Next Issue
Volume 7, December
Previous Issue
Volume 7, October
 
 

Water, Volume 7, Issue 11 (November 2015) – 37 articles , Pages 5876-6672

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
616 KiB  
Article
Effect of Nitrogen and Irrigation Application on Water Movement and Nitrogen Transport for a Wheat Crop under Drip Irrigation in the North China Plain
by Juan Sui, Jiandong Wang, Shihong Gong, Di Xu and Yanqun Zhang
Water 2015, 7(11), 6651-6672; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116651 - 23 Nov 2015
Cited by 28 | Viewed by 6348
Abstract
For improving water scarcity and groundwater pollution from agriculture, two-year experiments (2011–2013) with three water levels (0.3, 0.5 and 0.8 evaporation (E) in 20-cm-diameter pans) and four nitrogen (N) levels (120, 140 and 190 kg·ha−1 in 2012 and 120, 190 and 290 [...] Read more.
For improving water scarcity and groundwater pollution from agriculture, two-year experiments (2011–2013) with three water levels (0.3, 0.5 and 0.8 evaporation (E) in 20-cm-diameter pans) and four nitrogen (N) levels (120, 140 and 190 kg·ha−1 in 2012 and 120, 190 and 290 kg·ha−1 in 2013) were conducted to study effects of water and N availability on water movement and N transport for a wheat crop under drip irrigation in the North China Plain. The results indicated that under drip irrigation, deep percolation at 1-m depth was stable at 0.5–0.8 E with the same N rate for winter wheat. At 0.5–0.8 E, deep percolation was also relatively stable with increasing N rate from 120 to 140 kg·ha−1 or from 190 to 290 kg·ha−1. The irrigation schedule and N rates only affected N leaching below the root zone of winter wheat (60-cm depth), while the N residual in the soil layer presented more risk to the environment than N leaching. In general, the 290-kg-ha−1 N level was not recommended using drip fertigation for winter wheat in the North China Plain. The empirical equation given by the Ministry of Geology and Mineral Resources was also not recommended for estimating the drainage under drip irrigation. Full article
Show Figures

Figure 1

1988 KiB  
Article
An Indirect Simulation-Optimization Model for Determining Optimal TMDL Allocation under Uncertainty
by Feng Zhou, Yanjun Dong, Jing Wu, Jiangli Zheng and Yue Zhao
Water 2015, 7(11), 6634-6650; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116634 - 20 Nov 2015
Cited by 6 | Viewed by 4692
Abstract
An indirect simulation-optimization model framework with enhanced computational efficiency and risk-based decision-making capability was developed to determine optimal total maximum daily load (TMDL) allocation under uncertainty. To convert the traditional direct simulation-optimization model into our indirect equivalent model framework, we proposed a two-step [...] Read more.
An indirect simulation-optimization model framework with enhanced computational efficiency and risk-based decision-making capability was developed to determine optimal total maximum daily load (TMDL) allocation under uncertainty. To convert the traditional direct simulation-optimization model into our indirect equivalent model framework, we proposed a two-step strategy: (1) application of interval regression equations derived by a Bayesian recursive regression tree (BRRT v2) algorithm, which approximates the original hydrodynamic and water-quality simulation models and accurately quantifies the inherent nonlinear relationship between nutrient load reductions and the credible interval of algal biomass with a given confidence interval; and (2) incorporation of the calibrated interval regression equations into an uncertain optimization framework, which is further converted to our indirect equivalent framework by the enhanced-interval linear programming (EILP) method and provides approximate-optimal solutions at various risk levels. The proposed strategy was applied to the Swift Creek Reservoir’s nutrient TMDL allocation (Chesterfield County, VA) to identify the minimum nutrient load allocations required from eight sub-watersheds to ensure compliance with user-specified chlorophyll criteria. Our results indicated that the BRRT-EILP model could identify critical sub-watersheds faster than the traditional one and requires lower reduction of nutrient loadings compared to traditional stochastic simulation and trial-and-error (TAE) approaches. This suggests that our proposed framework performs better in optimal TMDL development compared to the traditional simulation-optimization models and provides extreme and non-extreme tradeoff analysis under uncertainty for risk-based decision making. Full article
Show Figures

Figure 1

2993 KiB  
Article
Validation of a Locally Revised Topographic Index in Central New Jersey, USA
by Zeyuan Qiu
Water 2015, 7(11), 6616-6633; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116616 - 18 Nov 2015
Cited by 5 | Viewed by 5755
Abstract
Saturation excess is a major runoff process in humid regions such as the US Northeast. Topographic index (TI) is used to simulate the pattern of runoff-contributing areas following a saturation excess runoff process. Although TI is useful to delineate saturated areas, i.e., [...] Read more.
Saturation excess is a major runoff process in humid regions such as the US Northeast. Topographic index (TI) is used to simulate the pattern of runoff-contributing areas following a saturation excess runoff process. Although TI is useful to delineate saturated areas, i.e., hydrologically sensitive areas, for taking spatially distinctive actions in watersheds for improving water quality, local resource management practitioners often question its applicability to local conditions. This study introduces two methods to validate a locally revised TI in humid central New Jersey, USA. The revised TI uses soil moisture deficit instead of water table depth as the state variable in simulating the saturation excess runoff process. First, the calculated TI values were compared to the soil moisture measurements sampled in two sites in Tewksbury Township in the region to evaluate their correlations. Second, a watershed model Variable Source Load Function (VSLF) that incorporates TI was applied to the Neshanic River Watershed in the region and compared to another watershed model Soil and Water Assessment Tool (SWAT) to evaluate its capability in predicting the streamflow and its runoff and baseflow components. The positive correlations between soil moisture measurements and TI suggested TI is a good indicator of runoff-generating potential. VSLF achieves a modeling efficiency comparable to SWAT in simulating watershed hydrology. Such validation gives practitioners confidence to incorporate TI pattern into watershed management practices for improving their efficiency. The results are applicable to shallow, interflow-driven watersheds in humid regions. Full article
Show Figures

Figure 1

1293 KiB  
Article
Quantifying the Response Time of a Lake–Groundwater Interacting System to Climatic Perturbation
by Yicheng Gong, Ganming Liu and Franklin W. Schwartz
Water 2015, 7(11), 6598-6615; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116598 - 17 Nov 2015
Cited by 5 | Viewed by 5742
Abstract
Response time, describing how quickly a disturbed system would reach a new equilibrium, has been helpful to hydrogeologists in characterizing and understanding the hydrogeological systems. This study examined the complex response times associated with lake–groundwater perturbed by climate. Simulated hydraulic heads and lake [...] Read more.
Response time, describing how quickly a disturbed system would reach a new equilibrium, has been helpful to hydrogeologists in characterizing and understanding the hydrogeological systems. This study examined the complex response times associated with lake–groundwater perturbed by climate. Simulated hydraulic heads and lake stage values derived from a 3-D, MODFLOW-based model were used to calculate the response times for a closed, groundwater-fed lake system. Although obviously coupled, the response times of the lake and groundwater systems were different from one another. Typically, the adjustments in hydraulic heads occurred more rapidly than lake stage. Response times for groundwaters close to the lake were controlled by the lake because of the slow transient response in stage. However, the influence of the lake declined toward the basin boundaries. This behavior occurred because critical parameters controlling the response-time behavior of the groundwater system (e.g., recharge rate) differed from those controlling the response-time behavior of the lake (e.g., bed leakance). An improved understanding of lake–groundwater behaviors have the potential to evaluate how lakes function as systems for recording paleoclimates. Full article
(This article belongs to the Special Issue New Developments in Methods for Hydrological Process Understanding)
Show Figures

Figure 1

357 KiB  
Review
State of the Art of Online Monitoring and Control of the Coagulation Process
by Harsha Ratnaweera and Joachim Fettig
Water 2015, 7(11), 6574-6597; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116574 - 17 Nov 2015
Cited by 55 | Viewed by 8975
Abstract
Coagulation is an essential process for the removal of suspended and colloidal material from water and wastewater. However, no comprehensive or universally accepted mathematical description of the process has been developed so far. Therefore, process optimization and control is usually based on data [...] Read more.
Coagulation is an essential process for the removal of suspended and colloidal material from water and wastewater. However, no comprehensive or universally accepted mathematical description of the process has been developed so far. Therefore, process optimization and control is usually based on data from jar tests and simple flow-proportional dosing concepts, while more accurate concepts based on water quality parameters that can be measured online are emerging. In addition, there have been attempts to develop software sensors and control schemes that involve advanced mathematical analyses of these parameters. The paper presents an overview of the parameters and physical sensors that are used for feed-forward and feed-backward control schemes and the experiences that have been made with their implementation. Moreover, the development and use of software sensors is described. Finally, the practical applications of different control techniques are given in order to illustrate the state of the art of coagulation control. Some thoughts about research needs conclude this review. Full article
Show Figures

Graphical abstract

5797 KiB  
Article
Empirical Estimation of Total Nitrogen and Total Phosphorus Concentration of Urban Water Bodies in China Using High Resolution IKONOS Multispectral Imagery
by Jiaming Liu, Yanjun Zhang, Di Yuan and Xingyuan Song
Water 2015, 7(11), 6551-6573; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116551 - 17 Nov 2015
Cited by 40 | Viewed by 6830
Abstract
Measuring total nitrogen (TN) and total phosphorus (TP) is important in managing heavy polluted urban waters in China. This study uses high spatial resolution IKONOS imagery with four multispectral bands, which roughly correspond to Landsat/TM bands 1–4, to determine TN and TP in [...] Read more.
Measuring total nitrogen (TN) and total phosphorus (TP) is important in managing heavy polluted urban waters in China. This study uses high spatial resolution IKONOS imagery with four multispectral bands, which roughly correspond to Landsat/TM bands 1–4, to determine TN and TP in small urban rivers and lakes in China. By using Lake Cihu and the lower reaches of Wen-Rui Tang (WRT) River as examples, this paper develops both multiple linear regressions (MLR) and artificial neural network (ANN) models to estimate TN and TP concentrations from high spatial resolution remote sensing imagery and in situ water samples collected concurrently with overpassing satellite. The measured and estimated values of both MLR and ANN models are in good agreement (R2 > 0.85 and RMSE < 2.50). The empirical equations selected by MLR are more straightforward, whereas the estimated accuracy using ANN model is better (R2 > 0.86 and RMSE < 0.89). Results validate the potential of using high resolution IKONOS multispectral imagery to study the chemical states of small-sized urban water bodies. The spatial distribution maps of TN and TP concentrations generated by the ANN model can inform the decision makers of variations in water quality in Lake Cihu and lower reaches of WRT River. The approaches and equations developed in this study could be applied to other urban water bodies for water quality monitoring. Full article
Show Figures

Figure 1

1894 KiB  
Article
Coupled Heuristic Prediction of Long Lead-Time Accumulated Total Inflow of a Reservoir during Typhoons Using Deterministic Recurrent and Fuzzy Inference-Based Neural Network
by Chien-Lin Huang, Nien-Sheng Hsu and Chih-Chiang Wei
Water 2015, 7(11), 6516-6550; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116516 - 17 Nov 2015
Cited by 5 | Viewed by 5244
Abstract
This study applies Real-Time Recurrent Learning Neural Network (RTRLNN) and Adaptive Network-based Fuzzy Inference System (ANFIS) with novel heuristic techniques to develop an advanced prediction model of accumulated total inflow of a reservoir in order to solve the difficulties of future long lead-time [...] Read more.
This study applies Real-Time Recurrent Learning Neural Network (RTRLNN) and Adaptive Network-based Fuzzy Inference System (ANFIS) with novel heuristic techniques to develop an advanced prediction model of accumulated total inflow of a reservoir in order to solve the difficulties of future long lead-time highly varied uncertainty during typhoon attacks while using a real-time forecast. For promoting the temporal-spatial forecasted precision, the following original specialized heuristic inputs were coupled: observed-predicted inflow increase/decrease (OPIID) rate, total precipitation, and duration from current time to the time of maximum precipitation and direct runoff ending (DRE). This study also investigated the temporal-spatial forecasted error feature to assess the feasibility of the developed models, and analyzed the output sensitivity of both single and combined heuristic inputs to determine whether the heuristic model is susceptible to the impact of future forecasted uncertainty/errors. Validation results showed that the long lead-time–predicted accuracy and stability of the RTRLNN-based accumulated total inflow model are better than that of the ANFIS-based model because of the real-time recurrent deterministic routing mechanism of RTRLNN. Simulations show that the RTRLNN-based model with coupled heuristic inputs (RTRLNN-CHI, average error percentage (AEP)/average forecast lead-time (AFLT): 6.3%/49 h) can achieve better prediction than the model with non-heuristic inputs (AEP of RTRLNN-NHI and ANFIS-NHI: 15.2%/31.8%) because of the full consideration of real-time hydrological initial/boundary conditions. Besides, the RTRLNN-CHI model can promote the forecasted lead-time above 49 h with less than 10% of AEP which can overcome the previous forecasted limits of 6-h AFLT with above 20%–40% of AEP. Full article
(This article belongs to the Special Issue Use of Meta-Heuristic Techniques in Rainfall-Runoff Modelling)
Show Figures

Figure 1

457 KiB  
Article
Optimal Sensor Placement for Leak Location in Water Distribution Networks using Evolutionary Algorithms
by Myrna V. Casillas, Luis E. Garza-Castañón and Vicenç Puig
Water 2015, 7(11), 6496-6515; https://doi.org/10.3390/w7116496 - 16 Nov 2015
Cited by 26 | Viewed by 6042
Abstract
In this paper, a sensor placement approach to improve the leak location in waterdistribution networks is proposed when the leak signature space (LSS) method is used.The sensor placement problem is formulated as an integer optimization problem where thecriterion to be minimized is the [...] Read more.
In this paper, a sensor placement approach to improve the leak location in waterdistribution networks is proposed when the leak signature space (LSS) method is used.The sensor placement problem is formulated as an integer optimization problem where thecriterion to be minimized is the number of overlapping signature domains computed fromthe original LSS representation. First, a semi-exhaustive search approach based on a lazyevaluation mechanism ensures optimal placement in the case of low complexity scenarios.For more complex cases, a stochastic optimization process is proposed, based on eitherthe genetic algorithms (GAs) or particle swarm optimization (PSO). Experiments on twodifferent networks are used to evaluate the performance of the resolution methods, as well asthe efficiency achieved in the leak location when using the sensor placement results. Full article
Show Figures

Figure 1

1351 KiB  
Article
Effect of Ultrasound Pretreatment on Sludge Digestion and Dewatering Characteristics: Application of Particle Size Analysis
by Elia Judith Martínez, Jose Guillermo Rosas, Antonio Morán and Xiomar Gómez
Water 2015, 7(11), 6483-6495; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116483 - 13 Nov 2015
Cited by 29 | Viewed by 7789
Abstract
The aim of this work was to study the effect of ultrasonic pretreatment on sludge digestion, particle size distribution (PSD), and dewaterability of digestates (measured by capillary suction time (CST) and specific resistance to filtration (SRF)). Sludge was pretreated with ultrasound (24 kHz) [...] Read more.
The aim of this work was to study the effect of ultrasonic pretreatment on sludge digestion, particle size distribution (PSD), and dewaterability of digestates (measured by capillary suction time (CST) and specific resistance to filtration (SRF)). Sludge was pretreated with ultrasound (24 kHz) at an energy dosage of 4300 kJ/kg TS. Digestibility of sludge was increased by ultrasound pretreatment resulting in a higher specific methane production (SMP). The digestate of pretreated waste activated sludge (WAS) obtained under batch conditions presented a better dewatering performance. Digestion under semi-continuous conditions was evaluated using sewage sludge (mixture of primary sludge and WAS). In this case, digestates presented a much higher mean particle size for both cases evaluated (pretreated and non-pretreated) than that obtained under batch conditions. A wide PSD was a characteristic of these digestate samples. Flow dynamics inside the reactor resulted in the presence of high-diameter flocs, thus significantly affecting the mean particle size and specific surface area (SSA) values. Full article
Show Figures

Graphical abstract

2481 KiB  
Article
Obtaining the Thermal Structure of Lakes from the Air
by Michaella Chung, Carrick Detweiler, Michael Hamilton, James Higgins, John-Paul Ore and Sally Thompson
Water 2015, 7(11), 6467-6482; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116467 - 13 Nov 2015
Cited by 22 | Viewed by 8682
Abstract
The significance of thermal heterogeneities in small surface water bodies as drivers of mixing and for habitat provision is increasingly recognized, yet obtaining three-dimensionally-resolved observations of the thermal structure of lakes and rivers remains challenging. Remote observations of water temperature from aerial platforms [...] Read more.
The significance of thermal heterogeneities in small surface water bodies as drivers of mixing and for habitat provision is increasingly recognized, yet obtaining three-dimensionally-resolved observations of the thermal structure of lakes and rivers remains challenging. Remote observations of water temperature from aerial platforms are attractive: such platforms do not require shoreline access; they can be quickly and easily deployed and redeployed to facilitate repeated sampling and can rapidly move between target locations, allowing multiple measurements to be made during a single flight. However, they are also subject to well-known limitations, including payload, operability and a tradeoff between the extent and density over which measurements can be made within restricted flight times. This paper introduces a novel aerial thermal sensing platform that lowers a temperature sensor into the water to record temperature measurements throughout a shallow water column and presents results from initial field experiments comparing \emph{in situ} temperature observations to those made from the UAS platform. These experiments show that with minor improvements, UASs have the potential to enable high-resolution 3D thermal mapping of a \(\sim\)1-ha lake in 2–3 flights (\textit{circa} 2 h), sufficient to resolve diurnal variations. This paper identifies operational constraints and key areas for further development, including the need for the integration of a faster temperature sensor with the aerial vehicle and better control of the sensor depth, especially when near the water surface. Full article
(This article belongs to the Special Issue New Developments in Methods for Hydrological Process Understanding)
Show Figures

Graphical abstract

721 KiB  
Article
Optimizing Water Allocation under Uncertain System Conditions for Water and Agriculture Future Scenarios in Alfeios River Basin (Greece)—Part B: Fuzzy-Boundary Intervals Combined with Multi-Stage Stochastic Programming Model
by Eleni Bekri, Markus Disse and Panayotis Yannopoulos
Water 2015, 7(11), 6427-6466; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116427 - 13 Nov 2015
Cited by 25 | Viewed by 6697
Abstract
Optimal water allocation within a river basin still remains a great modeling challenge for engineers due to various hydrosystem complexities, parameter uncertainties and their interactions. Conventional deterministic optimization approaches have given their place to stochastic, fuzzy and interval-parameter programming approaches and their hybrid [...] Read more.
Optimal water allocation within a river basin still remains a great modeling challenge for engineers due to various hydrosystem complexities, parameter uncertainties and their interactions. Conventional deterministic optimization approaches have given their place to stochastic, fuzzy and interval-parameter programming approaches and their hybrid combinations for overcoming these difficulties. In many countries, including Mediterranean countries, water resources management is characterized by uncertain, imprecise and limited data because of the absence of permanent measuring systems, inefficient river monitoring and fragmentation of authority responsibilities. A fuzzy-boundary-interval linear programming methodology developed by Li et al. (2010) is selected and applied in the Alfeios river basin (Greece) for optimal water allocation under uncertain system conditions. This methodology combines an ordinary multi-stage stochastic programming with uncertainties expressed as fuzzy-boundary intervals. Upper- and lower-bound solution intervals for optimized water allocation targets and probabilistic water allocations and shortages are estimated under a baseline scenario and four water and agricultural policy future scenarios for an optimistic and a pessimistic attitude of the decision makers. In this work, the uncertainty of the random water inflows is incorporated through the simultaneous generation of stochastic equal-probability hydrologic scenarios at various inflow positions instead of using a scenario-tree approach in the original methodology. Full article
Show Figures

Figure 1

2004 KiB  
Article
Method of Relating Grain Size Distribution to Hydraulic Conductivity in Dune Sands to Assist in Assessing Managed Aquifer Recharge Projects: Wadi Khulays Dune Field, Western Saudi Arabia
by Oliver M. Lopez, Khan Z. Jadoon and Thomas M. Missimer
Water 2015, 7(11), 6411-6426; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116411 - 12 Nov 2015
Cited by 23 | Viewed by 8083
Abstract
Planning for use of a dune field aquifer for managed aquifer recharge (MAR) requires that hydraulic properties need to be estimated over a large geographic area. Saturated hydraulic conductivity of dune sands is commonly estimated from grain size distribution data by employing some [...] Read more.
Planning for use of a dune field aquifer for managed aquifer recharge (MAR) requires that hydraulic properties need to be estimated over a large geographic area. Saturated hydraulic conductivity of dune sands is commonly estimated from grain size distribution data by employing some type of empirical equation. Over 50 samples from the Wadi Khulays dune field in Western Saudi Arabia were collected and the grain size distribution, porosity, and hydraulic conductivity were measured. An evaluation of 20 existing empirical equations showed a generally high degree of error in the predicted compared to the measured hydraulic conductivity values of these samples. Statistical analyses comparing estimated versus measured hydraulic conductivity demonstrated that there is a significant relationship between hydraulic conductivity and mud percentage (and skewness). The modified Beyer equation, which showed a generally low prediction error, was modified by adding a second term fitting parameter related to the mud concentration based on 25 of the 50 samples analyzed. An inverse optimization process was conducted to quantify the fitting parameter and a new empirical equation was developed. This equation was tested against the remaining 25 samples analyzed and produced an estimated saturated hydraulic conductivity with the lowest error of any empirical equation. This methodology can be used for large dune field hydraulic conductivity estimation and reduce planning costs for MAR systems. Full article
(This article belongs to the Special Issue Water Resources Assessment and Management in Drylands)
Show Figures

Figure 1

161 KiB  
Editorial
Advances in Remote Sensing of Flooding
by Yong Wang
Water 2015, 7(11), 6404-6410; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116404 - 12 Nov 2015
Cited by 18 | Viewed by 5562
Abstract
With the publication of eight original research articles, four types of advances in the remote sensing of floods are achieved. The uncertainty of modeled outputs using precipitation datasets derived from in situ observations and remote sensors is further understood. With the terrestrial laser [...] Read more.
With the publication of eight original research articles, four types of advances in the remote sensing of floods are achieved. The uncertainty of modeled outputs using precipitation datasets derived from in situ observations and remote sensors is further understood. With the terrestrial laser scanner and airborne light detection and ranging (LiDAR) coupled with high resolution optical and radar imagery, researchers improve accuracy levels in estimating the surface water height, extent, and flow of floods. The unmanned aircraft system (UAS) can be the game changer in the acquisition and application of remote sensing data. The UAS may fly everywhere and every time when a flood event occurs. With the development of urban structure maps, the flood risk and possible damage is well assessed. The flood mitigation plans and response activities become effective and efficient using geographic information system (GIS)-based urban flood vulnerability and risk maps. Full article
3333 KiB  
Article
Integrated Ecological River Health Assessments, Based on Water Chemistry, Physical Habitat Quality and Biological Integrity
by Ji Yoon Kim and Kwang-Guk An
Water 2015, 7(11), 6378-6403; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116378 - 11 Nov 2015
Cited by 54 | Viewed by 8171
Abstract
This study evaluated integrative river ecosystem health using stressor-based models of physical habitat health, chemical water health, and biological health of fish and identified multiple-stressor indicators influencing the ecosystem health. Integrated health responses (IHRs), based on star-plot approach, were calculated from qualitative habitat [...] Read more.
This study evaluated integrative river ecosystem health using stressor-based models of physical habitat health, chemical water health, and biological health of fish and identified multiple-stressor indicators influencing the ecosystem health. Integrated health responses (IHRs), based on star-plot approach, were calculated from qualitative habitat evaluation index (QHEI), nutrient pollution index (NPI), and index of biological integrity (IBI) in four different longitudinal regions (Groups I–IV). For the calculations of IHRs values, multi-metric QHEI, NPI, and IBI models were developed and their criteria for the diagnosis of the health were determined. The longitudinal patterns of the river were analyzed by a self-organizing map (SOM) model and the key major stressors in the river were identified by principal component analysis (PCA). Our model scores of integrated health responses (IHRs) suggested that mid-stream and downstream regions were impaired, and the key stressors were closely associated with nutrient enrichment (N and P) and organic matter pollutions from domestic wastewater disposal plants and urban sewage. This modeling approach of IHRs may be used as an effective tool for evaluations of integrative ecological river health.. Full article
Show Figures

Figure 1

2735 KiB  
Article
Expansion of an Existing Water Management Model for the Analysis of Opportunities and Impacts of Agricultural Irrigation under Climate Change Conditions
by Jörg Steidl, Johannes Schuler, Undine Schubert, Ottfried Dietrich and Peter Zander
Water 2015, 7(11), 6351-6377; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116351 - 11 Nov 2015
Cited by 19 | Viewed by 6660
Abstract
The impact of climate change and increased irrigation area on future hydrologic and agro-economic conditions was analysed for a representative basin in northeastern Germany using an expanded version of the WBalMO (water balance model) for water management. The model expansion represents various temporally [...] Read more.
The impact of climate change and increased irrigation area on future hydrologic and agro-economic conditions was analysed for a representative basin in northeastern Germany using an expanded version of the WBalMO (water balance model) for water management. The model expansion represents various temporally and spatially differentiated irrigation water use processes, including agricultural irrigation, as part of a river basin’s water management. We show that climate changes lead to increased irrigation water demands in the future, which will not always be able to be met. The resulting water deficits were shown for different crops depending on their irrigation priority and the water available. With an increased irrigation area, water deficits will rise. This may limit the profitability of agricultural irrigation. The impacts of climate change on low-flow conditions in the river are much higher than those of the increase in irrigated area alone. Therefore, any additional increases of irrigation will require careful monitoring of water availability to avoid critical impacts on river flows. The expanded model was able to replicate the processes of agricultural irrigation water use and can thus be used to test the impact of policies such as the certification of new irrigation permits. Full article
Show Figures

Figure 1

6141 KiB  
Article
Mechanical Interaction in Pressurized Pipe Systems: Experiments and Numerical Models
by Mariana Simão, Jesus Mora-Rodriguez and Helena M. Ramos
Water 2015, 7(11), 6321-6350; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116321 - 11 Nov 2015
Cited by 14 | Viewed by 5906
Abstract
The dynamic interaction between the unsteady flow occurrence and the resulting vibration of the pipe are analyzed based on experiments and numerical models. Waterhammer, structural dynamic and fluid–structure interaction (FSI) are the main subjects dealt with in this study. Firstly, a 1D model [...] Read more.
The dynamic interaction between the unsteady flow occurrence and the resulting vibration of the pipe are analyzed based on experiments and numerical models. Waterhammer, structural dynamic and fluid–structure interaction (FSI) are the main subjects dealt with in this study. Firstly, a 1D model is developed based on the method of characteristics (MOC) using specific damping coefficients for initial components associated with rheological pipe material behavior, structural and fluid deformation, and type of anchored structural supports. Secondly a 3D coupled complex model based on Computational Fluid Dynamics (CFD), using a Finite Element Method (FEM), is also applied to predict and distinguish the FSI events. Herein, a specific hydrodynamic model of viscosity to replicate the operation of a valve was also developed to minimize the number of mesh elements and the complexity of the system. The importance of integrated analysis of fluid–structure interaction, especially in non-rigidity anchored pipe systems, is equally emphasized. The developed models are validated through experimental tests. Full article
Show Figures

Figure 1

1160 KiB  
Article
An Eco-Hydrological Model-Based Assessment of the Impacts of Soil and Water Conservation Management in the Jinghe River Basin, China
by Hui Peng, Yangwen Jia, Christina Tague and Peter Slaughter
Water 2015, 7(11), 6301-6320; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116301 - 11 Nov 2015
Cited by 19 | Viewed by 6583
Abstract
Many soil and water conservation (SWC) measures have been applied in the Jinghe River Basin to decrease soil erosion and restore degraded vegetation cover. Analysis of historical streamflow records suggests that SWC measures may have led to declines in streamflow, although climate and [...] Read more.
Many soil and water conservation (SWC) measures have been applied in the Jinghe River Basin to decrease soil erosion and restore degraded vegetation cover. Analysis of historical streamflow records suggests that SWC measures may have led to declines in streamflow, although climate and human water use may have contributed to observed changes. This paper presents an application of a watershed-scale, physically-based eco-hydrological model—the Regional Hydro-Ecological Simulation System (RHESSys)—in the Jinghe River Basin to study the impacts of SWC measures on streamflow. Several extensions to the watershed-scale RHESSys model were made in this paper to support the model application at larger scales (>10,000 km2) of the Loess Plateau. The extensions include the implementation of in-stream routing, reservoir sub-models and representation of soil and water construction engineering (SWCE). Field observation data, literature values and remote sensing data were used to calibrate and verify the model parameters. Three scenarios were simulated and the results were compared to quantify both vegetation recovery and SWCE impacts on streamflow. Three scenarios respectively represent no SWC, vegetation recovery only and both vegetation recovery and SWCE. The model results demonstrate that the SWC decreased annual streamflow by 8% (0.1 billion m3), with the largest decrease occurring in the 2000s. Model estimates also suggest that SWCE has greater impacts than vegetation recovery. Our study provides a useful tool for SWC planning and management in this region. Full article
(This article belongs to the Special Issue Hillslope and Watershed Hydrology)
Show Figures

Figure 1

838 KiB  
Article
Designing Rainwater Harvesting Systems Cost-Effectively in a Urban Water-Energy Saving Scheme by Using a GIS-Simulation Based Design System
by Yie-Ru Chiu, Yao-Lung Tsai and Yun-Chih Chiang
Water 2015, 7(11), 6285-6300; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116285 - 10 Nov 2015
Cited by 28 | Viewed by 11632
Abstract
Current centralized urban water supply depends largely on energy consumption, creating critical water-energy challenge especially for many rapid growing Asian cities. In this context, harvesting rooftop rainwater for non-potable use has enormous potential to ease the worsening water-energy issue. For this, we propose [...] Read more.
Current centralized urban water supply depends largely on energy consumption, creating critical water-energy challenge especially for many rapid growing Asian cities. In this context, harvesting rooftop rainwater for non-potable use has enormous potential to ease the worsening water-energy issue. For this, we propose a geographic information system (GIS)-simulation-based design system (GSBDS) to explore how rainwater harvesting systems (RWHSs) can be systematically and cost-effectively designed as an innovative water-energy conservation scheme on a city scale. This GSBDS integrated a rainfall data base, water balance model, spatial technologies, energy-saving investigation, and economic feasibility analysis based on a case study of eight communities in the Taipei metropolitan area, Taiwan. Addressing both the temporal and spatial variations in rainfall, the GSBDS enhanced the broad application of RWHS evaluations. The results indicate that the scheme is feasible based on the optimal design when both water and energy-savings are evaluated. RWHSs were observed to be cost-effective and facilitated 21.6% domestic water-use savings, and 138.6 (kWh/year-family) energy-savings. Furthermore, the cost of per unit-energy-saving is lower than that from solar PV systems in 85% of the RWHS settings. Hence, RWHSs not only enable water-savings, but are also an alternative renewable energy-saving approach that can address the water-energy dilemma caused by rapid urbanization. Full article
Show Figures

Figure 1

366 KiB  
Article
Chinese State-Owned Enterprise Investment in Mekong Hydropower: Political and Economic Drivers and Their Implications across the Water, Energy, Food Nexus
by Nathanial Matthews and Stew Motta
Water 2015, 7(11), 6269-6284; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116269 - 06 Nov 2015
Cited by 39 | Viewed by 10763
Abstract
Over the last decade, Chinese State-Owned Enterprises have emerged as among the most active investors in Mekong Basin hydropower development. This paper uses a political economy analysis to examine the forces that drive Chinese State-Owned Enterprises to invest in hydropower in the Mekong [...] Read more.
Over the last decade, Chinese State-Owned Enterprises have emerged as among the most active investors in Mekong Basin hydropower development. This paper uses a political economy analysis to examine the forces that drive Chinese State-Owned Enterprises to invest in hydropower in the Mekong Basin. We focus our analysis on the Lancang (Upper Mekong River) in China and in the Greater Mekong Subregion (GMS), with an emphasis on Cambodia. The analysis reveals how powerful political and economic forces from within China and the GMS influence the pace, location and scale of investments in hydropower. These forces include foreign exchange reserves, trade packages and foreign direct investment, and political alliances. Combining the political economy and nexus approaches, we conclude that although policies from China recognize interconnections across the nexus, political and economic forces craft narratives that downplay or disregard these nexus interconnections and trade-offs. This in turn, influences how trade-offs and interconnections in hydropower development are managed and recognized in both local and transboundary contexts, thereby, creating potentially significant negative impacts on livelihoods, food security and the environment. Full article
(This article belongs to the Special Issue Water-Energy-Food Nexus in Large Asian River Basins)
Show Figures

Figure 1

8221 KiB  
Article
Sensitivity Analysis of Flow and Temperature Distributions of Density Currents in a River-Reservoir System under Upstream Releases with Different Durations
by Gang Chen and Xing Fang
Water 2015, 7(11), 6244-6268; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116244 - 06 Nov 2015
Cited by 16 | Viewed by 6275
Abstract
A calibrated three-dimensional Environmental Fluid Dynamics Code model was applied to simulate unsteady flow patterns and temperature distributions in the Bankhead river-reservoir system in Alabama, USA. A series of sensitivity model runs were performed under daily repeated large releases (DRLRs) with different durations [...] Read more.
A calibrated three-dimensional Environmental Fluid Dynamics Code model was applied to simulate unsteady flow patterns and temperature distributions in the Bankhead river-reservoir system in Alabama, USA. A series of sensitivity model runs were performed under daily repeated large releases (DRLRs) with different durations (2, 4 and 6 h) from Smith Dam Tailrace (SDT) when other model input variables were kept unchanged. The density currents in the river-reservoir system form at different reaches, are destroyed at upstream locations due to the flow momentum of the releases, and form again due to solar heating. DRLRs (140 m3/s) with longer durations push the bottom cold water further downstream and maintain a cooler bottom water temperature. For the 6-h DRLR, the momentum effect definitely reaches Cordova (~43.7 km from SDT). Positive bottom velocity (density currents moving downstream) is achieved 48.4%, 69.0% and 91.1% of the time with an average velocity of 0.017, 0.042 and 0.053 m/s at Cordova for the 2-h, 4-h and 6-h DRLR, respectively. Results show that DRLRs lasting for at least 4 h maintain lower water temperatures at Cordova. When the 4-h and 6-h DRLRs repeat for more than 6 and 10 days, respectively, bottom temperatures at Cordova become lower than those for the constant small release (2.83 m3/s). These large releases overwhelm the mixing effects due to inflow momentum and maintain temperature stratification at Cordova. Full article
(This article belongs to the Special Issue New Developments in Methods for Hydrological Process Understanding)
Show Figures

Figure 1

843 KiB  
Article
Parameterization of Time-Averaged Suspended Sediment Concentration in the Nearshore
by Hyun-Doug Yoon, Daniel Cox and Nobuhito Mori
Water 2015, 7(11), 6228-6243; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116228 - 06 Nov 2015
Cited by 8 | Viewed by 4869
Abstract
To quantify the effect of wave breaking turbulence on sediment transport in the nearshore, the vertical distribution of time-averaged suspended sediment concentration (SSC) in the surf zone was parameterized in terms of the turbulent kinetic energy (TKE) at different cross-shore locations, including the [...] Read more.
To quantify the effect of wave breaking turbulence on sediment transport in the nearshore, the vertical distribution of time-averaged suspended sediment concentration (SSC) in the surf zone was parameterized in terms of the turbulent kinetic energy (TKE) at different cross-shore locations, including the bar crest, bar trough, and inner surf zone. Using data from a large-scale laboratory experiment, a simple relationship was developed between the time-averaged SSC and the time-averaged TKE. The vertical variation of the time-averaged SSC was fitted to an equation analogous to the turbulent dissipation rate term. At the bar crest, the proposed equation was slightly modified to incorporate the effect of near-bed sediment processes and yielded reasonable agreement. This parameterization yielded the best agreement at the bar trough, with a coefficient of determination R2 ≥ 0.72 above the bottom boundary layer. The time-averaged SSC in the inner surf zone showed good agreement near the bed but poor agreement near the water surface, suggesting that there is a different sedimentation mechanism that controls the SSC in the inner surf zone. Full article
Show Figures

Figure 1

1794 KiB  
Article
Spatial Modeling of Rainfall Patterns over the Ebro River Basin Using Multifractality and Non-Parametric Statistical Techniques
by José L. Valencia, Ana M. Tarquis, Antonio Saa, María Villeta and José M. Gascó
Water 2015, 7(11), 6204-6227; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116204 - 06 Nov 2015
Cited by 6 | Viewed by 5990
Abstract
Rainfall, one of the most important climate variables, is commonly studied due to its great heterogeneity, which occasionally causes negative economic, social, and environmental consequences. Modeling the spatial distributions of rainfall patterns over watersheds has become a major challenge for water resources management. [...] Read more.
Rainfall, one of the most important climate variables, is commonly studied due to its great heterogeneity, which occasionally causes negative economic, social, and environmental consequences. Modeling the spatial distributions of rainfall patterns over watersheds has become a major challenge for water resources management. Multifractal analysis can be used to reproduce the scale invariance and intermittency of rainfall processes. To identify which factors are the most influential on the variability of multifractal parameters and, consequently, on the spatial distribution of rainfall patterns for different time scales in this study, universal multifractal (UM) analysis—C1, α, and γs UM parameters—was combined with non-parametric statistical techniques that allow spatial-temporal comparisons of distributions by gradients. The proposed combined approach was applied to a daily rainfall dataset of 132 time-series from 1931 to 2009, homogeneously spatially-distributed across a 25 km × 25 km grid covering the Ebro River Basin. A homogeneous increase in C1 over the watershed and a decrease in α mainly in the western regions, were detected, suggesting an increase in the frequency of dry periods at different scales and an increase in the occurrence of rainfall process variability over the last decades. Full article
(This article belongs to the Special Issue New Developments in Methods for Hydrological Process Understanding)
Show Figures

Figure 1

410 KiB  
Article
Mealworms for Food: A Water Footprint Perspective
by Pier Paolo Miglietta, Federica De Leo, Marcello Ruberti and Stefania Massari
Water 2015, 7(11), 6190-6203; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116190 - 06 Nov 2015
Cited by 131 | Viewed by 24909
Abstract
In this paper, we have explored the possibility of substituting traditional meat products with an alternative source of protein (insects) in order to reduce human pressure on water. Insects, in fact, could represent a good alternative source of quality proteins and nutrients and [...] Read more.
In this paper, we have explored the possibility of substituting traditional meat products with an alternative source of protein (insects) in order to reduce human pressure on water. Insects, in fact, could represent a good alternative source of quality proteins and nutrients and they are already a very popular component of the diet of one third of the world’s population in approximately 80% of countries. In the study, we have taken into account only two species of edible insects (Tenebrio molitor and Zophobas morio mealworms), because they are already commercially produced even in Western countries, and for this reason it is possible to find specific data in literature about their diets. We have used the water footprint (WF) as a reliable indicator to calculate the volume of water required for production and to compare different products. The final aim of the work is, in fact, to evaluate the WF of the production of edible insects with a focus on water consumption associated with protein content, in order to make a comparison with other animal protein sources. We have demonstrated that, from a freshwater resource perspective, it is more efficient to obtain protein through mealworms rather than other traditional farmed animals. Full article
(This article belongs to the Special Issue Sustainable Water Consumption)
Show Figures

Figure 1

909 KiB  
Article
Performance Assessment of Hydrological Models Considering Acceptable Forecast Error Threshold
by Qianjin Dong and Fan Lu
Water 2015, 7(11), 6173-6189; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116173 - 04 Nov 2015
Cited by 4 | Viewed by 4828
Abstract
It is essential to consider the acceptable threshold in the assessment of a hydrological model because of the scarcity of research in the hydrology community and errors do not necessarily cause risk. Two forecast errors, including rainfall forecast error and peak flood forecast [...] Read more.
It is essential to consider the acceptable threshold in the assessment of a hydrological model because of the scarcity of research in the hydrology community and errors do not necessarily cause risk. Two forecast errors, including rainfall forecast error and peak flood forecast error, have been studied based on the reliability theory. The first order second moment (FOSM) and bound methods are used to identify the reliability. Through the case study of the Dahuofang (DHF) Reservoir, it is shown that the correlation between these two errors has great influence on the reliability index of hydrological model. In particular, the reliability index of the DHF hydrological model decreases with the increasing correlation. Based on the reliability theory, the proposed performance evaluation framework incorporating the acceptable forecast error threshold and correlation among the multiple errors can be used to evaluate the performance of a hydrological model and to quantify the uncertainties of a hydrological model output. Full article
Show Figures

Figure 1

19222 KiB  
Article
Impacts of Climate Change on the Hydrological Regime of the Danube River and Its Tributaries Using an Ensemble of Climate Scenarios
by Judith C. Stagl and Fred F. Hattermann
Water 2015, 7(11), 6139-6172; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116139 - 04 Nov 2015
Cited by 55 | Viewed by 13062
Abstract
Information about the potential impacts of climate change on river runoff is needed to prepare efficient adaptation strategies. This study presents scenario projections for the future hydrological runoff regime in the Danube River Basin. The eco-hydrological watershed model Soil and Water Integrated Model [...] Read more.
Information about the potential impacts of climate change on river runoff is needed to prepare efficient adaptation strategies. This study presents scenario projections for the future hydrological runoff regime in the Danube River Basin. The eco-hydrological watershed model Soil and Water Integrated Model (SWIM) was applied for the entire Danube River catchment, considering 1224 subbasins. After calibration and validation of the model, a set of high-resolution climate projections (bias-corrected and non-bias-corrected) served as meteorological drivers with which future daily river discharge under different climate warming scenario conditions was simulated. Despite existing uncertainties, robust trends could be identified. In the next 30 years, the seasonal stream-flow regime of the Danube and its tributaries is projected to change considerably. Our results show a general trend towards a decrease in summer runoff for the whole Danube basin and, additionally, in autumn runoff for the Middle and Lower Danube basin, aggravating the existing low flow periods. For the winter and early spring seasons, mainly January–March, an increase in river runoff is projected. Greater uncertainties show up in particular for winter runoff in the Dinaric Alps and the Lower Danube basin. The existing trends become very distinct until the end of the 21st century, especially for snow-influenced river regimes. Full article
Show Figures

Figure 1

1133 KiB  
Article
Multiple Time-Scale Monitoring to Address Dynamic Seasonality and Storm Pulses of Stream Water Quality in Mountainous Watersheds
by Hyun-Ju Lee, Kun-Woo Chun, Christopher L. Shope and Ji-Hyung Park
Water 2015, 7(11), 6117-6138; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116117 - 04 Nov 2015
Cited by 8 | Viewed by 5867
Abstract
Rainfall variability and extreme events can amplify the seasonality and storm pulses of stream water chemistry in mountainous watersheds under monsoon climates. To establish a monitoring program optimized for identifying potential risks to stream water quality arising from rainfall variability and extremes, we [...] Read more.
Rainfall variability and extreme events can amplify the seasonality and storm pulses of stream water chemistry in mountainous watersheds under monsoon climates. To establish a monitoring program optimized for identifying potential risks to stream water quality arising from rainfall variability and extremes, we examined water chemistry data collected on different timescales. At a small forested watershed, bi-weekly sampling lasted over two years, in comparison to three other biweekly sampling sites. In addition, high-frequency continuous measurements of pH, electrical conductivity, and turbidity were conducted in tandem with automatic water sampling at 2 h intervals during eight rainfall events. Biweekly monitoring showed that during the summer monsoon period, electrical conductivity (EC), dissolved oxygen (DO), and dissolved ion concentrations generally decreased, but total suspended solids (TSS) slightly increased. A noticeable variation from the usual seasonal pattern was that DO levels substantially decreased during an extended drought. Bi-hourly storm event samplings exhibited large changes in the concentrations of TSS and particulate and dissolved organic carbon (POC; DOC) during intense rainfall events. However, extreme fluctuations in sediment export during discharge peaks could be detected only by turbidity measurements at 5 min intervals. Concomitant measurements during rainfall events established empirical relationships between turbidity and TSS or POC. These results suggest that routine monitoring based on weekly to monthly sampling is valid only in addressing general seasonal patterns or long-lasting phenomena such as drought effects. We propose an “adaptive” monitoring scheme that combines routine monitoring for general seasonal patterns and high-frequency instrumental measurements of water quality components exhibiting rapid responses pulsing during intense rainfall events. Full article
Show Figures

Graphical abstract

1391 KiB  
Article
Analysis of Sources and Sinks of Mercury in the Urban Water Cycle of Frankfurt am Main, Germany
by Imke Fricke, Rolf Götz, Ruprecht Schleyer and Wilhelm Püttmann
Water 2015, 7(11), 6097-6116; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116097 - 04 Nov 2015
Cited by 13 | Viewed by 6995
Abstract
Mercury (Hg) is still a focus of environmental research, since its levels in fish frequently exceed the Environmental Quality Standard (EQS) of 20 µg/kg for biota defined by the European Water Framework Directive (Directive 2008/105/EC). Current Hg levels in Abramis brama from German [...] Read more.
Mercury (Hg) is still a focus of environmental research, since its levels in fish frequently exceed the Environmental Quality Standard (EQS) of 20 µg/kg for biota defined by the European Water Framework Directive (Directive 2008/105/EC). Current Hg levels in Abramis brama from German rivers are in the range of 73–346 µg/kg wet weight (2009) and exceed the EQS by a factor of 3.7–17.3. Therefore, it is important to identify the sources of Hg pollution in the aquatic environment and to develop effective strategies for reducing the input into associated river systems. The aim of the present study was to analyze Hg in the urban water cycle of the city of Frankfurt am Main, Germany. Samples were taken from the river Main crosscutting the city and its tributaries. In addition, precipitation, stormwater runoff, effluents of two municipal WWTPs, and stormwater management structures such as combined sewer overflows and stormwater retention basins have been analyzed. Loads of Hg have been determined based on the measured concentrations and a Hg mass balance for the aquatic system was created. A total of 160 water samples were analyzed by cold vapor atomic fluorescence spectroscopy (CVAFS) according to US EPA Method 1631. Results from the mass balance have shown that approximately 5 kg Hg/a enter and 15 kg Hg/a leave the study area of Frankfurt am Main via the river Main. The largest amount of Hg (24.58 kg/a) throughout the urban water cycle of Frankfurt am Main is transported via wastewater. However, municipal WWTPs in Frankfurt am Main have been identified as the largest Hg sink, since 99.7% (24.5 kg/a) of the Hg is shifted from the sewage water and stormwater during treatment into the sewage sludge. Thus, the increase of the Hg load in the river Main from 5 to 15 kg/a has to be attributed to other sources such as 3 industrial WWTPs, groundwater and non-treated stormwater runoff during heavy rain events. Full article
(This article belongs to the Special Issue Urban Water Challenges)
Show Figures

Figure 1

2284 KiB  
Article
Sediment Trapping by Emerged Channel Bars in the Lowermost Mississippi River during a Major Flood
by Bo Wang and Y. Jun Xu
Water 2015, 7(11), 6079-6096; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116079 - 04 Nov 2015
Cited by 18 | Viewed by 6282
Abstract
The formation of channel bars has been recognized as the most significant sediment response to the highly trained Mississippi River (MR). However, no quantitative study exists on the dynamics of emerged channel bars and associated sediment accumulation in the last 500-kilometer reach of [...] Read more.
The formation of channel bars has been recognized as the most significant sediment response to the highly trained Mississippi River (MR). However, no quantitative study exists on the dynamics of emerged channel bars and associated sediment accumulation in the last 500-kilometer reach of the MR from the Gulf of Mexico outlet, also known as the lowermost Mississippi River. Such knowledge is especially critical for riverine sediment management to impede coastal land loss in the Mississippi River Delta. In this study, we utilized a series of satellite images taken from August 2010 to January 2012 to assess the changes in surface area and volume of three large emerged channel bars in the lowermost MR following an unprecedented spring flood in 2011. River stage data were collected to develop a rating curve of surface areas detected by satellite images with flow conditions for each of the three bars. A uniform geometry associated with the areal change was assumed to estimate the bar volume changes. Our study reveals that the 2011 spring flood increased the surface area of the bars by 3.5% to 11.1%, resulting in a total surface increase of 7.3%, or 424,000 m2. Based on the surface area change, we estimated a total bar volume increase of 4.4%, or 1,219,900 m3. This volume increase would be equivalent to a sediment trapping of approximately 1.0 million metric tons, assuming a sediment bulk density of 1.2 metric tons per cubic meter. This large quantity of sediment is likely an underestimation because of the neglect of subaqueous bar area change and the assumption of a uniform geometry in volume estimation. Nonetheless, the results imply that channel bars in the lowermost MR are capable of capturing a substantial amount of sediment during floods, and that a thorough assessment of their long-term change can provide important insights into sediment trapping in the lowermost MR as well as the feasibility of proposed river sediment diversions. Full article
Show Figures

Figure 1

1039 KiB  
Article
An Advanced Method to Apply Multiple Rainfall Thresholds for Urban Flood Warnings
by Jiun-Huei Jang
Water 2015, 7(11), 6056-6078; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116056 - 03 Nov 2015
Cited by 27 | Viewed by 6126
Abstract
Issuing warning information to the public when rainfall exceeds given thresholds is a simple and widely-used method to minimize flood risk; however, this method lacks sophistication when compared with hydrodynamic simulation. In this study, an advanced methodology is proposed to improve the warning [...] Read more.
Issuing warning information to the public when rainfall exceeds given thresholds is a simple and widely-used method to minimize flood risk; however, this method lacks sophistication when compared with hydrodynamic simulation. In this study, an advanced methodology is proposed to improve the warning effectiveness of the rainfall threshold method for urban areas through deterministic-stochastic modeling, without sacrificing simplicity and efficiency. With regards to flooding mechanisms, rainfall thresholds of different durations are divided into two groups accounting for flooding caused by drainage overload and disastrous runoff, which help in grading the warning level in terms of emergency and severity when the two are observed together. A flood warning is then classified into four levels distinguished by green, yellow, orange, and red lights in ascending order of priority that indicate the required measures, from standby, flood defense, evacuation to rescue, respectively. The proposed methodology is tested according to 22 historical events in the last 10 years for 252 urbanized townships in Taiwan. The results show satisfactory accuracy in predicting the occurrence and timing of flooding, with a logical warning time series for taking progressive measures. For systems with multiple rainfall thresholds already in place, the methodology can be used to ensure better application of rainfall thresholds in urban flood warnings. Full article
Show Figures

Figure 1

4512 KiB  
Article
Remote Sensing Based Analysis of Recent Variations in Water Resources and Vegetation of a Semi-Arid Region
by Shaowei Ning, Hiroshi Ishidaira, Parmeshwar Udmale and Yutaka Ichikawa
Water 2015, 7(11), 6039-6055; https://0-doi-org.brum.beds.ac.uk/10.3390/w7116039 - 03 Nov 2015
Cited by 6 | Viewed by 5664
Abstract
This study is designed to demonstrate use of free remote sensing data to analyze response of water resources and grassland vegetation to a climate change induced prolonged drought in a sparsely gauged semi-arid region. Water resource changes over Hulun Lake region derived from [...] Read more.
This study is designed to demonstrate use of free remote sensing data to analyze response of water resources and grassland vegetation to a climate change induced prolonged drought in a sparsely gauged semi-arid region. Water resource changes over Hulun Lake region derived from monthly Gravity Recovery and Climate Experiment (GRACE) and Tropical Rainfall Measuring Mission (TRMM) products were analyzed. The Empirical Orthogonal Functions (EOF) analysis results from both GRACE and TRMM showed decreasing trends in water storage changes and precipitation over 2002 to 2007 and increasing trends after 2007 to 2012. Water storage and precipitation changes on the spatial and temporal scale showed a very consistent pattern. Further analysis proved that water storage changes were mainly caused by precipitation and temperature changes in this region. It is found that a large proportion of grassland vegetation recovered to its normal state after above average rainfall in the following years (2008–2012) and only a small proportion of grassland vegetation (16.5% of the study area) is degraded and failed to recover. These degraded grassland vegetation areas are categorized as ecologically vulnerable to climate change and protective strategies should be designed to prevent its further degradation. Full article
(This article belongs to the Special Issue Water Resource Variability and Climate Change)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop