
 

 

Supplementary Information 

An Indirect Simulation-Optimization Model for Determining 
Optimal TMDL Allocation under Uncertainty 

 

Text S1. Methodology of BRRT v2 

S1.1. General Principles 

We begin with an introduction of the general principles of BRRT v2. The BRRT v2 is an updated 

version of Bayesian TREED model developed by [1]. Taking N2O EF for example, combining the 

conditional distribution of Y with prior p(T) for model structure, the posterior probability p(T|X,Y) is 

calculated as 

( ) ( ) ( ), ,p T X Y p T p Y X T∝  (S1)

up to a norming constant, where EF and X are emission factor and environmental factors, respectively; 

X = {xk}; i.e., N and xk in Equation (1). T represents a binary tree. Its terminal nodes and splitting rules 

correspond to the sub-functions, i.e., Equation (1) and the sub-domains, respectively. Thus, specification 

of p(T|X,Y) consists of two basic components. 
First is the tree prior ( )p T , which could be specified independently according to Bayes’ theorem. 

p(T) is determined by specifying two functions for an binary tree T: the probability p(l,T) that terminal 

node l is to be split and the probability p(ρ|l,T) of assigning splitting rule ρ = {xk ≤ Sk} to node l if it is 

split, which are defined as 

( ) ( ) ( ), ,p T p l T p l T= ρ  (S2a)

where 

( , ) (1 )p l T d −υ= τ +  (S2b)

( ) 1
( , ) ( 1)lp l T K M

−ρ = −  (S2c)

and kx  is environmental factors applied for sub-domain division; τ (<1) and υ (>0) are hyperparameters; 

d is the depth of node l; K and Ml are the number of kx  and observations in terminal node l, respectively. 

Second is the marginal likelihood p(Y|X,T), which can be obtained as integral form of regression 

coefficients θl = {λl,σl}: 

( ) ( ) ( ) ( )
1 1

, ,
lML

lm klm l l kl l
l m

p Y X T p Y x p T p x T d
= =

= θ θ θ∏ ∏  (S3a)

where 

( )2 iid  = ,T
l l l l lY N xθ λ σ  (S3b)

( )2 = ,l l l lN aλ σ λ σ  (S3c)
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and p(Ylm|xklm, θl), p(θl|T), and p(xkl|T) are probabilities of Y, regression coefficients, and selection of n of 

regression variables xk in terminal l, respectively, in which n is the number of selected xk. EFlm and xklm the 
EF and regression variable k of the mth observation in the lth terminal node, respectively, where 

klmx X∈ , 

m = 1,2,…, Ml. All of Yl are assumed to be independent and identically distributed, in which λT
l lx  

corresponds to Equation (1). θl represent a set of regression coefficients λl and the variance σl of EF in 
terminal l. λl is Normal-distributed, defined as λl={ ( )l kEF xΔ , bkl, cl}. σl is inverse Gaussian-distributed 

with mean ν and shape parameter ω, in which ν and ω are the other two hyperparameters of the BRRT 

v2. The choice of hyperparameters τ (<1), υ (>0), a (= 1 or 3), ν (= 3), and ω (= 0.404 or 0.1173) is 
determined with minimum cost function (Freeman et al., 2009). The ranges of lλ  are determined based 

on the marginal responses of EF to xk.  

It should be noted that the abovementioned selection of regression variables in Equation (S3e), as the 

first improvement of the BRRT v2, is achieved through both random and deterministic processes. First, 

regression variables are randomly chosen based on prior p(xkl|T) for each terminal node; Second, the 

randomly-chosen xk are further screened by stepwise forward regression [2]. The forms of Yl and p(Y|X,T) 

are updated accordingly. Contrary to the BTREED [1], variable selection helps reduce the number of 

redundant variables used in regression equations for individual terminal nodes. 

Consequently, progressive multi-restart stochastic search (hereafter PMRS) algorithm is designed for 

determining the posterior probability of T with minimum cost function. Based on the above prior p(T) 

and p(θl|T), Metropolis-Hastings algorithm could be used to search for a Markov chain sequence  

of trees. Starting with an initial tree T0, it simulates iteratively the transitions from Ti to Ti+1 through two 
steps: (1) generate a candidate value T* by five-mode stochastic search with probability *( , )iq T T ;  

(2) set Ti+1 = T* with acceptance probability: 

* **

*

( , ) ( )( , )
Min ,1

( , ) ( , ) ( )

i

i i i

p EF X T p Tq T T

q T T p EF X T p T

  δ = Φ = 
  

 (S4)

Else, set Ti+1 = Ti and return to step 1. When i+1 > I where I is maximum number of iterations, then 

stop. Moreover, the transition from Ti to Ti+1 is processed by stochastically choosing among five modes 

(S1.2): GROW, PRUNE, CHANGE, SWAP, and GREEDY. 

Finally, from Markov chain sequence, the optimal tree (Tfinal) is selected based on the criterion of 

minimum cost function. In our model, cost function that is minimized is Bayesian Information Criterion 

(BIC, [3]): 

( ) ( )log log( ) 1BIC MSE n n K L= ⋅ + ⋅ + ⋅  (S5)

where MSE is the mean squared error based on 5-fold cross-validations; n the number of samples  

(= 
L

ll
M ); and K + 1 the number of coefficients and intercepts in regression equation l. Certainly, 

other commonly used tree criteria would be also useful, such as maximization of marginal likelihood 

( ),p EF X T . The associated piecewise functions for all terminal nodes can be expressed as: 
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T
l l l lY X= λ ± ε , where l lX ∈Ω , ∀l (S6)

And lΩ  represents the sub-domain of Xl. It should be noted that regression coefficients λl are not 

determined by multiple linear regression after stochastic search (e.g., [3]), but PMRS process directly. 

In BRRT v2, the cost function that is minimized is BIC. Other commonly used cost function would be 

also acceptable, such as maximization of p(EF|X,T).  

S1.2. Five Modes for Stochastic Search 

The details of PMRS algorithm and the associated five modes are introduced in the following two 

sub-sections. In contrast to conventional Bayesian tree-based models [1,3], a PMRS algorithm is 

designed in BRRT v2. This algorithm accelerates traversing the entire optima of trees to identify the 

optimal tree via a minimum number of model executions. 

The second improvement of BRRT v2 compared with BTREED [1] is the addition of a new 

operation—GREEDY—into five-mode stochastic search, which can fast identify best split or prune 

when approaching the optimal tree. This means that it can avoid the situation stabilizing in local  

sub-domains [3]. Here we simply introduce the details of each mode orderly but take pains to elaborate 

the GREEDY mode. 
(1) GROW. A terminal node l is randomly selected based on prior ( , )p l T  and then split into two 

new nodes by randomly assigning it a splitting rule { }k kx Sρ = ≤  according to p(ρ|l,T). The 

corresponding transition kernel q and *( )p T  are deduced as follows: 

*

1

1
( , ) ( , ) ( , )i iq T T p GROW T p T

a
= ⋅ ⋅ ρ η  (S7a)

( )* *

2

1
( , ) 1 ( , )iq T T p GROW T

b
= − ⋅

′
 (S7b)

( )2* ( ) ( , )
( ) ( ) 1 ( , )

1 ( , )

ip T p i T
p T p p T

p T

ρ
′= ⋅ η ⋅ − η

− η
 (S7c)

where ( , )ip GROW T  or *( , )p GROW T  is the probability of choosing GROW mode; a1 is the number 

of terminal nodes that can be split; 2b′  is the number of internal nodes in *T  with terminal children 

nodes; η is the terminal node that is split for GROW mode and the internal nodes before CHANGE and 

SWAP; η′ represents the two children nodes of η for GROW mode. 

(2) PRUNE. A parent of two terminal nodes is randomly selected and turned into a terminal node by 
collapsing the nodes below it. The corresponding transition kernel q and *( )p T  are calculated by: 

( )*

2

1
( , ) 1 ( , )i iq T T p GROW T

b
= − ⋅  (S8a)

* * *

1

1
( , ) ( , ) ( , )

1
iq T T p GROW T p T

b
′= ⋅ ⋅ ρ η

−
 (S8b)

( )
( )

*
2

1

( ) 1 ( , )
( )

1 ( , ) ( , ) ( , )

i i

i i i

p T p T
p T

p T p T p T

′− η
=

′ ′− η η ρ η
 (S8c)
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where η′ represents the internal node to be pruned of its two children nodes η1. 

(3) CHANGE. An internal node is randomly selected and reassigned a new splitting rule ρ′ according 

to p(ρ|l,T); 
* *( , ) ( , )i iq T T q T T=  (S9a)

* 1

1 1

( ) ( ) ( , ) ( , )
n n

ip T p T p T p T
′ ′

−

′η = η=

′ ′= ⋅ ρ η ρ η∏ ∏  (S9b)

where η′ represents the internal nodes after CHANGE and SWAP; n′  is the number of both the chosen 

node and all nodes below it. 

(4) SWAP. A parent-child pair that are both internal nodes is randomly selected, and the splitting 

rules are swapped, unless the other child has the same rule, in which case the splitting rule of the parent 

is swapped with that of both children. Chipman et al. [1] pointed that this search converged toward 
regions of higher posterior probability ( , )p T X EF  or marginal likelihood ( , )p EF X T . The 

corresponding transition kernel q and *( )p T  are identical to that of CHANGE mode. 

(5) GREEDY. Previous studies, such as Jung et al. [3], grow deterministic tree by GREEDY 

algorithm as starting point (e.g., TRIAL), and launch stochastic search for subsequent Markov chain 

sequence of trees. However, our strategy is to insert GREEDY directly into five-mode stochastic 

research as one choice of modes. The methodology of GREEDY is same as CART, but only one terminal 

nodes is split or sub-tree of an intermediate node is pruned for each transition from Ti to Ti+1. When 
implementing GREEDY mode, a terminal node is randomly selected based on prior ( , )p l T  and only 

the terminal node l̂  in which the corresponding residual sums of squares (RSS) is minimum among all 

terminal nodes in T* has chance to be split into two children nodes. If the fact that RSS within terminal 

node l̂  is larger than that of its two child nodes, that is 

( ) ( )*iRSS T RSS T>  (S10a)

where 

( )
ˆ

2

ˆ ˆ
1

_ _
l

M
i

lm lm
m

RSS T O EF S EF
=

 = −   (S10b)

( ) [ ]
2

2*

1 1

_ _
lM

l m l m
l m

RSS T O EF S EF
′

′ ′
′= =

= −  (S10c)

is satisfied, we set Ti+1 = T*. Where l′ represents two child nodes in T* of terminal node l. Else, an 
intermediate node t (as parent tT  of any sub-tree Tt) is randomly selected and pruned upward into a 

terminal node when the complexity cost reaches a minimum. We then also set Ti+1 = T*. Otherwise, 
* iT T=  and the search returns to generate another candidate value T* with probability *( , )iq T T  again. 

The corresponding transition kernel q and *( )p T  are same as that of GROW or PRUNE modes. 
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S1.3. PMRS Algorithm 

In contrast to conventional Bayesian tree-based models [1,3], a progressive multi-restart stochastic 

search algorithm in BRRT v2, as the third improvement, is designed, which accelerates traversing the 

entire optima of trees to identify the optimal tree via a minimum number of model executions. 

The basic strategy of the progressive multi-restart stochastic search is to synchronously run a number 

(j = 1,…,Jk) of restart scenarios of Markov chain sequence Tj
0…Tj

i and progressively eliminate 

underperforming trees before executing subsequent running stages, until the optimal tree is identified in 

final running stages with minimum cost function. 

Specifically, Jk denotes the total number of restart scenarios in stage k, and I denotes the user-specified 

number of iterations in the stochastic search. For restart stage 1, each restart scenario j (where j ≤  Jk,  

k = 1) begins with a single node initial tree T0 and ends in a multi-node tree with a structure obtained 

through the stochastic search process, where the Metropolis-Hastings algorithm is used to simulate a 

Markov chain sequence of trees by randomly choosing among the five stochastic operations. 

Specifically, if the root node is chosen, it is split where probability p(GROW) is 1; if an internal node is 

chosen, it is randomly reassigned a splitting rule, its splitting rule is swapped, or it is deterministically 

split or pruned, where p(CHANGE), p(SWAP), or p(GREEDY) is 1/3; if a terminal node is selected, it 

is randomly split, or pruned, or deterministically split or pruned, where p(GROW), p(PRUNE), or 

p(GREEDY) is 1/3. Subsequently, a candidate tree *T  is generated with the acceptance probability δ  
If (0,1)Uδ ≥ , *T  can be accepted as the next value 1 *iT T+ = ; otherwise, the current value of iT  is 

retained, such that 1i iT T+ = . 

Restart stage 1 is considered complete when all the J1 initial trees have been run to generate J1 

different resultant trees. Upon completion of stage 1, the BIC of all the J1 trees are ranked from highest 
to lowest, and the first Int( 2)kJ  trees with higher ( ),i

j
i

Min BIC T j∀  are used as the initial trees for restart 

stage 2. The process continues until the optimal tree structure is obtained in restart stage K, where 
Int( 2) 0KJ = . 

S1.4. Solution Procedure 

To facilitate the real-world application of the BRRT v2, the source code was written in the VC++ 

language and comprises the following five steps (ask authors for executable file BRRT v2.exe  

if interested): 

Step #1: Sensitivity analysis of hyperparameters. Explore a range of hyperparameters τ (<1), υ (>0), 

a (= 1 or 3), and ω (= 0.404 or 0.1173) and determine their optimal values when BIC  

is minimum; 

Step #2: Setup for stochastic search. Set the initial number of restart J1 and iterations I per comparison 

stage; 

Step #3: Model implementation. Calibrate BRRT v2.exe by X-EF dataset to generate Markov chain 

sequence and calculate the corresponding BICs; 

Step #4: Selection of the Tfinal. Select optimal Tfinal with minimum BIC; 

Step #5: Output. Export a set of piecewise functions and the associated sub-domains of Xl. 
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Text S2. Methodology of EILP 

To clearly describe the theory of the EILP algorithm, the abovementioned minimum load reduction 

model [Equation (1)] was generalized as 

 
n

j j
j

Min Z c x± ± ±=  (S11a)

s.t ,
n

ij j i
i

a x b i± ± ±≤ ∀  (S11b)

0jx± ≥  (S11c)

Equation (2) could be decomposed into two submodels corresponding to the lower and upper bounds 

of the objective function. In this paper, we present the computational procedure of the EILP algorithm, 

including the decomposition of the upper and lower bounds of Z ±  and their corresponding constraints, 

a feasibility analysis of the optimal solution space, and a tradeoff analysis for decision making under  

EI-type uncertainty, which was explained in detail by [4,5]. 

(i) Determination of the upper and lower bounds and expected values of Z ±  

Suppose that k of jc±  (j = 1, 2,…, n) is positive ( jc±  ≥ 0, j = 1, s,…, k) and the others are negative  

( jc±  ≤ 0, j = k + 1, k + 2,…, n). When considering the uncertainties of jc± , the lower and upper bounds 

of the objective function could be determined by the MILP model as [ , ]Z Z Z± − += ; otherwise, they 

were determined by the EILP model as the appropriate interval ( [ , ]AI AI AI± − += ). Moreover, the 

optimal expected values [ ]E Z ±  of the objective function could then be derived according to AI ± . Thus, 

the lower and upper bounds of Z ± , AI ± , and [ ]E Z ±  were defined as follows: 

1 1

k n

j j j j
j j k

Z c x c x− − − − +

= = +

= +   (S12a)

1 1

k n

j j j j
j j k

Z c x c x+ + + + −

= = +

= +   (S12b)

[ , ] [ , ]
2 2

Z Z Z Z
AI AI AI

← − → +
± − + + += =  (S12c)

( )1
[ ]

2
E Z AI AI± − += +  (S12d)

where jc+  and jc−  were the lower and upper bounds of jc± , respectively, and the upper and lower 

bounds of of Z ± , fZ , and AI ±  are defined as 

1 1

k n

j j j j
j j k

Z c x c x+ + + + −

= = +

= +   (S12e)

1 1

k n

j j j j
j j k

Z c x c x− − − − +

= = +

= +   (S12f)
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1 1

k n

j j j j
j j k

Z c x c x→ − + − −

= = +

= +   (S12g)

1 1

k n

j j j j
j j k

Z c x c x← + − + +

= = +

= +   (S12h)

1 1

0.5( ) 0.5( )
k n

j j j j j j
j j k

AI c c x c c x+ + − + + − −

= = +

= + + +   (S12i)

1 1

0.5( ) 0.5( )
k n

j j j j j j
j j k

AI c c x c c x− + − − + − +

= = +

= + + +   (S12j)

(ii) Determination of the corresponding constraints 

To minimize the objective function, the relationships between the decision variables  and  

the left-hand side coefficients A±  should be ( )j ij ijx a Sign a
+− ± ±→  (∀j = 1, 2,…, k) and 

( )j ij ijx a Sign a
−+ ± ±→  (∀j = k + 1, k + 2,…, n) for the first submodel Z − . To ensure that j joptx x+ −≥  for  

j = 1, 2,…, k and j joptx x− +≤  for j = k + 1, k + 2,…, n in the second submodel Z + , the corresponding 

relationships should be ( )j ij ijx a Sign a
−+ ± ±→  (∀j = 1, 2,…, k) and ( )j ij ijx a Sign a

+− ± ±→   

(∀j = k + 1, k + 2,…, n), where joptx−  (∀j = 1, 2,…, k) and joptx+  (∀j = k + 1, k + 2,…, n) are the optimal 

solutions of the first submodel. This leads to EI-type solutions for the lower and upper bounds of the 
objective functions (Equation (3a)–(3d)) with jopt joptZ Z− +< . 

Therefore, the corresponding constraints for Z −  are written as 
k n

j 1 j k 1

( ) ( ) ,   ij ij j ij ij j ia Sign a x a Sign a x b i
+ −± ± − ± ± + +

= = +

+ ≤ ∀   (S13a)

0jx± ≥ , ∀j = 1, 2,…, n (S13b)

and Z +  in the second submodel is then solved subject to the following constraints: 
k n

j 1 j k 1

( ) ( ) ,   ij ij j ij ij j ia Sign a x a Sign a x b i
+ −± ± − ± ± + −

= = +

+ ≤ ∀   (S14a)

j joptx x+ −≥  for j = 1, 2,…, k (S14b)

j joptx x− +≤  for j = k + 1, k + 2,…, n (S14c)

0jx± ≥ , ∀j = 1, 2,…, n (S14d)

(iii) Feasibility analysis of the optimal solution space 

To ensure that the optimal solution { }[ , ] 1,2,...,opt opt jopt joptx x x j n± ± − += = ∀ =X  is absolutely feasible, 

extra constraints for minimizing Z ±  should be added to Equation (5) as follows: 
k-p n-q

j 1 k 1

( ) ( ) 0j j j jopt j j j jopt
j

a x a x a x a x
− + + −± + ± − ± − ± +

δ δ δ δ
= = +

− − − ≤  , ∀δ (S15)

±X
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where δ is also the number of constraints in Equation (4a) that meet k n

j 1 k 1

( ) ( )j j jopt j j jopt
j

a Sign a x a Sign a x b
+ −± ± − ± ± + +

δ δ δ δ δ
= = +

+ =   

as well as its 0ja±
δ ≤  for j = k − p + 1,…, k, k + 1,…, k − q. 

In the minimum load reduction model, i±Y  in Equation (S11) was derived from the process-oriented 

simulation model. Through integration with the BRRT model, Equation (S11) could be solved using the 

abovementioned EILP algorithm. Z −  [Equation (S12a)] with the corresponding constraints [Equation 

(S13)] should be formulated and solved prior to solving Z +  [Equation (S12b)] with the relevant 

constraints Equations (S14) and (S15). The corresponding optimal solutions of the BRRT-EILP model 

were optZ ±  and [ ]optE Z ±  with { }[ , ] 1,2,...,opt opt jopt joptx x x j n± ± − += = ∀ =X , which was the approximate 

solution of the traditional simulation-optimization model. Hence, optZ ±  and [ ]optE Z ±  could provide 

useful results in the following extreme and non-extreme tradeoff analyses of risk-based TMDL allocation. 

(iv) Tradeoff analysis for decision making under EI-type uncertainty 

According to the optimal solutions for opt
±X , the solution space could be separated to reflect the 

relationship between the benefits of TMDL allocation and the risk levels of violating constraints. When 
solution space was absolutely feasible, optZ −  or optZ +  were the largest or smallest load reductions with 

the highest or lowest risk levels, respectively, of optimization system violations due to the three types of 
interval coefficients ( ija± , ib± , and jc± ). Conversely, [ ]optE Z ±  was a non-extreme or expected value of 

load reduction corresponding to a moderate risk level due to ija± , ib± , and jc± . A general tradeoff 

analysis under uncertainty was developed by Guo et al. [6] for minimizing load reductions as follows: 

(i) The first decision alternative as the appropriate tradeoff analysis was 

{ }1 for 1, 2,..., ; for 1,...,j jopt joptx x j k x j k n− += = = +X with the lowest total load reduction +
optAI , corresponding 

to the highest risk level of violating the constraints. 

(ii) The second decision alternative as the appropriate tradeoff analysis was 

{ }2 for 1, 2,..., ; for 1,...,j jopt joptx x j k x j k n+ += = = +X  with the highest total load reduction −
optAI , 

corresponding to the lowest risk level of violating the constraints. 

(iii) The three decision alternative as the non-extreme tradeoff analysis was

{ }3 [ ]j optx E Z+ ± − ± ±= = =X C X C X  with an expected value of system benefit [ ]±
optE Z , corresponding to 

a moderate risk level of violating the constraints. 

Text S3. Tradeoff Analysis of Scenario 1 and 2 

1. Minimum Total Load Reductions of Inorganic Nitrogen for Scenario 1 

(i) The first decision alternative in extreme tradeoff analysis was { }1 11 10.42; 0 for other jl opt j optx x x j− − −= = =X  

with the lowest total load reduction optZ −  of 1870 kg of inorganic nitrogen. It corresponded to the 

highest risk level of violating constraint; 

(ii) The second decision alternative in extreme tradeoff analysis was 

{ }2 11 51 10.42; 0.23; 0 for other jl opt opt j optx x x x j+ + + += = = =X  with the highest total load reduction optZ +  of  

1989 kg of inorganic nitrogen, which corresponded to the lowest risk level of violating constraint; 
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(iii) The third decision alternative in non-extreme tradeoff analysis was 

}
8

3 11 51 11929.5 where 0.42; [0,0.23] and 0 for other jl jl jl opt opt j opt
j

x c x x x x j± ± ± ± ± ±
= = = = =


X
 with the expected value of total load 

reduction [ ]optE Z ±  of 1929.5 kg of inorganic nitrogen, which corresponded to the moderate risk 

level of violating constraint; 

2. Minimum Total Load Reductions of Inorganic Phosphorus for Scenario 1 

(i) The first decision alternative in extreme tradeoff analysis was 

{ }1 12 22 20.62; 0.79; 0 for other jl opt opt j optx x x x j− − − −= = = =X  with the lowest total load reduction optZ −  of 406.2 kg 

of inorganic phosphorus. It corresponded to the highest risk level of violating constraint; 

(ii) The second decision alternative in extreme tradeoff analysis was 

{ }2 12 22 20.74; 0.79; 0 for other jl opt opt j optx x x x j+ + + += = = =X  with the highest total load reduction optZ +  of 424.2 kg 

of inorganic phosphorus, which corresponded to the lowest risk level of violating constraint; 

(iii) The third decision alternative in non-extreme tradeoff analysis was 
8

3 12 22 2415.2 where [0.62,0.74]; 0.79 and 0 for other jl jl jl opt opt j opt
j

x c x x x x j± ± ± ± ± ± 
= = = = = 
 

X
 with the expected value of total 

load reduction [ ]optE Z ±  of 415.2 kg of inorganic phosphorus, which corresponded to the moderate 

risk level of violating constraint; 

3. Minimum Total Load Reductions of Inorganic Nitrogen for Scenario 2 

(i) The first decision alternative in extreme tradeoff analysis was { }1 11 10.42; 0 for other jl opt j optx x x j− − −= = =X  

with the lowest total load reduction optZ −  of 1870 kg of inorganic nitrogen. It corresponded to the 

highest risk level of violating constraint; 

(ii) The second decision alternative in extreme tradeoff analysis was 

{ }2 11 51 10.42; 0.71; 0 for other jl opt opt j optx x x x j+ + + += = = =X  with the highest total load reduction optZ +  of 2235 kg 

of inorganic nitrogen, which corresponded to the lowest risk level of violating constraint; 

(iii) The third decision alternative in non-extreme tradeoff analysis was 

}
8

3 11 51 12052.5 where 0.42; [0,0.71] and 0 for other jl jl jl opt opt j opt
j

x c x x x x j± ± ± ± ± ±
= = = = =


X
 with the expected value of total load 

reduction [ ]optE Z ±  of 2052.5 kg of inorganic nitrogen, which corresponded to the moderate risk level 

of violating constraint; 

4. Minimum total load reductions of inorganic phosphorus for Scenario 2 

(i) The first decision alternative in extreme tradeoff analysis was 

{ }1 12 22 20.62; 0.79; 0 for other jl opt opt j optx x x x j− − − −= = = =X  with the lowest total load reduction optZ −  of 406.2 kg of 

inorganic phosphorus. It corresponded to the highest risk level of violating constraint; 

(ii) The second decision alternative in extreme tradeoff analysis was 

{ }2 12 22 20.8; 0.79; 0 for other jl opt opt j optx x x x j+ + + += = = =X  with the highest total load reduction optZ +  of 433.6 kg of 

inorganic phosphorus, which corresponded to the lowest risk level of violating constraint; 



Water 2015, 7 S10 

 

 

(iii) The third decision alternative in non-extreme tradeoff analysis was 
8

3 12 22 2419.9 where [0.62,0.8]; 0.79 and 0 for other jl jl jl opt opt j opt
j

x c x x x x j± ± ± ± ± ± 
= = = = = 
 

X
 with the expected value of total load 

reduction [ ]optE Z ±  of 419.9 kg of inorganic phosphorus, which corresponded to the moderate risk 

level of violating constraint. 

Figure S1. Comparisons on accuracy of BRRT v2 with previous algorithms. (a) and (b) 

represent model calibration (n = 1800) and validation (n = 200), respectively. (c) indicates the 

model verification by 10-year observations from Swift Creek Reservoir Reports. 

 

Figure S2. Simulated Chl-a concentrations in SCR outlet of optimal load reductions using 

the CE-QUAL-W2 v3.1. Original line means the simulated Chl-a concentrations in SCR 

outlet without the consideration of nutrient reduction, whereas the other lines indicate the 

simulated Chl-a concentrations under different nutrient reduction scenarios. Arrows indicate 

the maximum values of Chl-a concentrations under different scenarios. The part within gray 

box is zoomed in below to demonstrate the maximum values of Chl-a concentrations. 
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