their potential environ-
mental and public health risks, it is essential to properly manage and treat wastewater
containing these organic contaminants before they are released into the environment.

While HRP has been extensively studied and applied in wastewater treatment, the
potential of Mb in wastewater treatment is an emerging area of research, and limited
investigation has been devoted to the synthesis of immobilized Mb. In addition, the efficacy
of Mb in removing aniline, phenol, and p-nitrophenol compared to HRP has not been
well-understood. Here, we developed immobilized HRP and Mb using a support material
composed of sodium alginate and CaCl2 as carriers and glutaraldehyde as a crosslinking
agent to remove these organic contaminants from wastewater. The stability and efficacy
of the synthesized immobilized enzymes in removing all three organic contaminants
in wastewater were also evaluated under various storage periods, as well as pH and
temperature conditions. To the best of our knowledge, this is the first report on the removal
of aniline, phenol, and p-nitrophenol from wastewater using HRP and Mb immobilized
with sodium alginate, CaCl2, and glutaraldehyde.
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2. Materials and Methods
2.1. Materials

Sodium alginate (SA), calcium chloride (CaCl2), sodium dihydrogen phosphate
(NaH2PO3), disodium hydrogen phosphate (Na2HPO3), citric acid, sodium citrate, sodium
chloride (NaCl), phenol (C6H5OH), aniline (C6H5NH2), and p-nitrophenol (C6H4(NO2)OH)
were purchased from Beijing chemical Co., Ltd., Beijing, China (analytical grades). Horseradish
peroxidase (HRP), myoglobin (Mb), and 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate)
(ABTS) were purchased from Aladdin Industrial Co., Ltd., Shanghai, China. All chemicals
used in this research were of an analytical grade.

2.2. Preparation of Immobilized HRP and Mb

The procedure for immobilizing HRP and Mb in calcium alginate microspheres is
shown in Figure 1. The HRP and Mb microspheres were prepared using sodium alginate
and glutaraldehyde as the carrier and crosslinking agent, respectively. For this, 5 mL of each
enzyme (1 mg/mL) were mixed with 10 mL sodium alginate (3.5% w/v), and the mixture
was added dropwise to 50 mL of calcium chloride (3.0% w/v) and allowed to harden for
6 h. Subsequently, the hardened material was neutralized and crosslinked in 100 mL of
0.2% glutaraldehyde solution for 1 h. The immobilized HRP and Mb microspheres were
stored at 4 ◦C for later use.
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Figure 1. The process involved in the immobilization of myoglobin (Mb) and immobilized horseradish
peroxidase (HRP) in calcium alginate microspheres.

2.3. Characterization of Immobilized HRP and Mb

A field emission scanning electron microscope (SEM) (Hitachi, Tokyo, Japan) equipped
with an energy dispersive X-ray spectrometer su8010 (FESEM-EDS) was used to examine
the structure and appearance of immobilized Mb and HRP microspheres (FESEM-EDS).
The element distribution of the microspheres of both immobilized enzymes was analyzed
using FESEM-EDS with the following parameters: electron beam energy = 20 kV, and
electron beam current = 80.0 µA

2.4. Enzymatic Activity and Stability of Immobilized HRP and Mb

The activity of immobilized HRP and Mb was evaluated in the presence of hydrogen
peroxide with ABTS as a substrate using the method described by Andrade et al. [43]. Briefly,
20 immobilized HRP and Mb microspheres were added to a mixture of 0.12 mmol·L−1 of
ABTS, 25 mmol·L−1 of H2O2, and 0.03 mol·L−1 phosphate buffer solution (pH 6.0) and
reacted at 25 ◦C for 3 min. Subsequently, the oxidation of ABTS was evaluated at 420 nm
using a spectrophotometer (UV2550, Shimadzu, Kyoto, Japan). The amount of immobilized
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HRP and Mb needed to generate 1 nmol of ABTS+ per minute was defined as one unit of
activity. To assess the stability, the activity of both immobilized HRP and Mb was assessed
under a wide range of temperatures (i.e., 15 to 55 ◦C), pH (i.e., 3.0 to 8.0) and storage
periods (i.e., 0 days to 32 days at 25 ◦C), using the same ABTS assay outlined above.

2.5. Removal Efficiency and Reusability of Immobilized HRP and Mb

The efficiency of the immobilized HRP and Mb microspheres to remove organic pol-
lutants from wastewater was assessed and compared with enzyme-free sodium alginate
microspheres (control), in the presence of 15 mg/L H2O2. For this, we established single-
factor assays to investigate the effect of treatment time (0.5 to 6 h), the initial concentration
of organic compounds (5 to 50 mg/L), and amounts of microspheres (5 to 25) on the re-
moval efficiency of phenol, aniline, and p-nitrophenol. To prepare the aqueous solution of
organic contaminants, a stock solution of each contaminant was prepared by adding 50 mg
of each compound to 1 L of water. Subsequently, by employing serial dilution, different
concentrations of each organic compound were produced (i.e., 5 mg/L, 10 mg/L, 20 mg/L,
30 mg/L, 40 mg/L, 50 mg/L). To determine the removal efficacy, the concentration of the
organic compounds in treated aqueous solutions was evaluated with a UV–Vis spectropho-
tometer (UV2550, Shimadzu, Kyoto, Japan) at 270, 251, and 371 nm for phenol, aniline, and
p-nitrophenol [44].

To assess the reusability of the immobilized microspheres, the microspheres were
applied to aqueous solutions containing 5 mM of each phenol, aniline, and p-nitrophenol.
The microspheres were then removed from aqueous solutions using filters, and washed
with purified water before using in the next cycle. The reusability experiment consisted of
eight cycles, and the residue of each organic compound was assessed using the spectropho-
tometric method outlined above to examine the reusability of the immobilized enzymes.
To ensure for the maximum removal of organic compounds, the recovery of microspheres
and the assessment of residuals were performed at 6 h intervals.

2.6. Statistical Analyses

All enzymatic assays were performed using a randomized design with three replicates
for each treatment. All experiments were repeated in time, and as the variance of the
data from separate experiments were equal according to a Levene’s test, the data were
pooled. Experiments measuring enzymatic activity and stability were subjected to a t-test
at a significance level of 5%. For studies testing removal efficiency and reusability, we
used one-way ANOVA, and the means were compared using Tukey’s test at a 5% level of
probability. All statistical analyses were performed with SPSS v.21.

3. Results and Discussion
3.1. Characterization of Immobilized HRP and Mb

Myoglobin and HRP solutions (0.1 mmol·L−1) were mixed with calcium alginate (3.5%
w/v) in order to synthesize the microspheres, as shown in Figure 1. The capsulation of HRP
and Mb enzymes yielded 3-mm microspheres with a uniform size and a smooth surface
(Figure 2).

The SEM analysis of the microspheres revealed that their inner structure was collapsed
and damaged, likely as a result of water loss during freeze-drying, which led to the
formation of a lamellar structure (Figure 3a,c). It was noted that the inner structure of
immobilized microspheres contains evenly distributed small particles (Figure 3b,d). These
small particles likely represent the crystals of immobilized enzymes formed after the freeze-
drying treatment [23], as no particles were observed in the empty microspheres of sodium
alginate carries (Figure 3e,f). This result indicates that HRP and Mb were successfully
immobilized in the microspheres.
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To further prove that HRP and Mb were successfully entrapped in the carries, the
content of nitrogen was compared between the immobilized sodium alginate carrier and
the empty ones (Table 1). The results revealed that the nitrogen content of immobilized
microspheres was much higher than that of empty microspheres. The nitrogen content of
immobilized Mb and HRP was 14.1% and 11.9%, respectively.

Table 1. Elemental analysis of empty sodium alginate and immobilized myoglobin (Mb), and
horseradish peroxidase (HRP).

Sample Nitrogen Content (%) Carbon Content (%)

Empty sodium alginate 0.1 29.0
Immobilized Mb 14.1 32.8

Immobilized HRP 11.9 36.2

As nitrogen is a crucial component of enzymes [22], this result provides further
evidence for the immobilization of HRP and Mb in sodium alginate carriers. The peroxidase
activity of immobilized HRP and Mb was investigated using an ABTS assay, and the
results revealed that the enzyme activity of the immobilized Mb and HRP was 123.78 and
85.20 U/mg, respectively (Figure 4). This indicates that an immobilized HRP concentration
of nearly 1.5 times that of Mb is required to achieve similar absolute enzymatic activity.
These results are in agreement with a previously published study [45].
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peroxidase (HRP).

3.2. Stability of Immobilized Enzyme

The effect of temperature, pH, and storage periods on the stability of immobilized HRP
and Mb was assessed (Figure 5). According to the results, the activity of immobilized Mb
and its corresponding free enzymes showed a generally increasing trend with increasing the
temperature, with their highest activity peaking at 35 ◦C (Figure 5a). However, a downward
trend was recorded for the activity of both immobilized Mb and its native enzyme at
temperatures greater than 35 ◦C. The immobilized HRP activity likewise increased with
increasing the temperature up to 35 ◦C, whereas the free HRP activity peaked at 45 ◦C
(Figure 5b). Overall, the results showed that immobilization of both enzymes improve
their thermal stability when compared to their corresponding native enzymes, suggesting
the immobilization increased the rigidity of the HRP and Mb structures, hence limiting
conformational changes in both enzymes at elevated temperatures [46]. However, the
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activity of immobilized Mb appeared to be less affected at low temperatures compared to the
immobilized HRP. It is probable that the immobilization of Mb utilizing the methodology
implemented in this study provided Mb with greater resistance to low temperatures than
HRP. Immobilization offers a level of protection for enzymes, enhancing their stability and
minimizing their susceptibility to environmental influences, ensuring a more sustained
enzyme activity and improving processing effects [47].
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myoglobin (Mb) and horseradish peroxidase (HRP) storage periods.

The effect of pH on the activity of both immobilized Mb and HRP was investigated
and compared to their corresponding free enzymes. Generally, a different trend was
recorded between the response of both immobilized enzymes with increasing the level of
pH. The results showed that increasing pH progressively increased the activity of free and
immobilized Mb, and both responded similarly when pH increased from 3 to 6 (Figure 5c).
However, the greatest activity of the immobilized Mb was recorded at pH of 6, while the
free Mb was the most active at pH of 6.5. Despite this small difference, the activity of the
immobilized Mb and its native form remained at above 80% at a pH range of 6 to 8. On the
other hand, a different pattern in response to increasing the level of pH was recorded for
the immobilized HRP and its native enzyme. The results showed that the activity of the
immobilized HRP and its native form peaked at pH of 5 and 5.5, respectively. However,
there was a general downward trend in their activity at higher pH levels (Figure 5d). In
addition, the activity of immobilized HRP appeared to be greater at a pH range between
3 to 5, suggesting that immobilization improved acidic pH tolerance of HRP, possibly
owing to the hydroxyl and carboxyl groups on the surface of the support acting as buffer to
create a favorable environment for the enzyme. Overall, it appears that the immobilization
method employed in this research conferred broader pH tolerance to Mb than HRP, making
Mb preserve its activity at a wider range of pH [29,48].

The effect of storage on the stability of immobilized HRP and Mb was evaluated, and
the results showed that the activity of both immobilized enzymes and their corresponding
native forms progressively reduced with increasing the storage period (Figure 5e,f). How-
ever, the activity of the immobilized enzymes was less affected during storage compared
to their native forms. For instance, both immobilized enzymes retained over 85% of their
initial activity when they were stored for 15 days at 4 ◦C, while less than 70% activity was
recorded for the free enzymes over the same storage period. Additionally, after 30 days of
storage, the activity of free HRP and Mb dropped to 30% of their initial activity, while the
activity of immobilized HRP and Mb was greater than 65% after 30 days. These results
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indicated that immobilization provided a relatively stable microenvironment for HRP
and Mb molecules, making them less prone to inactivation during storage [31,49]. This
finding is consistent with prior research indicating that calcium alginate does not react
with the by-product and can effectively prolong the enzyme’s durability, hence resulting
in enhanced removal efficiency [50]. It has been suggested that the “egg-box” structure
formed by sodium alginate and calcium chloride can protect the secondary and tertiary
structures of embedded enzymes from damage during long-term storage periods [51].

3.3. Treatment of Organic Wastewater by Immobilized HRP and Mb
3.3.1. Single Factor Exploration

The effect of reaction time, initial concentration of organic pollutants, and the number
of microspheres on the efficiency of immobilized HRP and Mb in eliminating aniline,
phenol, and p-nitrophenol was evaluated. According to the results, the immobilized
HRP and Mb showed improved aniline, phenol, and p-nitrophenol removal efficacy with
longer reaction times (Figure 6). Immobilized Mb, however, consistently showed higher
removal efficiency of all organic pollutants than immobilized HRP. For instance, at 4 h after
treatment, almost 65%, 85%, and 32% of aniline, phenol, and p-nitrophenol, respectively,
was removed by the immobilized Mb, while the immobilized HRP only removed 40%,
75%, and 8% of aniline, phenol, and p-nitrophenol, respectively, over the same reaction
period. The greater removal efficacy recorded for the immobilized Mb under prolonged
reaction time is probably due to a greater synergistic effect between the Mb and the support
material compared to the immobilized HRP [52].
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Figure 6. The effect of different reaction periods (a–c), concentration of pollutants (d–f), and number
of microspheres (g–i) on the removal efficacy of aniline, phenol, and p-nitrophenol by immobi-
lized myoglobin (Mb) and horseradish peroxidase (HRP) relative to control (enzyme-free sodium
alginate microspheres).

Increasing the initial concentration of organic pollutants negatively influenced the
removal efficiency of both immobilized enzymes. According to the results, almost 100% of
aniline was removed by both immobilized enzymes when the concentration of this organic
pollutant was 5 mg/L (Figure 6d). However, increasing the concentration of aniline to
10 mg/L dramatically reduced the removal efficiency of the immobilized Mb and HRP to
40% and 18%, respectively. The removal efficiency of the immobilized HRP and Mb was less
than 10% when the concentration of aniline was greater than 20 mg/L. The greatest removal
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efficiency of both immobilized enzymes was achieved at 5 mg/L of phenol, and it was 74%
and 50% for the immobilized HRP and Mb, respectively (Figure 6e). The removal efficiency
of the immobilized HRP was reduced dramatically with increasing the concentration of
phenol, and it was 40% and 12% at 10 and 20 mg/L of phenol, respectively. Increasing
the concentration of phenol also reduced the removal efficiency of the immobilized Mb,
though not as prominent as that of the immobilized HRP. According to the results, the
removal efficiency of the immobilized Mb at 10 and 20 mg/L of phenol was 41% and
30%, respectively, which was greater than that recorded for the immobilized HRP. The
immobilized Mb was also found to be less affected by increasing the concentration of
p-nitrophenol compared to the immobilized HRP (Figure 6f). The results showed that
at 5 mg/L of p-nitrophenol, the immobilized Mb and HRP removed almost 20% and
10% of this organic pollutant, respectively. At a concentration range of 10 to 50 mg/L
of p-nitrophenol, the removal efficiency of the immobilized HRP notably reduced to less
than 10%, in contrast to the immobilized Mb, which had a greater removal efficiency at
this concentration range. Overall, these results indicate that the removal efficacy of both
immobilized enzymes is highly dependent on the concentration of pollutants, which is in
agreement with prior research [53,54].

A positive relationship was recoded between increasing the number of microspheres
and removal efficiency of the immobilized HRP and Mb, though the removal efficiency of
the immobilized Mb was always greater than that of the immobilized HRP, regardless of
the type of organic pollutants (Figure 6g–i). For instance, when the solutions containing
organic pollutants were treated with 15 microspheres, 60%, 55%, and 14% of aniline, phenol,
and p-nitrophenol, respectively, were removed by the immobilized Mb. While only 45%,
42%, and 3% of aniline, phenol, and p-nitrophenol, respectively, were removed by the
immobilized HRP, using the same number of microspheres.

The removal efficiency of both immobilized enzymes was assessed when the initial
concentration of organic pollutants was 10 mg/L, the number of microspheres was 10 and
15 for the immobilized Mb and HRP, respectively, and the reaction time was 2 h. The results
showed that the immobilized Mb had greater removal efficiency than the immobilized HRP,
regardless of the type of organic pollutants, as shown in (Figure 7). It was also noted that
organic pollutant removal efficiency followed the order of p-nitrophenol < aniline < phenol
for both immobilized Mb and HRP.
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3.3.2. Reusability

The reusability of the immobilized Mb and HRP was assessed when the initial con-
centration of organic pollutants was 10 mg/L, the number of microspheres was 10 and
15 for the immobilized Mb and HRP, respectively, and the reaction time was 1 h. The
results showed that both immobilized enzymes retained their removal efficiency of all three
organic pollutants up to eight cycles of treatment (Figure 8). According to the results, the
removal efficiency of the immobilized Mb after eight cycles of treatments remained at 48%,
55%, and 14% for aniline, phenol, and p-nitrophenol, respectively. The removal efficiency
of the immobilized HRP after eight cycles of treatment was 22%, 49%, and 2% for aniline,
phenol, and p-nitrophenol, respectively. Although the activity of Mb may not be as high as
that of HRP, the enhanced stability it achieved through immobilization resulted in more
efficient catalytic performance. Taken together, these results indicate that both immobilized
enzymes can be recycled up to eight times with a negligible loss in their activity during the
recycling process. The recyclability and stability of immobilized enzymes play an important
role in their applicability. Immobilized enzymes with improved stability and reusability
can make wastewater treatment procedures cost-effective [23,48,55].
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4. Conclusions

In this study, we immobilized HRP and Mb on microspheres made of sodium alginate
and calcium chloride, with glutaraldehyde as a crosslinking agent. The efficiency of the im-
mobilized HRP and Mb in eliminating aniline, phenol, and p-nitrophenol, three commonly
found organic pollutants in industrial wastewater, was subsequently evaluated. Both
immobilized enzymes could remove all three organic pollutants from aqueous solutions,
but the immobilized Mb was more effective than the immobilized HRP. Both enzymes were
more stable and rigid after immobilization against temperature and pH changes. After
30 days of storage at 4 ◦C, the immobilized enzymes retained higher activity than free
enzymes, and their ability to remove organic pollutants was maintained through eight
treatment cycles. Our research has led to the discovery of novel immobilized enzyme
microspheres and their application in wastewater treatment, which opens up new avenues
for further investigation. The findings of this research revealed that the immobilized Mb
performed better as the concentration of organic compounds and reaction period increased,
however, the underlying mechanism for this improvement is still unknown and needs
additional research. The limitation of our study is that it did not assess the efficacy of
both immobilized enzymes using industrial wastewater containing aniline, phenol, and
p-nitrophenol. In the future, a large-scale treatment system for organic wastewater will
be used to test the removal efficiency of immobilized HRP and Mb. In addition, further
research is required to facilitate the retrieval of microspheres from treated water by the
implementation of magnetic material techniques. Important to consider in biotechnological
applications is the environmental impact of immobilized enzymes. Although immobi-
lization frequently improves the stability and reusability of enzymes, the environmental
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repercussions of the materials and techniques utilized can differ. Therefore, in order to
obtain a thorough understanding of the trade-off between the effectiveness of the immo-
bilized Mb and HRP, and sustainable environmental practices, a holistic environmental
impact assessment should be employed.
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