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Abstract: In this study, commonly used copula functions belonging to Archimedean and Elliptical
families are fitted to the univariate cumulative distribution functions (CDF) of the drought
characteristics duration (LD), average severity (S), and average areal extent (A) of droughts
obtained using standardized precipitation index (SPI) between 1960 and 2013 over Ankara, Turkey.
Probabilistic modeling of drought characteristics with seven different fitted copula functions and
their comparisons with independently estimated empirical joint distributions show normal copula
links drought characteristics better than other copula functions. On average, droughts occur with an
average LD of 6.9 months, S of 0.94, and A of 73%, while such a drought event happens on average
once in every 6.65 years. Results also show a very strong and statistically significant relation between
S and A, and drought return periods are more sensitive to the unconditioned drought characteristic,
while return periods decrease by adding additional variables to the analysis (i.e., trivariate drought
analysis compared to bivariate).
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1. Introduction

Droughts are a climatic phenomenon that may impact large and small regions alike for long or
short time periods and influence almost all aspects of society [1]. Historically, droughts have had
negative effects on domestic and agricultural water supply needs [2] and consequently altered the
behavior of ecosystems [3,4]. Plans, designs, and operational applications for water resources systems,
therefore, require accurate estimation of different drought characteristics, like duration (LD), average
severity (S), average areal extent (A), and re-occurrence rate under various scenarios.

Drought characteristics have been analyzed using various methods that have evolved over
time. Earlier studies investigated the analytical or stochastic nature of past droughts using runs
theory. Based on this theory, observed time series of drought-related variables are divided into
wet and dry periods (positive and negative runs, respectively; see Figure 1) depending on a given
threshold or critical level [5,6]. Later studies focused more on probabilistic drought estimation using
ground station-based datasets [7–9]. The scarcity of ground stations and short recording lengths
motivated the following studies to use synthetic datasets to analyze the frequencies of drought
events [10,11]. Since the spatial–temporal relationships among drought characteristics are complex,
recent studies have diversified their efforts by analyzing the return periods of droughts using various
S or A scenarios [12–14].
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Figure 1. Illustration of drought characteristics using the run theory for a given threshold level of X0 
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Figure 1. Illustration of drought characteristics using the run theory for a given threshold level of X0

where the drought events are presented with the red bars over time.

The copula approach [15] provides an ideal test bed in which to analyze multivariate probabilistic
problems without making explicit assumptions about the marginal or joint distributions of the
variables involved in the estimation problem. Perhaps this ability has motivated studies to implement
a multivariate probabilistic approach via copula functions to solve many different problems in
hydrologic science and water resources-related applications [16–19].

Given that drought return periods can be immediately formulated in a probabilistic framework,
copula-related methods have the necessary utility required to investigate different drought
characteristics. Shiau [13] used bivariate copula functions to investigate bivariate drought analysis,
including joint probabilities and return periods. Song and Singh [20] expanded this drought frequency
analysis from bivariate to trivariate via a new method that constructs trivariate copulas to describe the
joint distribution function of the temporal characteristics of meteorological drought events. Recently,
Xu et al. [14] used a trivariate drought identification method within the copula approach to calculate the
joint probability and return period of different drought spatial–temporal characteristic pairs. Overall,
these studies demonstrated the advantages of the copula approach on bivariate and trivariate modeling
of drought characteristics.

Certain characteristics of drought may precede others. For example, droughts with longer
durations may tend to have higher maximum severity, or it may take longer to dissipate severe
droughts than droughts with moderate severity. Such dependencies between drought characteristics
can be immediately studied in a conditional copula framework, particularly when the occurrence of
certain characteristics signals the occurrence of other characteristic functions in multivariate problems.
Even though joint copula functions have been implemented in many studies, the implementation of
conditional copulas remained limited in the literature [14,21]; hence there is still more room for more
conditional copula-based applications to fully comprehend the utility of these functions.

Drought characteristics could be profoundly linked both in time and space. Accordingly,
knowledge (i.e., observations) of some drought characteristics in time or space may help us
predict others. This temporal and/or spatial dependency between different drought characteristics
may immediately be exploited using copula functions, particularly using conditional probabilities.
Even though spatial–temporal dependencies of drought characteristics have been investigated before
using copula functions [22–24], such investigations have not been carried out in a conditional
framework before.
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The main objective of this study is to implement a copula-based methodology to analyze the joint
and conditional dependency among various spatial–temporal characteristics of droughts, including
LD, S, and A. The analysis utilizes univariate cumulative distribution functions (CDF) of drought
characteristics obtained over Ankara, Turkey to establish joint and conditional relations between them,
using bivariate and trivariate copula functions to calculate expected return periods of droughts with
different characteristics scenarios.

2. Materials and Methods

In the following section, copula functions and their application to probabilistic drought
characterizations are explained; later the use of bivariate and trivariate functions (i.e., the use of
return periods) in drought analysis is elaborated.

2.1. Copula Functions

Copula functions link the univariate CDFs of random variables with their joint CDFs [13,15].
Estimations of these univariate CDFs are trivial and the sample datasets are often sufficient, while the
analytical solution for the joint CDFs is not immediately clear. At this point, copula functions link
univariate CDFs and create their multivariate (e.g., bivariate or trivariate) CDFs.

Based on Sklar’s theorem, bivariate and trivariate joint CDFs denoted as F(u, v) and F(u, v, w),
respectively, can be obtained in the form:

F(u, v) = C(F(u), F(v)), (1)

F(u, v, w) = C(F(u), F(v), F(w)), (2)

where u, v, and w are random variables (e.g., LD, S, and A); C( ) is the copula function; and univariate
CDFs F(u), F(v), and F(w) are inputs to these function. Here F(u), F(v), and F(w) are the univariate
CDFs of u, v, and w respectively, and they are defined as

F(u) = P(U ≤ u), (3)

F(v) = P(V ≤ v), (4)

F(w) = P(W ≤ w), (5)

where P(U ≤ u), P(V ≤ v), and P(W ≤ w) are the probabilities that random variables U, V, and W
(i.e., different drought characteristics) takes values smaller than u, v, and w.

In Equations (1) and (2), the copula functions link the univariate CDF to bivariate and trivariate
joint CDFs (F(u, v) and F(u, v, w)). Using these joint CDFs, bivariate and trivariate conditional CDFs
can be found by utilizing the multiplication rule:

F(u|v) = F(u, v)
F(v)

, (6)

F(u, v|w) =
F(u, v, w)

F(w)
. (7)

In Equation (7), F(u, v|w) is given as an example of the trivariate CDF, while many other trivariate
CDF (e.g., F(u|v, w), F(v|u, w), etc.) can be found in a similar fashion.

In this study, the bivariate (Equation (1)) and trivariate (Equation (2)) joint CDF of LD, S, and
A are obtained using seven widely used copula functions belonging to Archimedean and Elliptical
copula families. These copula functions and their parameter spaces are shown in Table 1. For further
details about these copula functions, see the studies of Joe [25], Shiau [13], and Nelsen [26].
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The required copula dependence parameters (θ and ρ) for the seven copula functions are
separately estimated for each copula function using the inference function for margins (IFM)
method [25]. This method involves estimating F(u) and F(v) for the variables and then estimating
the θ or ρ parameter that maximizes the Kendall’s tau correlation using these univariate CDFs.
These obtained parameters are later used to make copula function-based joint CDF predictions, which
are referred to as “theoretical joint CDF estimation” (C(u, v)t) in this study.

Table 1. Equations of Copula functions. Here u and ν are two dependent univariate variables, df
is the degree of freedom, θ and ρ are Copula dependence parameters, ∅ is the CDF of standard
univariate Gaussian distribution, and tdf is the t–student distribution function. AMH and GH refer to
the Ali–Mikhail–Haq and Gumbel–Hougaard distributions, respectively.

Function
(Family) Joint Cumulative Distribution Function, C(u, v) Parameter Range

AMH
(Archimedean)

uv
1−θ(1−u)(1−v) −1 ≤ θ ≤ 1

Clayton
(Archimedean) [max(0, u−θ + v−θ − 1)]−1/θ 0 ≤ θ

Frank
(Archimedean)

−1
θ ln(1 + (e−θu−1)(e−θv−1)

e−θ−1 ) θ 6= 0

GH
(Archimedean) e[(−lnu)θ+(−lnv)θ]

1
θ 1 ≤ θ

Joe
(Archimedean) 1− ((1− u)θ + (1− v)θ − (1− u)θ(1− v)θ)

1
θ 1 ≤ θ

Normal
(Elliptical)

∅−1(u)∫
−∞

∅−1(v)∫
−∞

1

2π(1−ρ2)
1
2

e
− u2−2ρuv+v2

2(1−ρ2) dudv −1 ≤ ρ ≤ 1

t–student
(Elliptical)

tdf
−1(u)∫
−∞

tdf
−1(v)∫
−∞

1

2π(1−ρ2)
1
2
(1 + u2−2ρuv+v2

df(1−ρ2)
)
− df+2

2 dudv
−1 ≤ ρ ≤ 1

df ≥ 1

The above described copula function-based C(u, v)t values are later independently validated
using “empirical joint CDF estimates” (C(u, v)e) obtained using rank-based joint distribution estimates
obtained via the copula package [27] in the R programming language [28]. Datasets are split
for parameter estimation and validation with the leave-one-out cross-validation method to avoid
over-fitting. Validation efforts include calculation of root mean square error (RMSE) using C(u, v)t
and C(u, v)e:

RMSE =

√
∑n

i=1 (C(u, v)t −C(u, v)e)
2

n
, (8)

where n is the length of the drought characteristic datasets. Among the seven copula functions, the one
that yields the lowest RMSE value is later selected for further estimation of bivariate and trivariate
return periods.

2.2. Return Periods

The expected value of the drought inter-arrival time (DIT; the time between two successive
drought events) is one of the most commonly estimated drought characteristics in hydrological and
water resources systems applications. T may be estimated for univariate (e.g., LD ≥ 10 months) as
well as multivariate (e.g., LD ≥ 10 & S ≥ 1.0; or LD ≥ 10|S ≥ 1.0) scenarios. Shiau and Shen [29]
theoretically derived T for drought events with univariate drought characteristics (e.g., LD, S, and A)
as a function of the expected DIT in the form
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TU≥u =
E(DIT)

P(U ≥ u)
, (9)

where E(DIT) is the expected value of DIT; and TU≥u is the return period of a drought event, defined
by the variable u. E(DIT) is calculated as the ratio of the duration of entire study to the total number
of droughts. Following Shiau [13], it is also possible to expand this univariate T estimation analysis to
a bivariate case by characterizing events with bivariate joint or conditional probabilities in the forms:

T(U≥u,V≥v) =
E(DIT)

P(U ≥ u, V ≥ v)
(10)

T(U≥u or V≥v) =
E(DIT)

P(U ≥ u or V ≥ v)
(11)

T(U≥u|V≥v) =
E(DIT)

P(U ≥ u, |V ≥ v)
. (12)

Similarly, the trivariate case can be obtained in the forms:

T(U≥u,V≥v,W≥w) =
E(DIT)

P(U ≥ u, V ≥ v, W ≥ w)
(13)

T(U≥u or V≥v or W≥w) =
E(DIT)

P(U ≥ u or V ≥ v or W ≥ w)
(14)

T(U≥u|(V≥v,W≥w)) =
E(DIT)

P(U ≥ u|(V ≥ v, W ≥ w))
, (15)

where the P(. . .) values in the denominators of Equations (10)–(12) are the bivariate, and of
Equations (13)–(15) are the multivariate joint probabilities of drought characteristics u, v, and w;
and T(...) values on the left-hand side of Equations (10)–(15) are the corresponding return periods.
By definition, the P(. . .) terms in Equations (9)–(15) can be found using the CDFs of the related drought
characteristics. Below are some examples of univariate, bivariate, and trivariate cases:

P(U ≥ u) = 1− FU(u) (16)

P(U ≥ u|V ≥ v) = 1− FU,V(u|v) (17)

P(U ≥ u, V ≥ v, W ≥ w) = 1− FU,V,W(u, v, w). (18)

Accordingly, the bivariate probability P(. . .) terms in Equations (10)–(12) can be found using the
univariate CDF estimates and the bivariate copula functions in the forms:

P(U ≥ u, V ≥ v) = 1− FU(u)− FV(v) + C(FU(u), FV(v)) (19)

P(U ≥ u or V ≥ v) = 1−C(FU(u), FV(v)) (20)

P(U ≥ u|V ≥ v) =
P(U ≥ u, V ≥ v)

P(V ≥ v)
=

1− FU(u)− FV(v) + C(FU(u), FV(v))
1− FV(v)

. (21)

The trivariate probabilities in Equations (13)–(15) can be found using the univariate CDF estimates,
and bivariate and trivariate copula functions. Below is an example of a trivariate conditional case,
while many other forms could be obtained in a similar fashion:

P(U ≥ u|(V ≥ v, W ≥ w)) =
P(U ≥ u, V ≥ v, W ≥ w)

P(V ≥ v, W ≥ w)
, (22)
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where the bivariate and trivariate joint probability terms on the right-hand side can be expressed
in terms of copula functions. Below are some examples of such expressions linking multivariate
probabilistic terms with copula functions:

P(V ≤ v, W ≤ w) = C(FV(v), FW(w)) (23)

P(V ≥ v, W ≥ w) = 1− FV(v)− FW(w) + C(FV(v), FW(w)) (24)

P(U ≤ u, V ≤ v, W ≤ w) = C(FU(u), FV(v), FW(w)) (25)

P(U ≥ u, V ≥ v, W ≥ w)

= 1− FU(u)− FV(v)− FW(w) + C(FU(u), FV(v)) + C(FU(u), FW(w))

+C(FV(v), FW(w))−C(FU(u), FV(v), FW(w))

(26)

P(U ≥ u or V ≥ v or W ≥ w) = 1−C(FU(u), FV(v), FW(w)). (27)

Equations (9)–(15) describe how T values are estimated for univariate (9), bivariate (10)–(12),
and trivariate (13)–(15) cases. These equations are flexible enough to accommodate investigations
of various spatial–temporal drought characteristics like LD, S, and A (e.g., T of a drought event
with LD ≥ 10 | S >0.80 & A > 0.85 can be calculated). Once the multivariate joint probabilities
of the drought characteristics are determined through these copula functions, T for these drought
characteristics can be determined by plugging these probability estimates into Equations (10)–(15).

2.3. Standardized Precipitation Index (SPI)

In this study, SPI [30] is selected to analyze drought events. It is worth noting that this selection is
arbitrary and inconsequential, while other drought indices (e.g., Percent of Normal, Palmer Drought
Severity Index, Crop Moisture Index, Surface Water Supply Index, Reclamation Drought Index, etc.)
could have been used as well.

SPI can be calculated for different time scales (i.e., 3, 6, 12, etc.), while the obtained time series
(SPI-3, SPI-6, SPI-12, etc.) are used as drought indicators in applications with different goals. From a
drought management point of view, managers may prefer SPI-3 as an indicator to monitor short-term
anomalies, SPI-12 to monitor persistent events, or SPI-6 to have a flavor of both short-term anomalies
and persistent events [31]. Accordingly, in this study SPI-6 is selected for the drought analysis to
quantify the deficits of precipitation. For this purpose, all of the monthly precipitation time series are
stored in a matrix Ps,m, where s refers to each station and m refers to each month. Later six-month
moving-window precipitation sums (PTs,m) are obtained in the form:

PTs,m = Σm
m−5Ps,m. (28)

These PTs,m values are spatially averaged to obtain representative values for the entire study area
in the form:

PTm = ∑D
s=1 Ps,m, (29)

where D is the total number of stations. Following McKee et al. [30], these PTs,m and PTm time series
are later fitted to gamma distribution, where the probability of any given precipitation value is obtained
using this fitted gamma distribution. These probability estimates obtained using PTs,m and PTm are
later converted into SPIs,m and SPIm values, respectively, using the inverse of the standard normal
distribution. Here, SPIs,m values are calculated for each station and month separately, while SPIm is
representative for the entire study area and calculated for each month.

2.4. Drought Characteristics

LD, S, and A are the three drought characteristics considered in this study. The definition
of the dry and the non-dry periods during the study period is made using SPIm time series.
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Following McKee et al. [30], the dry periods are defined to have continuously negative SPI values
and have at least one SPI value below −1.0 (e.g., the time series (−0.23, −0.76, −1.15, −0.52, −0.05)
constitute a drought event, while the time series (−0.23, −0.76, −0.99, −0.52, −0.05) does not).
Accordingly, the periods that are not considered as dry are considered “non-dry” periods. LD and the
length of non-dry periods (LnD) values are calculated as:

LD = (tde − tds) + 1 (30)

LnD = (tnde − tnds) + 1, (31)

where tds and tde are the months a particular drought period started and ended, respectively; and tnds
and tnde are the months a particular non-dry period started and ended, respectively. DIT is obtained as

DIT = LD + LnD. (32)

Even though SPIs,m and SPIm values are available for each month, drought characteristic values
(LD, S, and A) are calculated for each drought period. Among these drought characteristics, LD values
are calculated using SPIm time series. For each drought period, S is calculated as:

S = | 1
LD ∑tde

m=tds
SPIm|. (33)

Separate drought definitions are made for the region and the stations using SPIm and SPIs,m values,
respectively. If the given region is under drought conditions, then individual stations are assessed
as to whether or not they individually satisfy the drought conditions using SPIs,m values. Then the
number of months of each station that are under drought condition during the regional drought period
is calculated. The fraction of station-based drought conditions compared to the duration of regional
drought length is defined as A. If the SPI values for a particular month are only available for four
stations, then A is calculated as the fraction of these four stations that are under drought considering
the length of the particular drought event. Once drought characteristics LD, S, and A are obtained for
each drought period separately, the univariate, bivariate, and trivariate T values of these characteristics
are calculated using Equations (10)–(15).

2.5. Drought Frequency and Visual Analysis

The visual presentation of the multivariate CDFs of the drought characteristics is instructive
for building knowledge about the drought events. However, such analysis requires long datasets
for visually presentable plot generation. In the absence of a sufficiently long time series, it is trivial
to synthetically generate sufficient datasets, while such simulations require the distribution of the
particular drought characteristic (LD, S, or A) to be known in advance. In many cases, observed data
do not follow a specific distribution, and their distributions likely vary depending on the variables and
time series [21]. In this study, LD, S, and A are respectively fitted to various distributions (the seven
advanced with variable support, 23 non-negative, and eight bounded available distributions; Table 2) in
the EasyFit program [32] to find the distribution that resulted in the best fit to the CDF of the observed
drought characteristics data. The best CDF fit is separately found for each drought characteristic using
the Maximum Likelihood method [33] by optimizing the Kolmogrov–Smirnov index [34] within the
EasyFit program. The distributions that resulted in the best CDF fits are later used to synthetically
generate sufficiently long datasets. Here it is stressed that these synthetically generated datasets are
only used for visual representations but not in other analysis.
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Table 2. Fitted distribution functions (total of 38 types).

Advanced with Variable Support Non-Negative Non-Negative Non-Negative Bounded

Gen. extr. val. Burr Gamma Pareto Beta
Gen. logistic Chi-squared Gen. gamma Pareto 2 Johnson SB
Gen. Pareto Dagum Inv. Gaussian Pearson 5 Kumaraswamy

Log–Pearson 3 Erlang Levy Pearson 6 Pert
Phased Bi–exp. Exp. Log-gamma Rayleigh Power func.

Phased bi–Weibull F Log-logistic Rice Reciprocal
Wakeby Fatigue life Lognormal Weibull Triangular

Frechet Nakagami Uniform

2.6. Study Area and the Datasets

Analysis of drought events is very critical over arid and semi-arid regions, like Ankara, Turkey,
where water management projects require knowledge of the water status during a particular
drought period. Among the different types of droughts (meteorological, hydrological, agricultural,
and socioeconomic), this study focuses on the analysis of the spatial–temporal characteristics of
meteorological droughts using monthly precipitation records obtained over six meteorological stations
(Beypazari, Esenboga, Kecioren, Kizilcahamam, Nallihan, and Polatli) distributed over Ankara, Turkey
(Figure 2). These stations are maintained and the datasets are distributed by The General Directorate
of the Turkish State Meteorological Service (TSMS). Precipitation datasets over these six stations
between January 1960 and February 2014 are obtained from TSMS. Precipitation time series for the first
60 months and the last two months for Nallihan and Esenboga stations, respectively (out of a total of
650 months). These missing data are ignored for these missing periods, while they constitute only <2%
of the total datasets. More information about these stations can be found in the study of Sonmez [35].
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Figure 2. Locations of the six meteorological stations where the data used in this study were obtained.

3. Results and Discussion

The drought characteristics LD, S, and A were calculated for each drought period separately
(Table 3). Accordingly, higher S values indicate more severe drought conditions and values
closer to 0 indicate near to normal conditions. For example, the drought event starting in
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July 1985 and ending in January 1986 (Table 3) has an LD of seven months, S of 1.05, and
A of 0.74. Here S is calculated as the absolute value of the average of seven SPI values:
|−(0.28 + 1.04 + 1.50 + 1.42 + 1.60 + 1.33 + 0.17)/7| = 1.05; and A is calculated as the fraction of
total months under drought condition (i.e., the regional average SPI time series show the drought
duration is seven months, while the six separate SPI time series over each station show 31 months
are under drought conditions out of a total of six stations × seven months = 42 months, implying
A = 31/42 = 0.74). Overall results show that drought conditions influenced the study area during 39%
of the total study period (summation of all LD/650 months), while these drought events, on average,
have S of 0.94, last for 6.92 months, and impact 73% of the area covered by the stations (Table 3).

Table 3. Drought characteristics defied by using SPI series values.

Drought
Start of Drought End of Drought

LD S A
Year Month Year Month

1 1960 9 1961 1 5 0.9 0.8
2 1961 8 1962 1 6 0.68 0.67
3 1962 7 1962 11 5 0.94 0.76
4 1965 8 1965 12 5 1.16 0.92
5 1966 9 1967 2 6 0.82 0.78
6 1967 9 1968 1 5 1.05 0.87
7 1969 9 1969 12 4 1.28 0.96
8 1970 8 1971 2 7 0.75 0.64
9 1973 3 1974 4 14 0.84 0.82

10 1974 11 1975 1 3 0.84 0.44
11 1976 7 1976 12 6 0.39 0.17
12 1977 6 1978 1 8 1.03 0.81
13 1978 8 1978 12 5 0.79 0.67
14 1979 7 1979 12 6 1.07 0.5
15 1980 8 1980 12 5 0.95 0.9
16 1981 8 1981 11 4 0.79 0.5
17 1982 10 1983 5 8 0.93 0.94
18 1984 9 1985 3 7 1.28 1
19 1985 7 1986 1 7 1.05 0.74
20 1986 7 1986 12 6 0.86 0.81
21 1987 7 1988 2 8 0.91 0.88
22 1988 9 1989 10 14 0.82 0.92
23 1991 8 1992 2 7 0.53 0.48
24 1992 6 1993 2 9 0.52 0.48
25 1993 7 1995 2 20 1.05 0.86
26 1996 8 1996 12 5 0.48 0.33
27 1998 10 1999 1 4 0.68 0.33
28 2000 9 2001 4 8 1.28 0.94
29 2001 8 2001 11 4 0.76 0.67
30 2003 7 2003 12 6 1.43 0.97
31 2004 7 2005 2 8 1.34 0.98
32 2005 10 2006 1 4 0.78 0.46
33 2007 3 2008 2 12 1.08 0.86
34 2008 6 2008 12 7 0.86 0.48
35 2009 9 2009 12 4 0.93 0.63
36 2012 7 2012 12 6 1.33 1
37 2013 7 2014 2 8 1.46 0.91

Statistics of the above given
37 drought periods

Min 3 0.39 0.17
Mean 6.92 0.94 0.73
Max 20 1.46 1

Droughts tend to start during drier months (July–September) and end during wetter winter
months (November–February). This result is expected as SPI-6 considers six-monthly accumulated



Water 2016, 8, 426 10 of 16

precipitation values (Equation (28)): SPI-6 values for July–September are calculated using relatively
drier months and values for November–February are calculated using relatively wetter months, where
the summer and the winter months are climatologically dry and wet, respectively. This systematic
pattern is consistent with the drought definition of many water resources managers who are interested
in the lack of water. Removal of this strong SPI-6 seasonality may result in reduced SPI-6 sensitivity to
actual water deficit (i.e., anomalies obtained during drier months may not necessarily mean the same
“water deficit” during wetter months), hence SPI-6 seasonality is retained in this study.

Strong linear dependence is found between S and A (correlations are statistically significant at
95% confidence level), while the relationships between other drought characteristics are much weaker
(Table 4). This implies that predictability studies involving S and A may contain high predictive
skill, while particularly LD prediction using LD–S or LD–A relations may not yield accurate results.
Here, drought characteristics LD and A have boundaries (0 and 1.0, respectively); however, there are
not many values close to these boundary values, hence the use of correlation statistics may not be
problematic assuming these drought characteristics are approximately normal.

Table 4. Kendall’s tau and Pearson’s correlations between drought characteristics LD, S, and A.

LDS LDA SA

Kendall’s tau 0.15 0.27 0.63
Pearson‘s 0.10 0.32 0.79

The univariate CDFs of drought characteristics are necessary to fit the copula functions [C(u, v)t],
so the best fitting copula function can be used for further analysis. Here, the best-fitting copula is
obtained after performing validation efforts utilizing C(u, v)e as the truth. For the purpose of fitting
copulas, univariate empirical CDF values are used while the theoretical univariate CDF values are
used in the synthetic simulations described below (Figure 3). Among copula functions, by definition,
the nature of the AMH requires Kendall’s tau between variables to be bounded between −0.18 and
0.33 [27]. Since the S–A pair does not satisfy this requirement (Table 4), an AMH function could not be
fitted to this pair. Leave-one-out type validation of copula parameters show that the elliptical copula
family results in better performance in bivariate and trivariate joint CDF estimation analysis than other
copula families, while normal copula seems to have the best overall performance (Table 5).

Table 5. Parameters (θ or ρ) and RMSE values of bivariate and trivariate copula fitting simulations,
where the three smallest RMSE values are written in bold for each analysis.

Copula
Function

Variables of Bivariate Copulas Variables of Trivariate Copula

LD & S LD & A S & A LD & S & A

(θ/ρ) RMSE (θ/ρ) RMSE (θ/ρ) RMSE (θ/ρ) RMSE

AMH 0.514 0.062 0.895 0.056 - - - -
Clayton 0.280 0.064 0.728 0.058 2.395 0.043 0.930 0.067
Frank 1.272 0.061 2.425 0.058 8.170 0.030 3.026 0.065
GH 1.115 0.065 1.271 0.064 2.514 0.029 1.425 0.070
Joe 1.120 0.070 1.269 0.075 2.966 0.042 1.538 0.084

Normal 0.242 0.059 0.426 0.055 0.839 0.026 0.528 0.054
t-Student 0.244 0.061 0.426 0.056 0.838 0.026 0.528 0.056

Analysis of drought period counts show a drought event is expected on average every 18 months
(i.e., E(DIT) = 650 months/37 droughts). Univariate drought T calculations using the univariate CDF
of variables (Figure 3) show on average drought events with LD ≥ 6.92 are expected every 4.15 years,
S ≥ 0.94 every 3.06 years, and A ≥ 0.73 every 2.53 years (Table 6). However, in many cases these
univariate T estimates may not be sufficient for various drought investigations requiring bivariate
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or trivariate T information. These multivariate drought T values are calculated using the best fitting
copula functions for the bivariate and the trivariate cases. As an example, T is calculated for the
bivariate case as 7.13 years for the drought event with S ≥ 0.94 and LD ≥ 6.92; as 3.41 years for
a drought event with A ≥ 0.73 and S ≥ 0.94; and for the trivariate case T is calculated as 6.65 years for
a drought event with S ≥ 0.94, A ≥ 0.73, and LD ≥ 6.92.
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The theoretical CDF values in the top (LD), middle (S), and bottom (A) panels are calculated using
Wakeby, Pearson 5, and Johnson SB distributions, respectively.

The examples given above could be reproduced for infinitely many drought characteristic pairs
or triplets. However, plots showing their multivariate variations often are necessary to understand
the exact nature of their multivariate relations. However, to generate such plots the lengths of the
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available 37 drought events are not sufficient. Instead, the drought characteristics are fitted to different
distributions and the best fitting distributions are later used to generate synthetic drought characteristic
datasets that are used to generate multivariate T plots (Figures 4 and 5). Parameters result in the
smallest Kolmogorov–Smirnov statistics (Table 7) are used to generate the relevant synthetic datasets.
Results show log-logistic, normal, and logistic distributions result in the best fit (i.e., lowest errors) for
the drought characteristics of LD, S, and A, respectively (Table 7). Hence, these distributions are used
to create synthetic LD, S, and A data.

Table 6. Univariate drought return periods (T).

T (Years)
Drought Characteristics

LD (Month) S (-) A (-)

1.46 3.00 - -
1.47 3.24 - 0.17
1.48 3.26 0.39 0.18
2.53 5.71 0.87 0.73
3.06 6.21 0.94 0.79
4.15 6.92 1.02 0.86

40.57 14.20 1.44 1.00
48.19 15.01 1.46 -

116.83 20.00 - -

Table 7. Kolmogorov–Smirnov statistics and parameters of best theoretical CDF distributions (Figure 3)
for the drought characteristics LD, S, and A.

Drought
Characteristic Distribution Parameters Test Statistic

LD Wakeby α = 6.575; β = 3.344; γ = 1.470; δ = 0.34; ξ = 3.176 0.10
S Pearson 5 α = 167.61; β = 563.17; γ = −2.44 0.08
A Johnson SB γ = −0.733; δ = 0.711; λ = 0.937; ξ = 0.088 0.08

Three drought characteristics (LD, S, and A) are considered in this study, hence three bivariate
drought characteristic pairs (S–LD, A–LD, and A–S) are analyzed. Additionally, three bivariate
drought operators (“and”, “or”, “conditional”) that are suited for various drought applications
are also considered. Accordingly, a total of nine bivariate T maps were obtained for visual
presentation efforts (Figure 4). In Figure 4, the left, middle, and right columns show “and”, “or”, and
“conditional” scenarios, respectively; the top, middle, and bottom rows show the S–LD, A–LD, and
A–S pairs, respectively.

The “and” scenario shows that the bivariate T has a higher sensitivity to LD than S or A: When LD
is included in the bivariate T maps (left middle and top panels), T values are more impacted by LD
than A or S, particularly for higher values of LD, while the sensitivity difference between A–S pairs is
marginal. If a line is drawn from the lower left corner to the upper right corner of the A–S bivariate T
figure (lower-left panel of Figure 4), then the area to the left of this line shows the region where T is
more sensitive to changes in A than S while the area on the right side of the line shows the region where
T is more sensitive to changes in S than A. These results suggest that the overall sensitivity of T to these
drought characteristics can be compared via LD > A–S. On average, bivariate T values are much higher,
particularly for higher values of LD (LD > 10). Similar to the “and” case, the “or” case also show
pareto front type plots but the pareto front direction is reversed (i.e., the middle column): on average
almost one in 2.33 years a mild drought event with “A ≥ 0.73 or S ≥ 0.94” or “LD ≥ 6.91 or S ≥ 0.94”
is observed. As expected, the average T value for the “or” case is much lower than for the “and” case
as the probability of an “or” case is higher than an “and” case. In the case of “conditional” drought T
plots, the T values are most sensitive to the unconditioned value rather than the given observation
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(i.e., the lines are vertical), while this sensitivity decreases as the drought impact increases (higher LD,
S, or A). On average, the dynamic range of T values for conditional case are more similar to the “or”
case, particularly for less severe drought events (e.g., for the bivariate case they range between 1.5 and
42 years). These conditional T values could be particularly useful if certain observations could be
obtained. For example, if S ≥ 0.94, then T values range between 1.86 and 9.95 years for 5 ≤ LD ≤ 10
(Figure 4, top right panel).Water 2016, 8, 426  13 of 16 

 

 

Figure 4. Bivariate T  of drought characteristics obtained using synthetic datasets, where  LD  is given 

in months and  Sത  and  Aഥ  are shown as  S  and   .respectively ,ܣ

Figure  5  shows  that  the  trivariate  T  values  are  conditioned on both  Sത   and  Aഥ. Given  that  it 
would be harder to digest 3D plots, trivariate cases are plotted for four separate  Aഥ  values (0.65, 0.75, 
0.85, and 0.95). Similar  to conditional bivariate plots, conditional  trivariate plots also show  that  T 
values  are  sensitive  to  the  unconditioned  variables  (i.e.,  the  plots  are  perpendicular  to  the 

unconditioned  variable).  Additionally,  the  conditional  trivariate  contour  plots  show  that when 

additional observations are available compared to the bivariate case, then  T  values decrease (i.e., if 
Aഥ ൒ 0.65, it is more likely that drought events with longer duration will happen). For example, the 

bivariate conditional plot for  LD|Sത ൒ 0.7  shows  T  values ranging between 1.95 and 42.04, while the 

trivariate conditional plot for  LD|Sത ൒ 0.7, Aഥ 	൒ 0.95  shows  T  values ranging between 2.05 and 13.69. 

The conditional  T  values have much higher sensitivity to  LD when  Aഥ ൒ 0.75  than when  Aഥ ൒ 0.95 
(Figure 5); for greater  Aഥ  values, the return periods are much smaller for conditional  LD  compared 

to smaller  Aഥ  values. 
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months and S and A are shown as S and A, respectively.

Figure 5 shows that the trivariate T values are conditioned on both S and A. Given that it would
be harder to digest 3D plots, trivariate cases are plotted for four separate A values (0.65, 0.75, 0.85, and
0.95). Similar to conditional bivariate plots, conditional trivariate plots also show that T values are
sensitive to the unconditioned variables (i.e., the plots are perpendicular to the unconditioned variable).
Additionally, the conditional trivariate contour plots show that when additional observations are
available compared to the bivariate case, then T values decrease (i.e., if A ≥ 0.65, it is more likely that
drought events with longer duration will happen). For example, the bivariate conditional plot for
LD|S ≥ 0.7 shows T values ranging between 1.95 and 42.04, while the trivariate conditional plot for
LD|S ≥ 0.7, A ≥ 0.95 shows T values ranging between 2.05 and 13.69. The conditional T values have
much higher sensitivity to LD when A ≥ 0.75 than when A ≥ 0.95 (Figure 5); for greater A values,
the return periods are much smaller for conditional LD compared to smaller A values.
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4. Conclusions

Droughts have many different spatial–temporal characteristics; hence, a better way to describe
them is to use joint probability-based functions, rather than building drought-related analyses on
univariate datasets as joint distribution of these drought characteristics often do not follow a particular
known distribution. The current study offers a methodology to analyze the spatial–temporal
multivariate aspect of droughts via copula functions in a probabilistic approach.

The results show that, among the drought characteristics, S and A are found to have significant
linear dependence, implying their predictions using each other may yield reasonable forecasts, while
the same may not be true for other relationships including LD. On the other hand, bivariate T is
more sensitive to variability in LD than S or A, implying that predictions of bivariate T could be
more accurate with the presence of LD than S or A. Nevertheless, observations of S or A narrow the
variability window of trivariate T predictions, particularly for higher values of S or A; implying that S
or A observations have utility in predictions of T even though such predictions are more sensitive to
variability in LD.

The flexibility of T calculation for different multivariate drought scenarios clearly illustrates the
power of the introduced methodology. Additionally, certain drought characteristics may precede
others, hence such observed drought characteristics may prove very valuable when making inferences
about non-observed drought characteristics, while such relations can be easily studied using the
multivariate conditional copula methodology presented in this study. In particular, trivariate drought
analysis scenarios could prove very helpful in estimating a particular drought characteristic given
availability of other drought characteristic info.
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Drought characteristics often have dataset-specific distributions. Even though elliptical
family-based copula functions yielded better performance in this study, other studies found that
different copula families perform better [13,20]. This implies that the optimality of the copula functions
could be dataset- and case-specific; hence inter-comparisons of copula functions could be necessary
before estimation of return periods in other studies. However, this result should be confirmed via
independent studies before it can be generalized for copula function-related drought analyses.

In this study, ground station-based datasets are utilized in all of the analyses. While they provide
the longest datasets over the most locations, these station-based datasets are spatially limited, often
contain gaps in their time series, and may have user-dependent data quality. On the other hand,
remote sensing-based datasets prove very powerful alternatives to station-based datasets as these
spatially and temporally consistent datasets are available everywhere, including remote locations
where installation of stations is not economically feasible. Therefore, remotely sensed datasets could
be recommended as alternative reanalysis products to be used as such model datasets may provide
consistent and sufficiently long time series for drought analysis.
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