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Abstract: Several modified versions of the Monod model have been proposed to simulate 

algal dynamics in lakes by keeping the parent model’s advantages of simplicity and low data 

requirement. This study evaluated the performance of a widely-used modified Monod model 

in predicting algal dynamics at various time scales in Lake Tai, a typical shallow lake in east 

China, using multiple time series. Chlorophyll-a (Chl-a) concentration was used as a 

surrogate for algal (CyanoHABs: cyanobacterial harmful algal blooms) growth and the 

independent variables were total nitrogen (TN), total phosphorus (TP), and either water 

temperature or air temperature. The evaluation indicated that the model parameters could 

have distinctly different values, depending on whether or not constraints are imposed, time 

scales, and types of nutrients. The model performance varied in terms of time scales as well 

as magnitudes and fluctuations of Chl-a and TN or TP concentrations, achieving a relative 
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better performance for the monthly rather than three-day time scale and for the central part 

rather than bays of the study lake. The model with TP as the independent variable had a 

better performance than the model with TN as the independent variable, regardless of the 

time scale used. The temperature-nutrient interactions were important for algal growth when 

the temporal fluctuations of these two factors were large but the interactions could become 

minimal otherwise.  

Keywords: chlorophyll-a; eutrophication; lake modeling; Monod model; parameterization; 

time series analysis 

 

1. Introduction 

Eutrophication resulting from cyanobacterial harmful algal blooms (CyanoHABs) is a frequent 

nuisance phenomenon in freshwater lakes and estuaries around the world, posing a serious threat to 

aquatic ecosystems and human health [1,2]. The climate change-induced increasing air temperature (AT) 

and water temperature (WT) are likely to promote a faster algal growth rate [3,4]. Nitrogen (N) and/or 

phosphorus (P) levels often positively affect phytoplankton growth in lakes. The absolute as well as 

relative concentrations of the nutrients affect the growth rate, abundance, and composition of 

phytoplankton in lake water [5] and are usually measured in terms of their trophic state, which is defined 

as the total weight of biomass in a given water body at the time of measurement [6]. The trophic state of 

a lake generally increases with increase in its total nitrogen (TN) and total phosphorus (TP) 

concentrations. In practice, the development of solutions to lake eutrophication problems requires a 

better understanding of how algal blooms depend on WT and/or AT, TN, and TP [7,8]. 

Over the past few years, extensive studies have been conducted to examine phytoplankton dynamics, 

resulting in a variety of models [9,10]. Some 2- and 3-D models have been developed for lakes with 

sufficient observed data, while simpler models such as the commonly-used Monod model were created to 

simulate the dynamics of lakes where only limited data are available [11]. For the less well-studied lakes, 

including Lake Tai, the Monod model is probably more applicable but its parameterization and prediction 

performance have not yet been conclusively demonstrated, thus limiting confidence in the model. 

The Monod model [12] has been used extensively to simulate effects of nutrients on algal growth. 

For example, Huang et al. [8] set up and used a Monod model to predict short-term (in this case, one- to  

five-day) phytoplankton distribution in Lake Tai as part of the effort to protect sensitive drinking-water 

intake areas by avoiding or minimizing the negative impact of algal blooms. Similarly, Pei and Ma [13] 

used a Monod model to simulate algal dynamics at the annual time scale, and found that the model 

performed well in capturing the ecological dynamics of a lake in Hangzhou. Ye et al. [14] developed a 

modified Monod model and applied it to quantify the relationships between algal biomass and both 

nutrients and temperature in Lake Tai using long-term data. Their results indicated that the annual mean 

algal biomass increased by a factor of 0.145 for every 1.0 °C rise in temperature. However, as with the 

others reported in the literature, none of the earlier studies cited above sought to evaluate the performance 

of a Monod model in terms of its dependence of time scale and time series used. 
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The main objective of this study was therefore to evaluate the performance of the modified Monod 

model, which was applied to Lake Tai in a previous study [14], in predicting algal dynamics at various 

time scales by using multiple sets of time series. Herein, chlorophyll-a (Chl-a) concentration was used 

as a surrogate for algal (CyanoHABs) growth because of the close positive correlation between  

them [15], while the independent variables included TN, TP, and WT or AT. 

2. Materials and Methods 

2.1. Site Description 

Lake Tai (31°15′ N, 120°14′ E), which is also referred to as Lake Taihu, Tai Lake, or Taihu Lake in 

literature, is a typical shallow freshwater lake located in the south of the Yangtze River Delta in  

China [16,17] (Figure 1). The lake has an average water depth of 1.9 m, a surface area of 2338 km2,  

a maximum volume capacity of 48.6 × 108 m3, and a mean hydraulic retention time of 310 days. It is 

located in a plain at the center of a dense network of over 200 rivers or tributaries. Annual mean inflow 

and outflow rates are 183 and 181 m3·s−1, respectively. The largest inflow waterway is the  

Xitiaoxi River, with an annual mean inflow rate of 26.8 m3·s−1, and the largest outflow waterway is the 

Taipu River, with an annual mean outflow rate of 70.6 m3·s−1. 

 

Figure 1. Map showing the location of Lake Tai and its subdivisions. Data collection sites 

are shown in the map on the right hand side. 

Lake Tai, which is an important regional fresh water resource [18], is infamous for its problems with 

widespread algal blooms, which seriously degrade the water quality [19]. Across the lake area, the algal 

bloom is most serious in the two large, semi-enclosed bays, Zhushan Bay and Meiliang Bay [20], so, for 

the purposes of this study, Lake Tai was subdivided into two zones: Meiliang-Zhushan Bay and  

Main Lake (Figure 1). Meiliang-Zhushan Bay, which consists of the northern portion of the lake, is 

severely polluted and tends to receive algae from Main Lake during the summer due to prevalent 

northeast wind. Main Lake, which has a better water quality than Meiliang-Zhushan Bay, receives direct 
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discharges from several tributaries. TN and TP concentrations in Meiliang-Zhushan Bay are twice those 

in Main Lake, while Chl-a levels in Meiliang-Zhushan Bay are three times higher than in Main Lake. 

Before the 1970s, Lake Tai had prevalent aquatic macrophytes and clear water. However, the lake 

surface area was reduced by about 528.5 km2 (i.e., 13.6%) from 1949 to 1985, greatly lowering the lake’s 

self-purification capability. In addition, the rapid development and population growth might result in 

more nutrients to be transported into the lake via overland runoff. The consequence is that 

macrophyte-dominated species have been replaced by phytoplankton since 1980s and that algal  

blooms occur more frequently and persistently. In summer of 1990, algal bloom occurred in the entire  

Meiliang Bay and lasted for more than a week, causing 118 plants to stop working and Wuxi City to be 

short of clean drinking water. In recent years, algal bloom tends to expand from Meiliang Bay to the 

central part of Lake Tai. In this regard, in order to improve the water quality and suppress algal bloom, 

fresh water has been transferred from Yangtze River through Gonghu Bay and Wangyu River 

downstream into the lake from time to time since 2002. Water in Lake Tai flows out through Taipu River 

and the lake level is controlled at 3.0 to 3.5 m. From 2002 to 2011, totally 71 × 108 m3 water had been 

transferred, with a measurable effect in lowering the lake’s TN and TP concentrations. 

2.2. Data and Preprocessing 

The data on TN, TP, and Chl-a levels, and WT were synchronously measured at a three-day time 

interval in Meiliang Bay by the Chinese Academy of Sciences (CAS) Nanjing Institute of Geography 

and Limnology (NIGL) in 2010 and 2011 by following the guidelines of the Chinese Ministry of 

Environmental Protection (CMEP) [21]. Daily data on TN, TP, and Chl-a levels in Lake Tai were 

collected by the Chinese Research Academy of Environmental Sciences (CRAES) for the period from 

2005 to 2010. Thirty-two observational sites are distributed across Lake Tai (Figure 1), with 10 sites in 

Meiliang Bay, three sites in Zhushan Bay, and 19 sites in Main Lake. Daily air temperature data observed 

at the Wuxiandongshan station were obtained from CRAES for the same record period. CRAES is a 

government-funded organization that collects and compiles national environmental data in accordance 

with standards set by China’s State Environmental Protection Administration [21]. All data were 

checked for accuracy by experts in the relevant field by following strict scientific procedures; the records 

were deemed to be complete and considered to be reliable for the purposes of this study [22]. 

The daily data were preprocessed to derive the corresponding monthly time series for Meiliang-Zhushan 

Bay (13 data collection sites) and Main Lake (19 data collection sites). For each observational site and 

variable (i.e., TN, TP, Chl-a and AT), the daily values for the month were arithmetically averaged to 

obtain the monthly value of the variable for that site. These monthly values for the observation sites in 

Meiliang-Zhushan Bay were then arithmetically averaged to obtain the monthly value for the bay as a 

whole, while the monthly values for all other sites were arithmetically averaged to obtain the monthly 

value for Main Lake. As a result, eight monthly time series of TN, TP, Chl-a, and AT were created: four 

for the bay and another four for Main Lake. 
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2.3. Methods 

2.3.1. Model Description 

The original Monod model [23] can be expressed as: ݑ = )୫ୟ୶ݑ ݇ݏ + (1) (ݏ

where u is the specific growth rate of phytoplankton (d−1); umax is the maximum specific growth rate of 

phytoplankton (d−1); s is the limiting nutrient concentration (mg·L−1); and k is the half saturation 

coefficient (mg·L−1). 

Ye et al. [14] assumed that umax is a function of environment factors (e.g., temperature and light) and 

proposed an alternative model expressed as: ݑ = ܣ · ܾ୘ · ݇ݏ + (2) ݏ

where A is the maximum specific growth rate at a certain temperature (d−1); b is the activation energy 

dependent constant; and T is the temperature (°C). 

Siswanto et al. [15] reported that each Microcystis cell contains about 3.4 × 10−13 g Chl-a and found 

that Chl-a concentration can be used as a surrogate of phytoplankton biomass. Based on these two facts, 

Ye et al. [14] proposed a Chl-a concentration model expressed as: ܥ = ୫ୟ୶ܥ · ݇ݏ + ݏ  (3)

where C is the concentration of Chl-a (ug·L−1); and Cmax is the maximum concentration of Chl-a (ug·L−1). 

Combining Equations (2) and (3), Ye et al. [14] formulated a modified Monod model expressed as: ܥେ୦୪ିୟ = ܽ · ܾ୘ · ݇ݏ + (4) ݏ

where CChl-a is the concentration of Chl-a (ug·L−1); and a is the maximum concentration of Chl-a at a 

particular temperature (ug·L−1). 

2.3.2. Estimation of Model Parameters in Equation (4) 

The model parameters, including a, b, and k, were determined by adjusting specified initial parameter 

values to ensure that predicted CChl-a concentrations closely match the corresponding observed values. 

The adjustment was implemented using the Microsoft Excel® Solver, which determines the optimum 

value for a formula in a particular target cell on a Microsoft Excel® worksheet by adjusting the values 

of “other cells” that are related to the target cell by an equation. Herein, the target cell stores the 

summation of the predicted-observed differences squared, while the “other cells” store values for a, b, 

and k. Once an equation has been constructed and a set of initial values (and constraints if any) for the 

parameters are defined, the Solver will try adjusting the parameter values to reach an optimal solution 

that satisfies all the constraints imposed. 

In this study [23], when TN was used as the limiting nutrient, the initial parameter values were 

specified as a = 10.0, b = 1.0, k = 1.0, whereas when TP was used as the limiting nutrient, the initial 

parameter values were specified as a = 10.0, b = 1.0, k = 0.001. These were taken as the initial values 
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and then two schemes, one with constraints imposed and another without constraints, were tested for 

each adjustment. The scheme that imposed no constraints allowed the parameters to take any values that 

minimized the difference, while the scheme with constraints imposed limits on the parameters and then 

sought to minimize the difference. The limits were specified in terms of the physical meanings of the 

parameters as well as the values reported in existing literature [14,15]. 

2.3.3. Approach Used for Model Evaluation 

In order to investigate the sensitivity of a, b, and k to time scale, one modified Monod model for 

Meiliang Bay was parameterized using the three-day data for 2010 and two modified Monod models, 

one for Meiliang-Zhushan Bay and another for Main Lake, were parameterized using the monthly data 

for a three-year period of 2005 to 2007. For each of the three models, the parameterization was 

implemented for the two schemes mentioned above. Afterwards, the parameter values, determined by 

the Solver, were analyzed in accordance with the physical meanings of the parameters and compared 

with those in literature to verify the reasonability of the values. The models with the most reasonable 

parameter values (i.e., the calibrated models) were then used to reproduce the three-day time series of 

2011 for Meiliang Bay and the monthly time series of the three-year period from 2008 to 2010 for 

Meiliang-Zhushan Bay and Main Lake. The predicted results were then compared with the observed 

values to validate the models. 

For both calibration and validation, in addition to plots showing predicted versus observed Chl-a 

concentration, three common statistics, root mean square error (RMSE) [22], Akaike Information Criterion 

(AIC) [24], coefficient of determination (R2) [22], were also used to assess performance of the models. 

RMSE is computed as: 

RMSE = ඨ∑ ୭,୧(େ୦୪ିୟ)ܥൣ − ୱ,୧൧ଶ௡௜ୀଵ(େ୦୪ିୟ)ܥ ݊ − 1  (5)

where C(Chl-a)o,i is the observed concentration of Chl-a at time i (ug·L−1); C(Chl-a)s,i is the predicted 

concentration of Chl-a at time i (ug·L−1); and n is the number of points in the time series used for model 

calibration or validation. 

AIC is computed as: AIC = ܭ2) − (6) ݊/(ܮ2

where K is the number of model parameters; and L is the Log-likelihood function. 

L can be approximated as: ܮ = −ቀ2݊ቁ · ൤ln(2π) + ln ൬RSS݊ ൰ + 1൨ (7)

where RSS = (n−1) · (RMSE)2 is the residual sum of squares. 

A model with a smaller value of RMSE or AIC was judged to have a relative better performance than 

a model with a corresponding larger value. The absolute model performance was not the focus of this 

study and thus the absolute values of RMSE and AIC were not assessed. R2 measures the goodness of 

fit of a model. R2 can range from zero to one, with a larger value indicating a more accurate fit and thus 

a better model performance. 
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3. Results 

3.1. Observed Temporal Variations of Nutrients and Temperature 

Based on the available data, for the three-day time interval, the fluctuations in the values of TN and 

TP in 2010 were greater than those in 2011 (Figure 2a,b). In 2010, the highest concentrations of TN  

(8.4 mg·L−1) and TP (0.6 mg·L−1) were recorded on 9 September, whereas, in 2011, the much smaller 

highest concentrations of TN (3.5 mg·L−1) and TP (0.2 mg·L−1) occurred on 30 July. In both years, the 

fluctuations in the TN and TP concentrations were synchronized, with peaks and troughs occurring at 

the same times. In contrast, at the monthly time interval, the fluctuations in the TN and TP concentrations 

exhibited pseudo-cyclic patterns with distinctively different periods and amplitudes (Figure 2c–f) for 

Main Lake and Meiliang-Zhushan Bay, indicating that the temporal variations of the recorded nutrient 

levels were likely independent of observation locations across Lake Tai. This implies that model 

performance might be independent of locations at which data were collected. Moreover, on a given day, 

the three-day water temperatures were reasonably comparable with the ambient air temperatures 

observed at the corresponding monthly time interval (Figure 2). This confirms that for Lake Tai, air 

temperature can be a good surrogate for water temperature and these two types of temperatures are 

probably identical in magnitude. Based on these results, this study did not differentiate air temperature 

from water temperature in evaluating performance of the models. 

 

Figure 2. Temporal variations of nutrients (total nitrogen (TN), and total phosphorus (TP)), 

water temperature (WT) and ambient air temperature (AT): (a,b) Meiliang Bay,  

three-day measurement intervals; (c,d) main lake, monthly measurement intervals; and  

(e,f) Meiliang-Zhushan Bay, monthly measurement intervals. WT is shown in (a,b), and AT 

in (c) through (f) and designated T in both. 
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As with the TN and TP concentrations, the three-day Chl-a concentration was found to have a larger 

temporal variation and a greater peak value in 2010 than in 2011, while the monthly Chl-a concentration 

exhibited pseudo-cyclic patterns with distinctly different periods and amplitudes (Figures 3 and 4). The 

peak Chl-a concentration (235 ug·L−1) in 2010 was much higher than the peak Chl-a concentration  

(71 ug·L−1) in 2011. Overall, the variation and magnitude of the Chl-a concentrations were greater in 

Meiliang-Zhushan Bay than in Main Lake. 

 

Figure 3. Observed and predicted Chlorophyll a (Chl-a) concentrations for: (a,b) Meiliang 

Bay, three-day measurement intervals; (c,d) main lake, monthly measurement intervals;  

and (e,f) Meiliang-Zhushan Bay, monthly measurement intervals. The independent variables 

here are total nitrogen (TN) and temperature. 

3.2. Model Parameters 

In order to apply the modified Monod model defined in Equation (4), the three parameters a, b, and 

k must be determined using observed data for Chl-a, TN, TP, and temperature. However, these 

parameters may have distinctly different values, depending on whether limits are imposed or not. In this 

study, the root mean square errors (RMSEs) (Equation (5)) with no constraints on the ranges of the 

parameters were much smaller than the corresponding RMSEs with constraints (Table 1). Parameter b 

was basically independent of types of nutrients and time series regardless of whether constrains were 

imposed or not, and was determined to be in the range of 1.05 to 1.11. 
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Figure 4. Observed and predicted Chlorophyll a (Chl-a) concentrations for: (a,b) Meiliang 

Bay, three-day measurement intervals; (c,d) main lake, monthly measurement intervals;  

and (e,f) Meiliang-Zhushan Bay, monthly measurement intervals. The independent variables 

are total phosphorus (TP) and temperature. 

Table 1. The modified Monod model parameters determined by minimizing the root mean 

square errors (RMSEs) and akaike information criterion (AIC) without and with constraints 

on the ranges of the parameters 1. 

Observation Location Measurement Years Model No Constraints With Constraints 

Within Lake Tai 2 (Time Interval) Parameter 3 TN TP TN TP 

Meiliang Bay 

 a 2144.23 190.77 30.88 14.07 

2010 b 1.05 1.07 1.08 1.11 

(once every three-days ) k 330.91 4.04 7.00 0.50 

 RMSE 33.59 35.64 38.00 39.08 

 AIC 13.43 13.54 13.67 13.73 

Main Lake 

 a 6.15 6.14 6.15 5.24 

2005–2007 b 1.05 1.05 1.05 1.04 

(once every month) k 0.71 0.72 0.71 0.08 

 RMSE 3.40 3.40 3.40 3.49 

 AIC 8.95 8.95 8.95 9.00 

Meiliang-Zhushan Bay 

 a 10.56 10.56 10.56 9.89 

2005–2007 b 1.07 1.07 1.07 1.06 

(once every month) k 2.54 2.65 2.54 0.08 

 RMSE 10.06 10.06 10.06 12.12 

 AIC 11.12 11.12 11.12 11.49 

Notes: 1 TN: total nitrogen; TP: total phosphorus; 2 See Figure 1; 3 See Equation (4) for the definitions of a, b, and k. 



Water 2015, 7 3635 

 

 

For the three-day time interval, the values of parameters a and k with no constraints were much larger 

than those with constraints, and the values determined using TN as the independent variable were much 

larger than those determined using TP as the independent variable, regardless of whether constraints 

were imposed or not. In contrast, at the monthly time interval, parameters a and k were less sensitive to 

the constraints. This indicates that imposing limits can have a significant effect on parameters a and k, 

but it may have little influence on parameter b. Because the constraints applied herein were based on the 

physical meanings and literature values of these parameters, the values of parameters a, b and k 

determined with the constraints imposed were judged to be more reasonable and were thus adopted for 

the subsequent analyses. 

As expected, when TN versus TP was used as the independent variable, either parameter a or k was 

determined to have distinctly different values, with the values obtained using TN larger than those using 

TP (Table 1). For given types of nutrients, the values of parameters a and k for the three-day time interval 

were larger than the corresponding values for the monthly time interval. This indicates that these two 

parameters can have distinctly different values when the modified Monod model is used for shorter 

versus longer time intervals. However, parameter b was not sensitive to the time interval used. 

3.3. Model Performance with TN Versus TP as the Independent Variable 

In terms of the values of RMSE and AIC (Table 2), the performance of the model with TN as the 

independent variable (hereinafter designated the TN-MonodModel) was comparable to that of the model 

with TP as the independent variable (hereinafter designated the TP-MonodModel). However, the  

TP-MonodModel did a better job in reproducing the observed Chl-a concentration than the  

TN-MonodModel, as indicated by that the values of RMSE and AIC were smaller for the TP-MonodModel 

than for the TN-MonodModel (Figure 4). Interestingly, both models performed better in reproducing the 

observed monthly than three-day Chl-a concentration (Figures 3 and 4), indicating that the modified 

Monod model may suffer from some limitations when capturing Chl-a variations for a time interval 

shorter than month. 

Table 2. Validated parameters, root mean square error (RMSE) and akaike information 

criterion (AIC) values fitted to the modified Monod model for selected datasets 1. 

Time Series 
TN as an Independent Variable TP as an Independent Variable 

Model RMSE AIC Model RMSE AIC 

Meiliang Bay 2011  

(three-day ) 
Cchl-a = 30.88 × 1.08WT × TN/(7.00 + TN) 44.51 10.50 Cchl-a = 14.07 × 1.11WT × TP/(0.5 + TP) 24.15 9.56 

Main Lake 2008–2010  

(monthly) 
Cchl-a = 6.15 × 1.05AT × TN/(0.71 + TN) 5.63 9.96 Cchl-a=5.24 × 1.04AT × TP/(0.08 + TP) 5.15 9.78 

Meiliang-Zhushan 

Bay  

2008–2010 (monthly) 

Cchl-a = 10.56 × 1.07AT × TN/(2.54 + TN) 21.22 12.61 Cchl-a = 9.89 × 1.06AT × TP/(0.08 + TP) 18.59 12.34 

Notes: 1 Cchl-a (ug·L−1): chlorophyll-a concentration; TN (mg·L−1): total nitrogen concentration; TP (mg·L−1): 

total phosphorus concentration; AT (°C): air temperature; WT (°C): water temperature. 
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As expected, both models had a better performance for the calibration than validation period  

(Tables 1 and 2; Figures 3 and 4): the values of RMSE ranging from 3.4 to 39.1 for the calibration period 

while from 5.1 to 44.5 for the validation period. In addition, the observed Chl-a concentration for the 

calibration period was more accurately reproduced than that for the validation period regardless of the 

time interval. Further, the models did a better job for Main Lake than for Meiliang-Zhushan Bay  

(Figures 3c–f and 4c–f). 

3.4. Control Variables of Chl-a 

At the three-day time interval, nutrients (TN and TP) had a greater influence on algal growth than 

temperature, as indicated by the fact that the temporal variations in TN and TP concentrations were 

similar with, but the temporal variation in temperature was different from, that of the Chl-a concentration 

(Figures 2a,b, 3a,b, and 4a,b). The TN and TP concentrations varied synchronically with the Chl-a 

concentration, with peak concentrations occurring at the same time. For example, for the calibration 

period, TN and TP reached their highest concentrations of 8.4 and 0.6 mg·L−1 on 9 September 2010, when 

Chl-a also reached its highest concentration of 235 ug·L−1. Similarly, for the validation period, TN and 

TP reached their highest concentrations of 3.5 and 0.2 mg·L−1 on 30 July 2011, when once again Chl-a 

reached its highest concentration of 64.58 ug·L−1. In addition, Chl-a was more sensitive to TP than TN, 

as indicated by that the TP-MonodModel had smaller values of RMSE and AIC than the TN-MonodModel, 

regardless of the time intervals (Table 2). A model with temperature as the only independent variable 

(hereinafter designated as temperature model for description purposes) was also assessed, and it was 

found that this model (AIC = 13.12; R2 = 0.33) had a worse performance than the TN-MonodModel  

(AIC = 10.50; R2 = 0.21) and the TP-MonodModel (AIC = 9.56; R2 = 0.61) (Figure 5a). 
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(c) 

Figure 5. Observed and predicted Chlorophyll a (Chl-a) concentrations for the validation 

periods by the modified Monod model with temperature as the sole independent variable 

(referred to as the temperature model), the modified Monod model with temperature and 

total nitrogen (TN) as independent variables (referred to as TN-MonodModel), and the 

modified Monod model with temperature and total phosphorus as independent variables 

(referred to as TP-MonodModel) for: (a) Meiliang Bay at the three-day measurement interval in 

2011; (b) Main Lake at the monthly measurement interval from 2008 to 2010; and  

(c) Meiliang-Zhushan Bay at the monthly measurement interval from 2008 to 2010. 
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This is verified by the fact that the temperature model had a comparable performance with the  

TN-MonodModel and TP-MonodModel, as indicated by the close values AIC and R2 (Figure 5b,c). For 

Main Lake, the AIC values for the temperature model, TN-MonodModel, and TP-MonodModel are 9.70, 

9.96, and 9.78, respectively, while for Meiliang-Zhushan Bay, the AIC values are 12.35, 12.61, and 

12.34, respectively. Therefore, the TN-MonodModel and TP-MonodModel were judged to have a 

relative better performance than the temperature model, as indicated by the values of R2. 

4. Discussion 

For the three-day time interval, the values for parameters a and k with no constraints are much larger 

than those where constraints were imposed. This is probably because the three-day data might not 

include the ideal conditions under which a and k are defined: a is the maximum concentration of Chl-a 

at an optimal temperature while k is the half saturation coefficient. When not constrained, these two 

parameters were likely determined by extrapolating the conditions presented by the data, which could 

cause very large unknown uncertainties. In contrast, for the monthly time interval, the values of a and k 

without constraints are comparable to the corresponding values with constraints. One possible reason is 

that the monthly data might include conditions that are similar to the ideal condition for a and k, and thus 

these two parameters were determined by interpolations, making uncertainties much smaller. Hence, 

although the RMSEs without constraints are much smaller than those with constraints, the values for a 

and k with constraints were judged to be more meaningful, which is further verified by the fact that the 

values are compatible with the ones reported by Ye et al. [14] for Lake Tai. Unlike a and k, parameter b, an 

activation energy dependent constant, is almost independent of types of nutrients and time intervals, 

regardless of whether constraints were imposed or not. In this study, b was determined to be between 1.05 

and 1.11, which is again compatible with the value reported by Ye et al. [14]. This may be because the data 

included the possible variation ranges of temperature and thus no extrapolation was needed to determine b. 

Based on Cross et al. [25], nutrient availability and temperature play key roles in controlling the 

pathways and rates at which energy and materials move through ecosystems, and these two factors 

interactively affect the acquisition, storage, and cycling of energy and materials at organizational levels 

ranging from individuals to whole ecosystems. In the modified Monod model (Equation (4)), a and k 

reflect linear and nonlinear temperature-nutrient interactions, respectively, and thus either of these two 

parameters has distinctly different values for different time intervals (i.e., three-day versus monthly) and 

sites (i.e., Main Lake versus Meiliang Bay versus Meiliang-Zhushan Bay) of Lake Tai (Table 1) because 

of the different paired values of temperature and TP or TN concentration (Figure 2). In contrast, 

parameter b reflects temperature only and thus is nearly constant. Thus, it is important to take into 

account temperature-nutrient interactions in the modified Monod model, as evidenced by the better 

performance of the TN-MonodModel and TP-MonodModel than the temperature model. 

The models did a better job in reproducing the monthly than three-day Chl-a concentration. This is 

probably because the three-day concentration had a larger temporal fluctuation and because the  

temperature-nutrient interactions could not be well mimicked by the model. For such a short time 

interval, the algal growth is likely to be more strongly influenced by the available nutrients and energy 

from previous times than by those of the current time of interest, whereas for the monthly time interval, 

the Chl-a concentration in a given month may closely depend on the available nutrients and energy in 
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that month. Ye et al. [14] also found that the modified Monod model had a better performance in 

reproducing annual Chl-a concentration. 

The models did a better job for Main Lake than for Meiliang-Zhushan Bay. The Chl-a concentrations 

in Meiliang-Zhushan Bay were noticeably higher and had much larger temporal fluctuations (Figures 2–4). 

It is likely that the models suffer from some limitations in tracking the rapid growth and dying off of 

algae as well as strong temperature-nutrient interactions. 

Nitrogen and phosphorus levels often limit phytoplankton growth in Lake Tai. Over the past three 

decades, it has been changed from a shallow/hyper-eutrophic to a bloom-free/bloom-plagued lake [16]. 

Ye et al. [14] found that a Monod model with TN concentration as the independent variable had a better 

performance than a model with TP concentration as the independent variable. This is not supported by 

our study, however. Our study showed that the TP-MonodModel has a better performance than the  

TN-MonodModel regardless of time interval (Figures 3 and 4). This inconsistency can be attributed to 

the distinctly different lake conditions (e.g., TN and TP concentrations) [26–29]. Xu et al. [30] found 

that the threshold concentrations of TN and TP for harmful cyanobacterial blooms in Lake Tai are 0.8 mg·L−1 

and 50 μg·L−1, respectively. For our two modeling years of 2010 and 2011, TN concentration was always 

higher than the TN threshold, whereas TP concentration was often lower than the TP threshold  

(Figure 2). In consequence, phosphorus might become a limiting nutrient for phytoplankton growth in 

those two years, leading to a sensitive response of Chl-a concentration to TP fluctuation. Nitrogen, on 

the other hand, was always plentiful for phytoplankton growth and thus TN fluctuation might have no 

acute effects on Chl-a concentration. Nevertheless, because of the above-threshold TN concentration, on a 

day or in a month when the temperature was relatively high, the Chl-a concentration could be much 

higher than the “acceptable” sub-bloom level of 20 μg·L−1 for Meiliang and Meiliang-Zhushan Bays, 

whereas on a day or in a month when the temperature was relatively low, the Chl-a concentration might 

become lower than the sub-bloom level for those two bays (Figure 3 versus Figure 2). For Main Lake, 

Chl-a concentration tended to be lower than the sub-bloom level in the two modeling years regardless 

of temperature. 

Besides temperature, TN, and TP, other factors, such as nitrogen-to-phosphorus ratio [31], anoxia and 

ferrous iron [32], and climate change [33,34], have been found to affect cyanobacterial dynamics/blooms 

in lakes. However, limited by data availability, our study could not evaluate prediction performance of 

the modified Monod model when either of those other factors is used as independent variable s in 

Equation (4). In the future, in addition to assessing effects of one factor or two at a time and full 

temperature-nutrient interactions, new variables that can reflect interactive effects of multiple factors 

may be introduced into Equation (4) to further improve the Monod model while maintaining its 

simplicity. This can be done by assembling existing results of various previous studies, including the 

ones cited hereinabove. Nevertheless, as with any types of modeling efforts, a big challenge would be 

the lack of long-term synchronic data on multiple factors and algal growth for sufficient numbers of 

representative lakes. 

5. Conclusions 

This study evaluated the performance of a modified Monod model in predicting algal dynamics at 

various time scales using multiple sets of time series. The results revealed that the sensitivity of the 
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model parameters closely depended on whether constraints were imposed or not, time scales, and types 

of nutrients. The values of parameters a and k without constraints were much larger than those with 

constraints for the three-day time interval, but such discrepancies became minimal for the monthly time 

interval. In contrast, parameter b was almost independent of types of nutrients and time intervals, regardless 

of whether constraints were imposed or not. The results indicated that model performance also depended 

on time intervals as well as magnitudes and temporal fluctuations of Chl-a and TN or TP concentrations, 

achieving a better performance for the monthly than three-day  Chl-a concentration and for Main Lake 

than Meiliang-Zhushan Bay. The model with TP as the independent variable (i.e., TP-MonodModel) had 

a better performance than the model with TN as the independent variable (i.e., TN-MonodModel), regardless 

of time interval. The temperature-nutrient interactions were important for algal growth when the temporal 

fluctuations of these two factors were large, while the interactions could become minimal otherwise. It 

is desired that future modeling efforts can also consider more factors (e.g., nitrogen-to-phosphorus ratio 

and dissolved oxygen content) and factor-to-factor interactions if data are available, maintaining the 

simplicity of the modified Monod model defined by Equation (4). 
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