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Abstract: The higher-order nonlinear Schrödinger equation with combined nonlinearities is derived
by an asymptotic reduction from the (2+4) Korteweg–de Vries model for weakly nonlinear wave
packets for the context of interfacial waves in a three-layer symmetric media. Focusing properties and
modulation instability effects are discussed for the considered physical context. Instability growth
rate, maximum of the increment and the boundaries of the instability interval are derived in terms
of three-layer density stratification, their structure on the parameter planes of relative layer depth,
carrier wavenumber and envelope amplitude, are considered in detail.

Keywords: Korteweg–de Vries type equations; asymptotic expansion; generalized nonlinear Schrödinger
equation; modulation instability

1. Introduction

This paper considers the extended modified Korteweg–de Vries equation, called also
(2+4) KdV equation (cubic-quintic mKdV or mKdV 3–5), containing a combination of
nonlinear terms of the third and fifth degree in the same order of smallness:

∂ζ

∂t
+ c

∂ζ

∂x
+ α2ζ2 ∂ζ

∂x
+ α4ζ4 ∂ζ

∂x
+ β

∂3ζ

∂x3 = 0 (1)

where x is a horizontal coordinate, t is time, ζ(x, t) describes the wavefield. It belongs to the
class of KdV-type equations, subclass of generalized modified KdV equations, representing
dynamics of weakly nonlinear weakly dispersive waves. Equations of this class have
been widely studied in recent decades [1–5]. This equation clarifies the character of wave
dynamics near the point of zero cubic nonlinearity due to fifth-order nonlinearity and is
an analogue of the Gardner equation, which is valid in various branches of physics [6–10],
especially for describing situations with a change in the sign of the coefficient of quadratic
nonlinearity [11,12]. Equation (1) was, in particular, derived for waves at interfaces in a
three-layer fluid flow that is symmetrical relative to the half-depth [13,14]. It also naturally
arises in modeling the propagation of longitudinal waves in thin rods, plates and shells
when the dependence of the stress intensity on the strain intensity has the form of a
fifth-degree polynomial [15,16]. The classification of its exact solitary-wave and periodic
solutions is given in [17]. Long linear wave speed, c, coefficients of nonlinearity, α2, α4 and
the dispersion coefficient, β, are determined by a specific physical situation and depend on
what physical field is described by the variable ζ (in a hydrodynamic context, for example,
it can serve as displacement of density isolines, velocity potential, one of the components
of velocity or vorticity, pressure, etc.) and on the properties of the medium in which the
waves propagate. We will assume that the physical quantity ζ represents a perturbation of
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one of the interfaces between layers in a fluid in the context of internal waves in a layered
medium; the assumptions when performing the asymptotic expansion will partly depend
on this. From the point of view of wave dynamics, the signs of the coefficients of various
terms in Equation (1) are also important.

When studying the equations of KdV hierarchy, the main focus is usually paid on
solitonic solutions [18–25]: their properties, stability and the nature of interactions. Ques-
tions of the wave group dynamics within the framework of KdV-type equations are raised
much less frequently. In the case of weak nonlinearity, the stability of weakly modulated
quasi-monochromatic wave packets described by some higher-order KdV equations can be
studied using the equivalent modified nonlinear Schrödinger equation for the envelope of
the wave field [26–28], and determining its type (focusing/defocusing). For the classical
KdV equation with quadratic nonlinearity, the corresponding Schrödinger equation is
defocusing and the wave packets are stable [29]. In the case of the mKdV equation (with
cubic nonlinearity), the corresponding Schrödinger equation is focusing, and wave packets
are unstable to modulation, which leads to the formation of large amplitude waves [30–32].
For the generalized KdV equation with nonlinear term in a general form ∂f (ζ)/∂x, some
considerations are given in [33], for the case of one nonlinear term of arbitrary integer
degree, a similar analysis was carried out in [34]. For the Gardner equation, or extended
KdV equation with combined quadratic and cubic nonlinearity, which has much richer
dynamics, it has been demonstrated [30], that both focusing and defocusing cases are
realized depending on the combination of the signs of coefficients in the original equation.
In such general cases, it is necessary to obtain the condition for modulation instability in
terms of the coefficients of nonlinearities and dispersion of the original KdV-type equation
(their signs and combinations of signs are especially important), as well as in terms of the
characteristics of the initial wave field.

The aim of this research is to study the modulation instability of wave packets
within the framework of the (2+4) KdV equation using the equivalent modified non-
linear Schrödinger equation, which is derived explicitly using an asymptotic expansion in
Section 2, and its form is specified with the help of rescaling in Section 3. Furthermore, in
Section 4, for the case under consideration, the mechanism of the occurrence of modulation
instability is analytically described in detail and explicit expressions are given for the
growth rate of instability, the maximum growth rate and the boundaries of the instability
interval. In Section 5, these parameters are analyzed in the hydrodynamic context of waves
at interfaces in a symmetric three-layer fluid in the Boussinesq approximation. In the
Conclusion (Section 6), we list the results and discuss their possible applicability.

2. Derivation of the Higher-Order Nonlinear Schrödinger Equation

A reduction of Equation (1) to a nonlinear Schrödinger equation can be obtained for
weakly nonlinear wave packets. We will follow the classical procedure for deriving the
Schrödinger equation, see, for example [35]. The assumption of weak modulation of waves
(narrowness of the spectrum) allows us to look for a solution to Equation (1) in the form of
a superposition of harmonics

ζ(x, t) = µ
+∞

∑
m=−∞

ζm(x, t)Em (2)

where ζm(x, t) are the amplitudes of the harmonics

Em = exp(im(kx −ωt)) (3)

in this case, the fundamental (carrier) harmonic (m = ±1) of the wavefield has a frequency
ω and wavenumber k. In the expansion (2), µ << 1 is a small parameter responsible for the
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approximation of weak nonlinearity (small, but finite amplitude). For the wavefield ζ(x, t)
to be real, it is necessary to satisfy the relation:

ζm(x, t) = ζ−m(x, t)

where the overbar indicates complex conjugation.
Next, we introduce a slow coordinate x1, representing weak dispersion (the slow

changes of the envelope compared to the carrier wavelength, or the ratio between the enve-
lope wavenumber and the carrier wavenumber), which is characterized by the parameter
δ << 1:

∂

∂x
=

∂

∂x0
+ δ

∂

∂x1
(4)

and slow time coordinates—tj:

∂

∂t
=

∂

∂t0
+ ε

∂

∂t1
+ ε2 ∂

∂t2
+ . . . (5)

We will look for a solution in the form of expansion of the amplitude ζm(x, t) of each
harmonic in series (2) as a series by small parameter ε, characterizing the difference in
time scales:

ζm(x, t) =
∞

∑
n=0

εnζmn(x0, x1, t0, t1, . . .) (6)

Small parameters of nonlinearity µ and dispersion δ may relate differently to each
other at different ways of scaling, while a small parameter ε, appearing as a marker of
terms of different time scales in the asymptotic series (6), must be chosen depending on the
relationship between µ and δ. Here, to begin with, we will assume the classical relation of
small parameters µ~δ~ε, and start with δ = µ and ε = µ, further using only the parameter µ.
This will not prevent one from rescaling the resulting Schrödinger equation if necessary.

Now expression (2), taking into account (6), can be substituted into Equation (1),
taking into account (4), (5) and collecting the terms for each harmonic component Em (3) in
turn at fixed value of m and for each order of smallness (at µn). We number the steps of the
procedure with a double index {m, n}.

In order {1, 0} we obtain the condition that determines the dispersion relation for the
carrier wave:

ω = ck − βk3 (7)

The next order {1, 1} gives the linear equation

∂ζ10

∂t1
+ V

∂ζ10

∂x1
= 0 (8)

describing the propagation of a linear wave in a dispersive medium with the group velocity

V = cgr =
dω
dk

= c − 3βk2 (9)

determined by the dispersion relation (7).
The order {1, 2} leads to the nonlinear evolution equation:

i
∂ζ10

∂t2
− α2k|ζ10|2ζ10 − 3βk

∂2ζ10

∂x2
1

= 0 (10)

Orders {0, m}, m = 2. . .5, yield, respectively:

∂ζ0m

∂t1
+ c

∂ζ0m

∂x1
= 0
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which corresponds to the free solution for the zero harmonic. These terms can be set equal
to zero.

The second order evolution equation for the first harmonic is obtained in the order
{1, 3} of our expansion:

∂ζ10

∂t3
+ 2α2|ζ10|2

∂ζ10

∂x1
+ α2ζ10

2 ∂ζ10

∂x1
+ β

∂3ζ10

∂x3
1

= 0 (11)

The expression for the third harmonic amplitude is obtained in the order {3, 2}, and it
has the form:

ζ32 =
α2

24βk2 ζ10
3 (12)

The order {1, 4} yields the equation describing the third-order correction for the
amplitude of the first harmonic:

∂ζ10

∂t4
+ i

α2
2 + 48α4βk2

24βk
|ζ10|4ζ10 = 0 (13)

In the order {3, 3} we have a correction to the amplitude of the third harmonic:

ζ33 = i
α2

12βk3 ζ10
2 ∂ζ10

∂x1
(14)

The remaining corrections in series (6) turn out to be zero during the expansion
process:

ζm0 = 0 ∀ m ̸= ± 1 ζmn = 0 ∀ |m| > n + 1 ζ1n = 0 ∀ n ≥ 1

The order {1, 5} leads to a fourth order evolution equation for the first harmonic
amplitude:

∂ζ10

∂t5
+

1
24βk2 |ζ10|2

((
2α2

2 + 96α4βk2
)

ζ10
∂ζ10

∂x1
+
(
α2

2 + 144α4βk2
)

ζ10
∂ζ10

∂x1

)
= 0 (15)

Combining Equations (8), (10), (11), (13) and (15), and taking into account (4) and (5),
we obtain the following equation:

i
(

∂ζ10
∂t + V ∂ζ10

∂x

)
+ µ

(
α̃1|ζ10|2ζ10 + β̃1

∂2ζ10
∂x2

)
+

+iµ2
(
α̃21|ζ10|2 ∂ζ10

∂x + α̃22ζ10
2 ∂ζ10

∂x + β̃2
∂3ζ10
∂x3

)
+

+µ3α̃3|ζ10|4ζ10 + iµ4|ζ10|2
(
α̃41ζ10

∂ζ10
∂x + α̃42ζ10

∂ζ10
∂x

)
= 0

(16)

where the coefficients are expressed as follows:

α̃1 = −α2k, β̃1 = −3βk α̃21 = 2α2 α̃22 = α2, β̃2 = β (17)

α̃3 = −α2
2 + 48α4βk2

24βk
α̃41 = −2α̃3

k
=

α2
2 + 48α4βk2

12βk2 α̃42 =
α2

2 + 144α4βk2

24βk2 (18)

Equation (16) is a generalization of the classical NLS equation taking into account
terms up to the fourth order of smallness. It describes weak modulations of waves within
the framework of the dynamics reproduced by Equation (1)—in cases in the equations of
the KdV hierarchy, due to the symmetry of the medium, the terms of even nonlinearity and
nonlinear dispersion completely degenerate, and the coefficient of cubic nonlinearity in
Equation (1) is close to zero and can change sign (transition zone).
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The physical field ζ in the same order of accuracy is determined by the formula:

ζ = µRe[ζ10 exp(i(ωt − kx))] + µ3Re[(ζ32 + εζ33) exp(3i(ωt − kx))] + O(µ5) (19)

Modifications of Equation (16) up to the third order of accuracy in amplitude were
derived, for example, in [30] for the general case of long waves, and in [36]—in the context
of surface gravity waves in fluid. In both cases, the derivation was produced with other
than our initial equations.

3. Rescaling

It is easy to see that the assumption of equivalence of the contributions of nonlinearity
and dispersion (µ~δ) assumed in Section 2 to the formation of motion patterns is not valid
within the context described by Equation (1). In such situations, it is first necessary to
establish which from the higher-order terms provides the largest contribution to the motion.
As the presence of solitonic solutions in the system in question normally is associated with
a specific balance of nonlinear and dispersive terms, it is natural to keep this balance also
in the higher-order modifications to the NLS equation. The appearance of Equation (16)
suggests that such a balance in symmetric stratified media is possible if µ2~δ. This property
actually means that the higher-order nonlinear terms provide a relatively large contribution
to the governing equation compared with the dispersive terms. Introducing variables,

ζ10 = µη, x̃ = δx, t̃ = δt

Equation (16) can be presented as follows (for simplicity we omit tildes):

iµδ
(

∂η
∂t + V ∂η

∂x

)
+
(
µ3α̃1|η|2η+ µδ2β̃1

∂2η
∂x2

)
+

+i
(
µ3δα̃21|η|2 ∂η

∂x + µ3δα̃22η
2 ∂η

∂x + µδ3β̃2
∂3η
∂x3

)
+

+µ5α̃3|η|4η+ iµ4δ|η|2
(
α̃41η

∂η
∂x + α̃42η

∂η
∂x

)
= 0

(20)

Making use of assumption µ2~δ~ε and taking into account that Equation (1) in the
context under consideration describes a situation when the coefficient of cubic nonlinearity
α2 in it changes its sign (that is, it is less than or of the order of ε), which means, by virtue
of (17), the coefficients are also small α̃1, α̃21, α̃22, leads to the following equation:

i
(

∂η
∂t + V ∂η

∂x

)
+ µ2α̃1|η|2η+ µ2β̃1

∂2η
∂x2 + µ2α̃3|η|4η

+iµ3|η|2
(
α̃41η

∂η
∂x + α̃42η

∂η
∂x

)
+ iµ4

(
α̃21|η|2 ∂η

∂x + α̃22η
2 ∂η

∂x

)
+ iµ4β̃2

∂3η
∂x3 = 0

(21)

Then, taking into account only the first corrections to the wave equation, we obtain
the modified equation:

i
(

∂η

∂t
+ V

∂η

∂x

)
+ εα̃1|η|2η+ εβ̃1

∂2η

∂x2 + εα̃3|η|4η = 0 (22)

Equation (22) reproduces the nonlinear dynamics of the envelope of the wave field
described by Equation (1), in particular, internal waves in a medium with a vertically
symmetrical change in density. Displacements of density isolines or interfaces, if the liquid
is layered, are described by Expression (19).

For the convenience of further transformations, we replace the variables x and t by
new ones (moving reference frame), where the amplitude of the envelope changes slowly
due to the effects of nonlinearity and dispersion:

x′ = x − Vt, t′ = εt



Water 2024, 16, 884 6 of 15

In the new variables, Equation (22) is reduced to the extended nonlinear Schrödinger
equation (the primes on the independent variables are omitted):

i
∂η

∂t
+ α̃1|η|2 η+ α̃3|η|4 η+ β̃1

∂2η

∂x2 = 0 (23)

This equation is also known as the modified NLS equation with the cubic-quintic (CQ)
nonlinearity, see, e.g., [37,38] in the context of waves in optical media. In general, Equation
(23) is valid for a wide range of physics [39–42]. Both nonlinear terms in it have the same
order of magnitude, and, according to (17), (18) the signs of the nonlinear coefficients α̃1, α̃3
in CQ NLS (23) are determined by the values and signs of the nonlinearity coefficients α2,
α4 and dispersion parameter β (always positive in the context of gravity waves in fluids) in
the original Equation (1), that is, any combination of signs of nonlinearity coefficients (α̃1,
α̃3) can occur in CQ NLS (23), and dispersion coefficient β̃1 in (23) always has the opposite
sign to the sign of β in Equation (1). Therefore, this equation provides an example of
competing self-focusing and self-defocusing nonlinearities [43,44]. The physical context of
internal waves in symmetrically stratified three-layer fluid which is of our special interest,
is discussed in detail further in Section 5.

4. Modulation Instability

By replacing the unknown function in Equation (23)

η = a exp(iφ) (24)

one can move on to a set of equations for real functions—amplitude a(x, t) and phase φ(x, t)
of the envelope of quasiharmonic wave:

∂φ

∂t
+ β̃1

(
∂φ

∂x

)2
− β̃1

a
∂2a
∂x2 = α̃1a2 + α̃3a4 (25)

∂a
∂t

+ β̃1

(
2

∂a
∂x

∂φ

∂x
+ a

∂2φ

∂x2

)
= 0 (26)

Let us introduce the new dependent variable instead of the phase, φ:

U(x, t) = 2β̃1
∂φ

∂x

then system (25), (26) after (1) multiplication (25) by 2β̃1 and (2) differentiation with respect
to x and multiplication (26) by 2a—reduces to:

∂U
∂t

+ U
∂U
∂x

= 2α̃1β̃1
∂a2

∂x
+ 2α̃3β̃1

∂a4

∂x
+ 2β̃

2
1

∂

∂x

(
1
a

∂2a
∂x2

)
(27)

∂a2

∂t
+

∂

∂x

(
a2U

)
= 0 (28)

From Equations (27) and (28), it follows that the behavior of nonlinear envelope waves
is determined by the parameters

q1 = 2α̃1β̃1and q2 = 2α̃3β̃1

whose signs are determined by the signs of the nonlinearity and dispersion coefficients in
Equation (23), while the dispersion parameter β̃1 is always negative.

The terms q1
∂a2

∂x and q2
∂a4

∂x in the right hand side of Equation (27) are associated with the

nonlinearity of the medium, and the term 2β̃
2
1

∂
∂x

(
1
a

∂2a
∂x2

)
takes into account the “nonlinear”

dispersion of the group velocity of the wave packet. These terms can have different orders
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of smallness. For example, in the dynamic approximation of space-time geometric optics,
it is assumed that the modulation is so slow that the group velocity dispersion described
by the last term in the right hand side of (27) can be neglected. Then the equations for
amplitude and frequency modulation take the form:

∂U
∂t

+ U
∂U
∂x

= q1
∂a2

∂x
+ q2

∂a4

∂x
(29)

∂a2

∂t
+

∂

∂x

(
a2U

)
= 0 (30)

Equations (29) and (30) at q2 = 0 have solutions in the form of Riemann waves, having
a local connection between the variables a2 and U. Also for this particular case, the effects
of group velocity splitting and an increase in the steepness of the leading and trailing fronts
of the envelope are known [35]. In general case q2 ̸= 0, these effects still need to be studied.

Let us consider a monochromatic wave in a physical field with an envelope of the
form (24), where a = a0 = const and U = U0 = 0, and study its stability with respect to small
modulating disturbances. To complete this, we linearize the system of Equations (29) and
(30) in the vicinity of the stationary value:

a = a0 + a1(x, t), a1/a0 << 1
U = U1(x, t), U1 << 1

Linearized system has the form:

∂U1

∂t
+ 2qa0

∂a1

∂x
= 0 (31)

∂a1

∂t
+

1
2

a0
∂U1

∂x
= 0 (32)

where
q = −(q1 + 2q2a2

0) = −2β̃1(α̃1 + 2α̃3a2
0) (33)

The set of Equations (31) and (32) has two families of characteristics:

dx
dt

= ±
√

qa2
oK

which are real at q > 0 (i.e., the system (31), (32) is of hyperbolic type), and they are
imaginary at q < 0 (i.e., the system (31), (32) is elliptic).

The solution for (a, U) can be sought in the form:

(a1, U1) ∼ exp(i(Kx − Ωt))

with real K. Then one can find from (31), (32), that the frequency Ω and wavenumber K of
the envelope satisfy the dispersion relation:

Ω1,2 = ±
√

qa2
0K (34)

This implies that at q > 0, frequencies Ω1,2 are real, and small initial disturbance does
not grow, which means that the wave in this case is stable. The situation is opposite at q
< 0. At this case, the frequencies Ω1,2 are imaginary, and small initial disturbances of the

envelope are growing in time like exp
(√

|q|a0t
)

, i.e., the monochromatic wave is unstable,
and self-modulation occurs. Thus, the condition for modulation instability in our case has
the form:

q < 0 or β̃1(α̃1 + 2α̃3a2
0) > 0 (35)
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Returning with the help of (17), (18) to the coefficients of the original Equation (1), let
us rewrite this inequality in the following form:

12α2βk2 + a2
0

(
α2

2 + 48α4βk2
)
> 0 (36)

or
12βk2

(
α2 + 4α4a2

0

)
+ α2

2a2
0 > 0 (37)

or expressing the amplitude a0:

a2
0 > a2

0∗ = − α̃1

2α̃3
= − 12α2βk2

α2
2 + 48α4βk2

(38)

when α̃3 < 0, or when the denominator is positive (α2
2 + 48α4βk2 > 0), and

a2
0 < a2

0∗ = − α̃1

2α̃3
= − 12α2βk2

α2
2 + 48α4βk2

(39)

when α̃3 > 0, or when the denominator is negative (α2
2 + 48α4βk2 < 0). The conditions

for the implementation of these inequalities in the context of internal wave dynamics in a
three-layer symmetric fluid is discussed in detail in Section 5.

Let us now take into account the effect of dispersive spreading of the wave packet (the
last term in the right hand side of (27)). Consider the behavior of small disturbances a1(x, t)
and U1(x, t) of the monochromatic wave, which are described by a linearized system of
equations following from (27), (28):

∂U1

∂t
+ 2qa0

∂a1

∂x
=

2β̃
2
1

a0

∂3a1

∂x3 (40)

∂a1

∂t
+

1
2

a0
∂U1

∂x
= 0 (41)

where q is determined by Expression (33). Assuming (a1, U1) ∼ exp(i(Kx − Ωt)), we
obtain the dispersion relation linking the frequency and wavenumber of the modulation:

Ω1,2 = ±a0K

√√√√q +
β̃

2
1

a2
0

K2 (42)

It differs from the dispersion relation (34) for the case of nonlinear space-time geometric
optics approximation by the presence of an additional term under the radical. Expression
(42) looks the same as for the classical NLS equation, but an analogue of the Lighthill
parameter q (33) contains additionally the term of squared amplitude a0 multiplied by
the coefficient of higher nonlinearity α̃3. Thus, taking into consideration the terms of the
higher nonlinearity can change the type of Equation (23) for the envelope from focusing
to defocusing and vice versa. The type of equation from the point of view of modulation
instability and the behavior of the disturbance in this case also depends on the sign of
the parameter q. At q > 0, the monochromatic wave is stable, and at q < 0, there exists an
interval in the envelope wavenumbers

K < K∗ =

√
|q|a2

0/β̃
2
1 (43)
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where the frequency (42) is imaginary, the monochromatic wave is unstable and the distur-
bances grow up with the increment:

ImΩ = a0K

√√√√|q| −
(
β̃1
a0

K

)2

(44)

Consequently, taking into account the dispersion of the wave packet envelope does
not eliminate the effect of modulation instability, but only limits the range of modulation
wavenumbers K, where it takes place. The functional dependence (44) is non-monotonic, it
has an extremum at Km = K∗/

√
2. This extremum is maximum, and the maximal value of

the increment is given by the following expression:

(ImΩ)max = a0

√
|q|
2

K∗ =
|q|

2
∣∣∣β̃1

∣∣∣ a2
0

Substituting q from (33), we obtain:

(ImΩ)max =
∣∣∣α̃1 + 2α̃3a2

0

∣∣∣a2
0 (45)

and one can see that the maximal increment does not depend on the dispersion parameter
β̃1. Modulation with the wavelength

λm =
2π

Km
=

2π

a0

√√√√ ∣∣∣β̃1

∣∣∣∣∣α̃1 + 2α̃3a2
0

∣∣ (46)

grows most quickly; it is inversely related to the amplitude. All these quantities can be
given in terms of the coefficients of the original Equation (1) using Relations (17) and (18).

5. Context of Interfacial Waves in a Symmetric Three-Layer Fluid at Near-Critical Situation

Many studies have been devoted to the modulation instability of surface water waves
to explain the rogue-wave formation [45–50], but in the present study we discuss waves in
the interior of the fluid, where the nonlinear instabilities were also predicted [51–54]. Equa-
tion (1) was derived, in particular, for long lowest-mode interfacial waves in a three-layer
fluid with an almost symmetric configuration [13,14] in which the lower-order nonlinear
terms vanish and higher-order contributions govern the behavior of wave phenomena in
the system. A simple symmetric situation corresponds to the equal thicknesses h of the
uppermost and the lowermost layers provided that the density differences ∆ρ between
the layers are also equal (Figure 1). Density stratification of fluid becomes critical from the
point of view of long nonlinear internal waves at a certain relative layer thickness [13,55]:

hcr/H = 9/26 (47)

when the cubic nonlinearity coefficient α2 in Equation (1) vanishes. The coefficients in
Equation (1) are as follows in this context [13]:

α2H2/c = −3(26l − 9)
8l3 α4H4/c = −9(1324l3 − 1508l2 + 513l − 45)

128l7 β/(cH2) = −4l2 − 3l
12

(48)

where l = h/H. Expanding the above Expressions (48) for the coefficients of Equation
(1) into a Taylor series near the point hcr (δ = (h − hcr)/H) yields

α2H2/c = −57122
243

δ+ O
(
δ2
)
=

⌢
α2δ+ O

(
δ2
)

(49)
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β/(cH2) =

(
63

1352
+

1
52

δ

)
+ O

(
δ2
)
=

⌢
β + O(δ) (50)

α4H4/c = −47411260
59049

+
12084101978

531441
δ+ O

(
δ2
)
=

⌢
α4 + O

(
δ2
)

(51)
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Figure 1. Definition sketch of a symmetric three-layer fluid.

As follows from Expressions (48)–(51), the coefficient α2 at the cubic nonlinearity is
sign-variable in the vicinity of hcr/H, the coefficient α4 at the quintic nonlinearity is negative
in this region, and the dispersion coefficient β is always positive for internal waves.

Let us write down the criterion for modulation instability of the wave field and its
other characteristics for this physical context. Using Relations (33), (17) and (18), we obtain

q = −2β̃1(α̃1 + 2α̃3a2
0) = −6βk

(
α2k +

α2
2 + 48α4βk2

12βk
a2

0

)
(52)

and see, that the sign of growth rate q is determined by the sign of the multiplier in the
bracket (coincides with it), and it, in turn, depends on the signs of the nonlinearity coeffi-
cients in CQ NLS equation, Equation (23), which are determined through the coefficients of
the original Equation (1) through Relations (17) and (18). Let us analyze the signs α̃1 and
α̃3 depending on the parameters of the environment and the envelope. Cubic nonlinearity
coefficient α̃1 changes its sign at l = lcr = 9/26. The coefficient of the higher nonlinearity α̃3
goes to zero and changes sign at

∧
k =

∧
k± = ± 26l − 9√

2(5296l4 − 10004l3 + 6576l2 − 1719l + 135)
(53)

where k̂ = kH is a nondimensional quantity, characterizing the ratio of fluid total depth
to wavelength, i.e., dispersion (the waves are long when k̂ < 1). Combinations of signs of
nonlinearity parameters α̃1, α̃3 in Equation (23) in the context of interfacial waves in a three-
layer fluid are shown in Figure 2 on the plane (l, k̂). The first sign in a pair corresponds to
the sign of α̃1, the second—to the sign of α̃3. Combination of signs «− −» provides q < 0 for
any values of wave amplitude a0. Combination «− +» means that the case (39) is realized,
and at this situation, q < 0 if the condition a2

0 < a2
0∗ for amplitude is satisfied. In case when

both signs are pluses, q > 0 for any values of wave amplitude a0, and modulation instability
cannot occur in this zone. Finally, the combination of the signs “+ −” gives q < 0 when
a2

0 > a2
0∗. Normalized values of a0∗/H on the plane (l, k̂) are given in Figure 2b.
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Substituting Expressions (48) for the coefficients into expression for q, (52) we obtain:

∧
q = q

H2

c2 =
(

Q1(l)k̂2 + Q2(l)
)

â2
0 + Q3(l)k̂2 (54)

where â0 = a0/H is a nondimensional wave amplitude (normalized by the total fluid depth
H)—this quantity characterizes nonlinearity of the wave field,

Q1 = −9
(
5296l4 − 10004l3 + 6576l2 − 1719l + 135

)
/
(
64l6)

Q2 = −9
(
676l2 − 468l + 81

)
/
(
128l6) Q3 = −3

(
104l2 − 114l + 27

)
/
(
16l2)

Then, expanding (54) into a Taylor series near the critical point l = 9/26 (47), we have:

∧
q =

1963780
2187

(
k̂â0

)2
+

169
13122

(
5103 − 1945684

∧
a0

2
)

k̂2δ+ O(δ2) (55)

where δ = (h − hcr)/H. From expansion (55) it is clear, that q̂ > 0 in the main order;
thus, a wave is stable at the critical point and at its nearest vicinity. The behavior of the

nondimensional modulation instability parameter
∧
q(l, k̂, â0), determined by the normalized

version of (54), is illustrated in Figure 3, depending on the parameter of the undisturbed
medium l (which determines the dimensionless thickness of the upper and lower layers in
a symmetric three-layer liquid) and the parameter k̂, characterizing dispersion in the range
of long waves k̂ < 1, for different values of nondimensional wave amplitude: â0 = 0.05
(Figure 3a) and â0 = 0.1 (Figure 3b). This is fully consistent with the physical limitations of
the medium (the wave amplitude should be less than the layer thicknesses) and the weakly
nonlinear approximation (the wave amplitude should be significantly less than the layer
thicknesses), i.e., is in the range of applicability of equation (1). The region in l is chosen
to be limited taking into account the fact that equation (1) is valid only in the vicinity of
the critical point l = hcr/H = 9/26 (for convenience, this critical value of the layer thickness
is marked with a magenta dash-dotted line in Figure 3). The boundary of sign change for
parameter q̂ (or the boundary of instability region) is shown in Figure 3 by a white dotted

line, instability zone q < 0 lies under this line, it consists of two sub-regions:
∧
k < k̂∗−(l)

when l < 9/26 and
∧
k < k̂∗+(l) when l > 9/26. Curve k̂∗−(l) does not fall below than k̂−(l) (53)

when a0 increases, and curve k̂∗+(l), in opposite, rises no higher than k̂+(l) (53) at the same
time. That is, for h < hcr for more intense waves the threshold of modulation instability
shifts to the region of longer waves, and the amplitude here is limited from above by the
value a0*, and for h > hcr, on the contrary, the threshold of modulation instability shifts
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to the region of shorter waves, and the critical amplitude value a0* must be exceeded for
instability to occur.
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Figure 3. Nondimensional parameter of modulation instability
∧
q(l, k̂, â0) (54) for â0 = 0.05 (a) and

â0 = 0.1 (b). The white dotted line shows the sign change line q̂ = 0, the magenta dash-dotted line
shows the critical ratio of layer widths l = hcr/H = 9/26 in three-layer fluid.

Thus, the phenomenon of modulation instability can be realized under certain combi-
nations of environmental conditions, wavelengths and amplitudes of waves at the interfaces
in a symmetrical three-layer liquid.

The upper limit of the interval of dimensionless wave numbers of the envelope K∗H
(43) as a function of l (the dimensionless thickness of the upper and lower layers in a
symmetrical three-layer fluid) and k̂ (dimensionless wave number of the carrier wave) is
shown in Figure 4 for â0 = 0.05 (Figure 4a) and â0 = 0.1 (Figure 4b) in the zone of the
modulation instability q < 0. Near the boundary of the instability zone q = 0, values of K∗
are small, and they increase with distance from the boundary. At smaller values of the
dimensionless amplitude â0, values K∗H are also smaller ceteris paribus. Values of K∗H
also grow when carrier wave number k̂ decreases. It is also necessary to take into account
the implied ratio of carrier and envelope wavelengths k/K >> 1, with which constraint (43)
must be compatible.
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Maximal increment (ImΩ)maxH/c (45) as a function of l (the dimensionless thickness
of the upper and lower layers in a symmetrical three-layer fluid) and k̂ (dimensionless wave
number of the carrier wave) is shown in Figure 5 for â0 = 0.05 (Figure 5a) and â0 = 0.1
(Figure 5b) in the zone of the modulation instability q < 0. The increment grows with
increasing amplitude, as well as with increasing carrier wavelength.
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6. Conclusions

The conditions for the occurrence of modulation instability of weakly nonlinear quasi-
monochromatic wave fields are described within the framework of the extended modified
KdV equation (or (2+4)-KdV equation), which previously arose in the context of the hy-
drodynamics of a stratified fluid. For this purpose, an extended nonlinear Schrödinger
equation of higher order associated with (2+4)-KdV was derived, which, taking into ac-
count the specifics of the considered physical context of internal waves in a three-layer
liquid with symmetric stratification, where the sign of cubic nonlinearity changes, is re-
duced to cubic-quintic NLS equation at such a near-critical situation. Thus, it is possible
to construct an approximate solution of the (2+4)-KdV equation (wave field envelope)
by solving the equivalent CQ NLS equation. Furthermore, within the framework of the
obtained CQ NLS equation, the instability growth rate, maximum of the increment and the
boundaries of the instability interval, as well as the corresponding threshold values of the
envelope amplitude are obtained analytically. It is shown that the phenomenon of modula-
tion instability can be realized under certain combinations of environmental conditions,
wavelengths and amplitudes of waves at the interfaces in a symmetrical three-layer liquid;
these relationships are given analytically and examined in detail on the problem parameter
planes. These results can be useful in planning numerical and laboratory experiments, as
well as in explaining observed field data (within the limits of applicability of the considered
approximate models).
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