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Abstract: The effect of fine-scale topographic variability on model estimates of ecohydrologic
responses to climate variability in California’s Sierra Nevada watersheds has not been adequately
quantified and may be important for supporting reliable climate-impact assessments. This study
tested the effect of digital elevation model (DEM) resolution on model accuracy and estimates
of the sensitivity of ecohydrologic responses to inter-annual climate variability. The Regional
Hydro-Ecologic Simulation System (RHESSys) was applied to eight headwater, high-elevation
watersheds located in the Kings River drainage basin. Each watershed was calibrated with measured
snow depth (or snow water equivalent) and daily streamflow. Modeled streamflow estimates were
sensitive to DEM resolution, even with resolution-specific calibration of soil drainage parameters.
For model resolutions coarser than 10 m, the accuracy of streamflow estimates largely decreased.
Reduced model accuracy was related to the reduction in spatial variance of a topographic wetness
index with coarser DEM resolutions. This study also found that among the long-term average
ecohydrologic estimates, summer flow estimates were the most sensitive to DEM resolution, and
coarser resolution models overestimated the climatic sensitivity for evapotranspiration and net
primary productivity. Therefore, accounting for fine-scale topographic variability in ecohydrologic
modeling may be necessary for reliably assessing climate change effects on lower-order Sierra Nevada
watersheds (ď2.3 km2).

Keywords: DEM resolution; ecohydrologic modeling; climate change effects; RHESSys;
California’s Sierra

1. Introduction

In recent decades, warmer temperatures in the western United States have led to a reduction of
snow accumulation as well as earlier melt and streamflow [1,2]. Changing snowmelt input has also
altered the timing and magnitude of soil moisture, vegetation water use and productivity [3]. A variety
of hydrological models have been used to assess the effect of climate change on the ecohydrologic
response at various watershed scales [1,4,5]. However, spatial units in these models tend to be
defined at relatively coarse spatial resolutions (>100 m) and thus ignore the fine-scale variation of
topography. Particularly in mountain environments, substantial variation in topographic properties
over relatively short spatial scales is observed, and the distribution of atmospheric forcing variables
(radiation, temperature and precipitation), and local and lateral moisture are often related to this
fine-scale variation in topography. Therefore, ignoring the fine-scale variation of mountain topography
may result in poor predictions of ecohydrologic responses to climate change for small watersheds.
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Previous studies have emphasized the importance of detailed topographic information for
characterizing hydrologic and geomorphic properties of watersheds and obtaining accurate hydrologic
and ecologic predictions [6–8]. Cline et al. [7] showed that the mean snow water equivalent (SWE)
predictions using a 90 m digital elevation model (DEM) are different from the predictions obtained
using a 30 m DEM in the Emerald Lake watershed in California. Zhang and Montgomery [6] showed
that TOPMODEL [9] using a DEM with 10 m resolution improved streamflow predictions compared to
simulations using coarser DEM (30 m and 90 m) for two small catchments in the western United States.
Lassueur et al. [8] demonstrated the usefulness of a fine-resolution DEM to estimate plant species
richness in an alpine landscape.

Studies evaluating the response of model performance to DEM resolution show that sensitivity
varies across sites. Kuo et al. [10] showed that model estimates for slowly undulating landscapes
tend to be less degraded with increasing grid size than those for landscapes with steep valleys. Their
research also found that runoff does not change with grid size in wet years, but does change in dry
years. Model predictions for snow-dominated watersheds may be more sensitive to DEM resolution
than those for rain-dominated watersheds because topographic parameters (elevation, aspect and
slope) determine the energy input, thereby controlling the snow melt patterns [11,12]. DEM resolution
also affects the snow accumulation estimates because many snow models use a simple lapse rate based
on air temperature and elevation to partition the total precipitation into snow and rain.

The effect of DEM resolution on model predictions also varied with the variable of interest [13].
Using Soil and Water Assessment Tool (SWAT) modeling, coarsened DEM resolution was found to
reduce the accuracy of both streamflow and NO3-N load prediction, but not the accuracy of total
P load predictions [13]. A distributed hydrologic model used to predict average soil moisture and
streamflow at the hillslope scale showed that using a coarser DEM did not reduce model accuracy,
but the spatial pattern of soil moisture was distorted [14]. Estimates from a distributed ecohydrologic
model showed that the grid-size effect on net primary productivity (NPP) estimates is more significant
than on evapotranspiration (ET) estimates [15].

These previous studies have focused on the effect of DEM resolution on model predictions
in general. However, the importance of fine-scale topographic variation in hydrologic modeling
for climate change studies and other issues is not well understood. The declines in accuracy with
coarsening resolution noted above may or may not be critical for using models to make inferences
about climate change effects. Vegetation water and productivity are important variables for assessing
the effect of climate change on ecosystem productivity, but previous hydrologic studies do not integrate
the effect of DEM resolution on changes in water availability and the related impacts on modeled ET
and NPP.

This study evaluated the effect of DEM resolution on the accuracy of modeled streamflow,
specifically for rain-snow transition watersheds and snow-dominated watersheds that are expected
to be particularly sensitive to climate change. This study also explicitly tested how DEM resolution
influences the sensitivity of modeled ecohydrologic responses (annual streamflow, summer flow,
annual ET and annual NPP) to inter-annual climate variability. Investigation of the influences of DEM
resolution on the estimates of ecohydrologic responses to historic climate variability serves as an
indicator of the likely importance of DEM resolution for future predictions.

The Regional Hydrologic-Ecologic Simulation System (RHESSys) [16] was applied to eight small
Sierra Nevada watersheds. The watersheds have different dominant precipitation phases (snow vs.
rain), topographic properties (elevation, slope and aspect), and vegetation properties (leaf area index,
rooting depths). This study answers three questions: (1) does the total precipitation phase (snow vs.
rain) control the sensitivity of model estimates to DEM resolution; (2) which topographic parameters
determine the sensitivity of model estimates to DEM resolution; and (3) which variable of interest
among model estimates is the most sensitive to DEM resolution? Model estimates consider both annual
means and inter-annual variation in ecohydrologic variables. To answer these questions, this study
follows the framework outlined in Figure 1. First, this study investigates the effect of DEM resolution
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on topographic parameters (elevation, slope, aspect and wetness index) in the eight watersheds.
Second, this study identifies the watershed sensitivity based on the difference in estimates of the snow
water equivalent (SWE), and the accuracy of modeled daily streamflow among various resolution
models. Finally, this study estimates the sensitivity of the model estimates of the four ecohydrologic
variables (annual streamflow, summer streamflow, annual ET and annual NPP) to DEM resolution.
These tests provide a guideline for determining the appropriate DEM resolution in ecohydrologic
modeling for climate effect assessment for the Sierra Nevada watersheds.
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Figure 1. Framework for studying the effect of DEM resolution on the topographic parameters,
the watershed sensitivity and the long-term ecohydrologic responses to climate in the eight Sierra
Nevada watersheds.

2. Research Sites

This study site is located at the Forest Service’s Kings River Experimental Watersheds (KREW) in
California (Figure 2). RHESSys was implemented for gauged watersheds within the KREW Providence
site (P301, P303, P304 and D102) and the Bull site (B201, B203, B204 and T003). Detailed descriptions of
each watershed are provided below.

2.1. Providence Sites

The Providence sites include P301 (0.99 km2), P303 (1.32 km2), P304 (0.49 km2) and D102 (1.2 km2).
Elevations range from 1485 m to 2115 m. The average annual precipitation (from the year 2002 to the
year 2006) is 1350 mm. Precipitation occurs primarily in the winter as a mixture of snow and rain,
and with little contribution of storm rainfall during the summer. In Providence sites, 20% to 50%
of the annual precipitation falls as snow [17]. Following the snow regime classification developed
by Jefferson [18], P301, P303, P304 and D102 are transient snow watersheds (TSWs). The major soil
types are Shaver soil and Gerle-Cagwin soil [17]. The runoff ratio for the Providence sites ranges
from 0.23 to 0.36. P304 has the largest runoff ratio at 0.36, and P303 has the lowest value at 0.23.
The dominant forest type is Sierran mixed-conifer forest with some mixed chaparral and barren land
cover. Sierran mixed-conifer vegetation in this location consists largely of white fir (Abies concolor),
ponderosa pine (Pinus ponderosa), black oak (Quercus kelloggii), sugar pine (Pinus lambertiana) and
incense cedar (Calocedrus decurrens). Two climate stations are located near or in the P303 watershed.
A station is located near the outlet of the P303 watershed, while the other station is at the top of the
P303 watershed. At the two stations, hourly precipitation, minimum and maximum air temperature,
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relative humidity, solar radiation, wind speed and direction and snow depth have been measured since
2002. The snow depth data are collected using acoustic snow-depth sensors (Judd Communications TM
LLC). At the upper climate station, SWE is measured with snow pillows (Mendenhall Manufacturing,
McClellan, CA, USA). Each watershed has two flumes at the outlet to measure low and high flows.
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sites: (a) Providence sites and (b) Bull sites.

2.2. Bull Sites

The Bull sites include B201 (0.53 km2), B203 (1.4 km2), B204 (1.7 km2) and T003 (2.3 km2).
Elevations range from 2050 m to 2490 m. The average annual precipitation (from the year 2003
to the year 2007) is 1300 mm. The Bull site is more snow-dominated (75% to 95% of precipitation
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falls as snow) than the Providence site. B201, B203, B204 and T003 are classified as snow-dominated
watersheds (SDWs). The runoff ratio for the Bull sites ranges from 0.36 to 0.53. The runoff ratio values
for the Bull sites are larger than those for the Providence sites. B203 has the largest runoff ratio at
0.53, and T003 and B201 have the lowest value at 0.36. The major soil type is Cagwin soil [18]. Similar
to the Providence site, the dominant forest type in the Bull site is Sierra mixed conifer; however,
red fir (Aibes magnifica) is more dominant at this elevation than white fir. Two climate stations are
located near or in the B204 watershed. The lower climate station is located near the outlet of the B204
watershed, while the upper station is located at the top of the watershed. The station measures the
same meteorological variables as at the Providence meteorological stations, and the meteorological
data has been collected since year 2003. Each watershed has two flumes at the outlet of the watershed
to measure high and low flow, and streamflow has been measured since 2003. A detailed description
of measurements and instruments is provided by Hunsaker et al. [17].

3. Methodology

3.1. Effect of DEM Resolution on Topographic Parameters

This study tested the effect of the DEM resolution on topographic parameters including elevation,
aspect, slope and topographic wetness index for the eight Sierra Nevada watersheds. The topographic
wetness index [9] is defined as lnp a

tanβ q, where a is the local upslope contributing area per unit contour
length and tanβ is the slope angle of the ground surface. Each DEM product was derived from a 1 m
LIDAR DEM (available at https://eng.ucmerced.edu/snsjho/files/MHWG/LiDAR) with a bilinear
interpolation algorithm. Providence and Bull site boundaries were derived from 5 m LIDAR DEM
in order to minimize the effect of the DEM resolution on deriving the watershed area. However, due
to the irregular edges, small differences in estimating the watershed area are unavoidable. Other
topographic parameters including elevation, slope, aspect and wetness index were derived with five
different resolutions (5 m, 10 m, 30 m, 90 m and 150 m).

The Wilcox rank-sum test was used to quantify the difference of the topographic parameters
between the finest DEM (5 m) and other coarser DEM resolutions (10 m, 30 m, 90 m and 150 m)
(Table 1). Values for topographic parameters were taken from each grid cell within the watershed
boundaries. For all watersheds and for all DEM resolutions, the watershed mean values of slope
and wetness index are significantly different (p-value < 0.01) from those computed using the 5 m
resolution. However, coarsening the DEM generally does not influence the mean values of elevation
and aspect except in few cases. For example, for two of Providence’s transient snow watersheds (D102
and P304), the mean values of elevation using 10 m are significantly different (p-value < 0.05) than
those computed using 5 m. Among the snow-dominated watersheds, B204’s mean aspect values using
90 m and 150 m are significantly different (p-value < 0.1) from those computed using 5 m. T003 also
has significantly different (p-value < 0.1, p-value < 0.01) mean values of aspect using 5 m compared
with those computed using 10 m, and the resolution greater than 10 m, respectively.

Density plots were used to qualitatively compare the overall distributions of the topographic
parameters. The density plots for only slope and wetness index parameters are presented in
Figures 3 and 4 because these two parameters have the most significant change with coarsening DEM.
In general, coarsening DEM decreases the mean of slope and its variation for all watersheds. Across all
watersheds in the Bull and Providence sites, the largest difference in the distribution of slopes occurs
between 5 m and 90 m, and between 5 m and 150 m resolutions; there is a similar distribution of slope
between 5 m and 10 m, between 5 m and 30 m.
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Table 1. The watershed mean values of topographic parameters with various digital elevation model
(DEM) resolution (5 m, 10 m, 30 m, 90 m and 150 m) for the Providence sites and the Bull sites.

Watershed

Watershed Mean Value of Topographic Parameters 1

Parameter
DEM Resolution

5 m 10 m 30 m 90 m 150 m

P301

Elevation (m) 1975.9 1976.6 1976.7 1975.5 1982.1
Slope (˝) 12.3 11.9 *** 10.7 *** 9.2 *** 7.8 ***

Aspect 2 (˝) 258.8 259.0 256.5 256.3 266.6
Wetness (m) 5.9 6.2 *** 7.0 *** 7.8 *** 8.4 ***

P303

Elevation (m) 1894.8 1894.5 1895.4 1890.9 1901.7
Slope (˝) 14.0 13.7 *** 12.6 *** 11.6 *** 10.7 ***

Aspect 2 (˝) 214.4 214.9 214.4 212.4 218.2
Wetness (m) 6.0 6.5 *** 7.2 *** 7.8 *** 8.0 ***

P304

Elevation (m) 1898.1 1896.8 * 1898.1 1894.3 1905.5
Slope (˝) 13.8 13.5 *** 12.5 *** 10.7 *** 8.5 ***

Aspect 2 (˝) 165.8 166.5 167.1 162.5 169.7
Wetness (m) 5.9 6.2 *** 6.8 *** 7.7 *** 8.0 ***

D102

Elevation (m) 1772.0 1774.8 ** 1772.8 1767.4 1785.4
Slope (˝) 19.2 18.6 *** 17.4 15.8 *** 14.8 ***

Aspect 2 (˝) 200.8 200.9 200.8 199.6 203.4
Wetness (m) 5.7 6.1 *** 6.9 *** 7.6 *** 7.7 ***

B201

Elevation (m) 2253.8 2253.7 2254.4 2251.9 2248.4
Slope (˝) 12.5 12.3 *** 11.7 *** 10.0 *** 9.3 ***

Aspect 2 (˝) 217.2 217.2 215.8 215.4 214.8
Wetness (m) 6.3 6.5 *** 6.9 *** 7.7 *** 7.9 ***

B203

Elevation 2371.9 2371.6 2372.4 2372.7 2369.6
Slope 12.1 11.9 *** 11.3 *** 9.7 *** 8.3 ***

Aspect 189.4 189.5 188.9 184.9 184.0
Wetness 6.4 6.7 *** 7.2 *** 7.8 *** 8.0 ***

B204

Elevation 2360.3 2360.0 2360.7 2361.0 2357.3
Slope 12.1 11.9 *** 11.1 *** 9.0 *** 8.2 ***

Aspect 178.2 177.8 176.7 173.2* 172.6*
Wetness 6.3 6.5 *** 7.0 *** 7.8 *** 8.4 ***

T003

Elevation 2286.5 2287.0 2285.8 2283.2 2292.8
Slope 15.7 15.5 *** 14.5 *** 11.7 *** 9.7 ***

Aspect 304.0 304.1 * 305.1 *** 309.3 *** 308.8 ***
Wetness 6.0 6.2 *** 6.6 *** 7.4 *** 8.2 ***

Notes: 1 Watershed-scale parameter values; 2 Aspect is calculated with Grass GIS program (r.slope.aspect): 90˝

is North, 180˝ is West, 270˝ is South, and 360˝ is East. The aspect having zero is used to indicate undefined
aspect in flat areas with slope having zero. p-value of Wilcox rank-sum test; Asterisks indicate a significant
difference in mean values between the topographic parameters computed using the 5 m DEM and those using
the coarser DEMs (* p < 0.1; ** p < 0.05; *** p < 0.01).

Coarsening the DEM increases the mean of the wetness index, but inconsistently changes the
variance of the wetness index (Figure 4). The changes in the wetness index distribution with resolution
are not linear and different resolutions often have different shapes of the wetness index distribution.
TSWs and SDWs have a substantial change in the distribution of the wetness index at resolutions
coarser than 10 m and 30 m, respectively. These results suggest that the DEM resolution may have a
larger effect on local moisture estimates and lateral flow drainage patterns.
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This study also estimated the watershed-scale mean and standard deviation of slope and wetness
index computed using the different DEM resolutions (Figure 5). At 5 m, D102 and T003 have the
largest mean slope of 19.2 and 15.7 for TSWs and SDWs, respectively. Among TSWs, P304 has the
largest change in mean slope (5.3, 38%), and among SDWs, T003 has the largest change in mean
slope (6.0, 38%) with different DEM resolutions. TSWs tend to have larger spatial variance of slope
at 5 m than SDWs, but the change in the spatial variance of slope with coarsening DEM is similar
between TSWs and SDWs. SDWs tend to have a larger mean wetness index at 5 m than TSWs, but
TSWs tend to have larger spatial variance of wetness index at 5 m than SDWs. Among TSWs, the
spatial variances of the wetness index for P303 and D102 tend to decrease with coarsening DEM.
Their variances for P301 and P304 increase with coarsening resolution up to 30 m, and their variances
decrease at 90 m and 150 m, respectively. Among SDWs, the spatial variances of wetness index for
B203 and B204 increase for resolutions up to at 30 m, and then decrease. Spatial variance of the wetness
index for B201 slightly decreases with coarsening DEM. However, its variance for T003 increases
with coarsening DEM. In summary, increasing the DEM resolution generally decreases the mean and
standard deviation of the slope, and increases the mean wetness index for all watersheds. The changes
in the standard deviation of the wetness index with coarsening the DEM have more complex patterns
than other parameters.
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Figure 5. Watershed-scale statistical properties (mean and standard deviation) for slope and wetness
index in the eight Sierra Nevada watersheds computed with increasingly coarse DEM resolution.
(a) watershed mean values of slope; (b) watershed standard deviation of slope; (c) watershed mean
values of wetness index; and (d) watershed standard deviation values of wetness index. Red color line
refers to TSWs; black color line refers to SDWs.
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3.2. Model Description

The RHESSys [16] was used to investigate the effect of DEM resolution on the model estimates
of ecohydrologic fluxes of the eight small Sierra Nevada watersheds in California. The RHESSys is a
physically-based, distributed ecohydrologic model. The RHESSys is under continuous development.
In this study, version 5.15.r326 was used. A detailed description of the model is provided in [16].

The RHESSys has a hierarchic spatial structure to partition the landscape: basins, hillslope, zones,
patches and canopy strata. Patch and canopy strata are the smallest spatial units, and these can be
derived using various layers: landcover, soil and elevation maps. In this study, a patch was defined
as a grid cell with uniform elevation. Hydrological variables including snow, soil moisture and
evapotranspiration are computed at the patch level. Within a patch, multiple horizontal and vertical
canopy layers can be potentially used, but in this study we used a simple, single, vertical-layer canopy
strata with the same horizontal (spatial) resolution as the patch. In addition to a canopy layer, patches
also contain a litter layer. Zones were used to characterize the spatial and temporal distribution of
climate inputs including precipitation, air temperature and solar radiation. To account for the fine-scale
variability of the climate within a watershed, we defined zones using the same spatial data (elevation
grids) that are used to define the patches. In the RHESSys, basins are the largest spatial unit, and it
is generally defined as a hydrologically closed drainage area. In this study, the basins were created
based on the stream gauging station, using r.water.outlet (GRASS GIS, (http://grass.osgeo.org/)).
Hillslope maps were created using r.watershed, and the multiple flow direction algorithm [19] was
used to create the flow direction maps, and a hillslope drains a single stream reach. Lateral flow is
organized within a hillslope, and is computed at the patch level.

The minimum climate data required for model simulation include daily precipitation, and daily
maximum and minimum air temperature data. Other climate data (including solar radiation, saturation
vapor pressure, relative humidity, etc.) are computed using a climate interpolation model (MT-CLIM,
Running et al. [20]). Mountain watersheds have frequently experienced a lack of available climate
data usable for hydrologic modeling, largely due to high climate variability along steep topographic
gradients. MT-CLIM has been tested and improved using field data, and has successfully reproduced
the field measured climate data [21–23].

Energy, wind and water are attenuated through the aboveground canopy, using standard
approaches such as Beer’s Law for radiation extinction as a function of vegetation leaf area index.
Snowmelt is estimated using a combination of an energy budget approach for radiation-driven melt
and advective-driven melt (rain on snow) with a temperature index-based approach for sensible and
latent heat exchange. The partitioning of total precipitation into snow versus rain is calculated based
on linear temperature threshold values. Transpiration from the canopy and evaporation of intercepted
water and soil evaporation are computed using the Penman-Monteith [24] approach, where stomatal
conductance for vegetation is computed using a Jarvis multiplicative model of radiation, vapor
pressure deficit, rooting zone soil moisture and temperature controls [25]. Net primary productivity
is estimated as the difference between gross photosynthesis and respiration. Gross photosynthesis
is estimated using the Farquhar model [26]. Respiration is computed separately for different plant
components (leaves, live/dead wood and roots) as a function of biomass, nitrogen content and air
temperature [27]. Infiltration and vertical drainage between unsaturated and saturated stores is a
function of soil hydraulic parameters. A lateral shallow groundwater flux is calculated based on
hydraulic gradients (determined by surface topography) and soil hydraulic conductivity, and is
explicitly routed between patches. The explicit routing scheme is based on topographic slope and soil
transmissivity. The model also includes a bypass flow mechanism to simulate direct drainage through
macropores from surface to deep groundwater storage. The flow from deep groundwater storage is
calculated based on a linear storage equation.

This study compared RHESSys estimates from model implementations using five different
resolutions (5 m, 10 m, 30 m, 90 m and 150 m). For example, for RHESSys, the DEM is used to
derive topographic parameters (elevation, aspect, slope and flow drainage parameter (e.g., wetness

http://grass.osgeo.org/
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index)) that determine the distribution of the microclimate (radiation, temperature, etc.), and local
and lateral moisture distribution. Changing the DEM resolution is therefore expected to affect
the RHESSy model estimates, including SWE, ET, NPP and streamflow. Each resolution model
had the same vegetation definition map. The vegetation type for all watersheds was assigned as
mixed conifer. Associated vegetation type parameters were taken from RHESSys parameter libraries
(http://fiesta.bren.ucsb.edu/~rhessys/index.html). Leaf area index (LAI) was derived from the
LIDAR point cloud using a deterministic approach [28] and was used to initialize vegetation carbon
and nutrient stores. To minimize the effect of LAI resolution on model estimates, 30 m LAI was used for
all resolution models. We recalibrated the model for each DEM resolution—thus, each resolution has a
unique set of parameters. We chose this option, rather than running with the same parameterization,
because this better reflects how models are typically implemented—and the focus of the paper is
exploring how model implementations (which include calibration) influence estimates. While in this
paper we focus on differences in model estimates based on an optimal parameter set, we note, however,
that the different resolutions may also be associated with differences in parameter uncertainty.

3.3. Model Calibration

We used a 5 m resolution model as a baseline model. Snow-related parameters were estimated
by comparing model SWE predictions of the 5 m resolution model with measured snow depths (or
measured SWE) at the climate stations. Table 2 shows estimated air temperature and snow-related
parameters for the Providence and the Bull sites. The two climate stations are located at the top and
bottom of the watersheds, respectively. Thus, air temperature lapse rates for the Providence and
Bull sites were estimated using the difference of the elevations and the difference of the measured
air temperatures at the two climate stations, respectively. Positive lapse rates for maximum daily
temperature and negative lapse rates for minimum daily temperature are obtained for both sites.
Since the climate stations (Lower Providence and Lower Bull) at lower elevations are located in a
valley or a potential cold pool drainage area, the measured air temperature data at the station may
reflect the nighttime temperature inversion. The two snow-related parameters, the temperature melt
coefficient and the temperature threshold value for the partitioning of total precipitation into rain
and snow, were estimated by adjusting the parameter values until the model prediction was similar
to the measured snow depth or SWE. The Providence and Bull sites have similar temperature lapse
rates and the same temperature melt coefficients and temperature threshold values. To compare the
model estimate of the SWE and measured snow depths, the day of complete snowmelt in the four
climate stations was calculated (Table 2). Model estimates were compared to measurements taken
by acoustic snow-depth sensors. The model reproduces the timing of observed snowmelt at the four
climate stations. The comparison of the model estimates with measured values results in R2 values
of 0.92, 0.86 in the Providence stations and the Bull stations. The comparison of the modeled SWE
with measured SWE at the Upper Providence and the Upper Bull stations results in R2 values of 0.91
and 0.83, respectively. In general, the model accuracy for SWE estimation is slightly better at the
Providence station (transient snow watersheds) than at the Bull station (snow-dominated watersheds).

After snow-related parameters were estimated, soil parameters were calibrated by comparing
daily estimates of model streamflow to measured streamflow. The calibrated soil parameters are
anisotropic horizontal and vertical saturated hydraulic conductivity (Ksat_h, Ksat_v), the decay
coefficient of saturated hydraulic conductivity with depth (m), the proportion coefficient of macro-pore
drainage into deep groundwater storage (gw1), air entry pressure (ae) and pore size index (psi).
The linear coefficient of deep groundwater storage (gw2) is fixed as zero to reflect deep groundwater
losses that are not captured by the stream gauge. In addition, to account for the observed difference of
the rooting depth across watersheds, Providence watersheds are assigned a 2 m rooting depth, and
Bull watersheds are assigned a 1 m rooting depth [17].

http://fiesta.bren.ucsb.edu/~rhessys/index.html
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Table 2. Calibrated snow-related parameters and the model accuracy of snow predictions for the
Providence and Bull watersheds.

Watershed

Snow-Related Parameters Model Accuracy of
Snow Predictions

Temperature Lapse Rates 1

(tmax/tmin) (˝C/m)
Temperature Threshold for

Rain vs. Snow 2 (˝C)
Temperature Melt

Coefficient 3 (m/˝C)
Day of Snow

Melt 4 SWE 5

Providence 0.0063/´0.0064 ´3-3 0.005 0.92 0.91
Bull 0.0068/´0.0060 ´3-3 0.005 0.83 0.83

Notes: 1 Since fine-spatial-scale air temperature is not available in the two watersheds, air temperature within
a watershed is spatially interpolated with the given elevation and the calculated temperature laps rates; 2 To
partition total precipitation into snow and rain, we use the air temperature as a proxy variable, and the
proportion of snow and rain in the total precipitation is linearly interpolated based on the minimum and
maximum temperature values; 3 Temperature melt coefficient accounts for snowmelt due to latent heat and
sensible heat; 4 The day of snowmelt is estimated using observed snow depths and the modeled SWE value,
and the correlation coefficient is measured; 5 The measured SWE data are available in the upper Providence and
upper Bull station.

To evaluate the model streamflow accuracy, this study adopted a multi-objective approach. Many
hydrologic modeling studies have found that using a single accuracy measure can bias the evaluation
of the model performance [29]. This study’s accuracy measures are listed in Equations (1)–(4). Each
measure focuses on a particular aspect of flow variation. Nash-Sutcliffe efficiency (NSE) [30] focuses
on peak streamflow. Log Nash-Sutcliffe efficiency (LNSE) is the log value of the Nash-Sutcliff efficiency
and focuses on recession and low flow. Percent Error (PerErr) is the percent volume error and focuses
on flow bias. The three accuracy measures are combined to evaluate the model streamflow accuracy
robustly (Equation (4)). This accuracy measure ranges from 0 to 1 with 1.

NSE “ 1´
ř

i
`

Qobs,i ´Qsim,i
˘2

ř

i
`

Qobs ´Qsim,i
˘2 (1)

LNSE “ 1´
ř

i
`

logpQobs,iq ´ logpQsim,iq
˘2

ř

i

´

logpQobsq ´ logpQsim,iq
¯2 (2)

PerErr “

`

Qobs ´Qsim
˘

Qobs
(3)

Total Accuracy “ NSEˆ LNSEˆ PerErr (4)

where Qobs,i is the observed streamflow and Qsim,i is the simulated flow at daily time step (i), and Qobs,
Qsim are the long-term average of observed daily streamflow and simulated streamflow, respectively.

Mean annual values for each flux (flow, ET and NPP) were computed to quantify the long-term
average ecohydrologic responses to climate. The coefficient of variation (COV) was also calculated to
quantify the inter-annual variation of each flux for climate sensitivity. The sensitivity of the mean and
COV for each flux to DEM resolution was calculated. A long-term historical climate period (>50 years)
is required to investigate the sensitivity of model estimates to inter-annual climate variability. However,
at the time of this study the KREW streamflow and basic climate data were relatively short, just five
years. Therefore, this study used the long-term climate data of the Grant Grove station located 28 km
south of the Bull sites. The Grant Grove station has similar temporal precipitation and temperature
patterns to the Providence and the Bull climate stations. The long-term climate data for the Providence
and the Bull climate stations were estimated by fitting the local climate station data to the Grove Grant
station data. The mean annual precipitation of the Bull and Providence stations for the period of 2003
to 2007 and 2002 to 2006, respectively, was divided by the mean annual precipitation of the Grant Grove
station in order to estimate precipitation scaling factors for each station. To generate long-term daily
precipitation data for the Providence and the Bull stations, the respective precipitation scaling factor
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(1.22 and 1.21) was applied to the Grant Grove station’s daily precipitation data. To generate long-term
daily maximum and minimum air temperature data for the two watersheds, linear regression models
were estimated by fitting the local temperature data from the Providence and Bull climate stations to
the Grant Grove station’s climate (0.73 < R2 < 0.89).

3.4. Effect of DEM Resolution on Model Accuracy and Long-Term Ecohydrologic Responses to Climate

This study tested the effect of DEM resolution on the accuracy of modeled streamflow
(Equations (1)–(4)), and on the sensitivity of estimated ecohydrologic response to inter-annual climate
variability. Three hypotheses were developed with respect to differences in the sensitivity of the model
estimates to DEM resolution for transient snow watersheds (TSWs) and snow-dominated watersheds
(SDWs). The first hypothesis is that the flow estimates for TSWs are more sensitive to DEM resolution
than the flow estimates for SDWs. The underlying assumption for this hypothesis is that TSWs may
have a larger change in precipitation phase (snow vs. rain) with the changing spatial resolution of DEM
because TSWs more frequently experience air temperature close to 0 ˝C (threshold temperature, Table 2)
than SDWs. The change in precipitation phase affects snow accumulation, which influences melt rates
and streamflow estimates. Flow estimates in TSWs therefore will be more sensitive to DEM resolution
than flow estimates in SDWs. The second hypothesis is that the change in the spatial variance of the
wetness index is the dominant topographic parameter that determines the flow sensitivity to the DEM
resolution. When the DEM resolution is coarser, a large change in the spatial variance of the wetness
index for the eight watersheds was observed (Figure 5d). Even though RHESSys does not use the
wetness index directly for calculating the flow, change in the spatial variance of the wetness index with
a coarsening DEM may reflect the influence of DEM resolution on the flow network in RHESSys and
ultimately the accuracy of flow estimates [31].

This study also compared the sensitivity of four key ecohydrologic estimates to DEM
resolution—annual streamflow, summer streamflow (August flow), annual ET and annual NPP.
The third hypothesis is that the sensitivity of the annual and summer streamflow estimates is more
sensitive to DEM resolution than annual ET and NPP estimates. Here it is assumed that flows
are controlled by topographic variation; the dominant controls of ET and NPP are climate and
vegetation properties.

4. Results

4.1. Effect of DEM Resolution on Snow Predictions

To evaluate the effect of DEM resolution on SWE estimates, we calculated the watershed-scale
peak SWE at the five different resolutions and the mean absolute difference in the watershed-averaged
daily SWE estimates between the 5 m resolution and other coarser resolutions (Figure 6). Peak SWE
across the watersheds ranges from 303 mm to 607 mm for the 5 m resolution model. The change in
peak SWE estimates between the different resolutions is always less than 3% (Figure 6a). The mean
absolute difference in the watershed-averaged SWE between 5 m and other coarser resolutions varies
between watersheds (Figure 6b). The differences range from 0.3 to 4.5 mm. Their difference is relatively
indistinguishable compared with the peak SWE that ranges from 303 mm to 608 mm. Therefore, the
difference in SWE change with coarsening DEM is minor for the eight watersheds.
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in mean absolute watershed SWE estimates between 5 m and coarser resolutions.

4.2. Effect of DEM Resolution on Streamflow Prediction Accuracy

To quantify the effect of DEM resolution on streamflow predictions, we calculated the change in
the four different streamflow accuracy measures with coarsening the DEM and compared the change
in the streamflow accuracies between the eight watersheds. Figure 7 shows that the model accuracies
declined with coarsening DEM resolutions for all watersheds. In general, there is a threshold resolution
(10 m) above which coarser resolutions have a larger effect on streamflow prediction accuracy. Among
TSWs, P304 and D102 equally have the largest reduction in streamflow total accuracy (Equation (4))
from 0.30 to 0.09 (71%) between 10 m and 30 m, and from 0.30 to 0.09 (71%) between 5 m and 90 m,
respectively. P301 has the smallest reduction in streamflow accuracy (Equation (4)) from 0.48 to 0.36
(25%) between 5 m and 90 m. Among SDWs, B203 has the largest reduction in streamflow accuracy
from 0.64 to 0.29 (55%) between 5 m and 150 m. T003 has the smallest reduction in streamflow accuracy
(Equation (4)) from 0.55 to 0.47 (15%) between 10 m and 90 m. In general, streamflow estimates for the
SDWs are more accurate and less sensitive to coarsening DEM resolution than the TSWs are.

Among the accuracy measures, PerErr changes most with coarsening DEM compared to the other
individual measures (Figure 7b–d). The high sensitivity of PerErr may reflect the model error due to
the impact of resolution on evapotranspiration estimates. LNSE values for most watersheds are least
sensitive to DEM resolution (Figure 7c). NSE values for the TSWs are more sensitive to changes in
DEM resolution than NSE values for the SDWs (Figure 7b). Among TSWs, NSE and LNSE values for
P301 are the least sensitive to DEM resolution. The streamflow estimates for P304 are also the least
accurate by all measures compared to the other TSWs (Figure 7d). Most watersheds have the highest
streamflow accuracy at 5 m; however, in P304, the 5 m resolution model failed to reproduce observed
streamflow at an acceptable level (Equation (4) > 0). In RHESSys, surface topography is assumed to
reflect the subsurface topography, but this assumption may not be valid in this watershed. Among
TSWs, P304 with poor model performance has the highest summer flow rate [17], and shows different
sediment load variability, sources and erosion rates than other TSWs [32].



Water 2016, 8, 321 14 of 20

Water 2016, 8, 321  14 of 20 

 

 

Figure 7. The model performance of streamflow prediction with different DEM resolutions. (a) total 

accuracy measure combining NSE, LNSE and PerErr; (b) NSE; (c) LNSE and (d) PerErr (percent error). 

The 150 m resolution models for transient snow watersheds P301, P304 and D102 have higher 

accuracy than the 90 m resolution models. Similar results are observed for some SDWs where the 5 

m resolution model has lower streamflow accuracy than the 10 m resolution model. Among SDWs, 

the  streamflow  accuracy  for  B201  is  similar  to  those  for  TSWs,  especially  regarding  the  LNSE 

measure. NSE  and LNSE  for B201  are more  sensitive  to DEM  resolution  compared  to  the  other 

watersheds. Other research [33] suggested that B201 has a smaller subsurface flow component than 

other Bull  sites,  and  the  authors hypothesized  that  the bedrock geomorphology  at B201 may be 

different  from  the other watersheds. These results suggest  that  the model accuracy of streamflow 

depends  on  how  well  surface  topography  at  different  resolutions  emulates  the  subsurface 

topography  for  individual  watersheds.  In  addition  to  issues  related  to  subsurface  controls  on 

streamflow,  other  unobserved  differences  in  vegetation  and  drainage  properties  may  have 

contributed to these differences in accuracy. 

Since RHESSy discretizes  the watersheds based on DEM, and explicitly  routes  the  flow and 

nutrient  fluxes  per  grid  or  patch,  increasing  the  DEM  resolution  will  lead  to  increasing  the 

computation running time. In our experiment, running times of the daily time step per year for T003, 

the largest watershed (2.3 km2), using a MacBook Pro (2.7 GHz Intel Core i5, 8 GB memory) were 

1087 s (5 m), 621 s (10 m), 67 s (30 m), 7 s (90 m), 1 s (150 m). Therefore, the improved model results 

at 10 m require a longer time period to run the model than a scale of 30 m, but it still runs in 10 min 

which is very reasonable given the improvement. 

4.3. Sensitivity of Estimated Ecohydrologic Variables to DEM Resolution 

This  study  investigated  how  DEM  resolution  affects  the  long‐term  average  ecohydrologic 

responses  (annual  flow,  summer  flow,  annual ET,  and  annual NPP)  to  climate  (Figure  8). Mean 

annual streamflow estimates generally increase with coarser DEMs, especially for grid sizes that are 

Figure 7. The model performance of streamflow prediction with different DEM resolutions. (a) total
accuracy measure combining NSE, LNSE and PerErr; (b) NSE; (c) LNSE and (d) PerErr (percent error).

The 150 m resolution models for transient snow watersheds P301, P304 and D102 have higher
accuracy than the 90 m resolution models. Similar results are observed for some SDWs where the 5 m
resolution model has lower streamflow accuracy than the 10 m resolution model. Among SDWs, the
streamflow accuracy for B201 is similar to those for TSWs, especially regarding the LNSE measure.
NSE and LNSE for B201 are more sensitive to DEM resolution compared to the other watersheds.
Other research [33] suggested that B201 has a smaller subsurface flow component than other Bull sites,
and the authors hypothesized that the bedrock geomorphology at B201 may be different from the other
watersheds. These results suggest that the model accuracy of streamflow depends on how well surface
topography at different resolutions emulates the subsurface topography for individual watersheds.
In addition to issues related to subsurface controls on streamflow, other unobserved differences in
vegetation and drainage properties may have contributed to these differences in accuracy.

Since RHESSy discretizes the watersheds based on DEM, and explicitly routes the flow and
nutrient fluxes per grid or patch, increasing the DEM resolution will lead to increasing the computation
running time. In our experiment, running times of the daily time step per year for T003, the largest
watershed (2.3 km2), using a MacBook Pro (2.7 GHz Intel Core i5, 8 GB memory) were 1087 s (5 m),
621 s (10 m), 67 s (30 m), 7 s (90 m), 1 s (150 m). Therefore, the improved model results at 10 m require
a longer time period to run the model than a scale of 30 m, but it still runs in 10 min which is very
reasonable given the improvement.

4.3. Sensitivity of Estimated Ecohydrologic Variables to DEM Resolution

This study investigated how DEM resolution affects the long-term average ecohydrologic
responses (annual flow, summer flow, annual ET, and annual NPP) to climate (Figure 8). Mean
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annual streamflow estimates generally increase with coarser DEMs, especially for grid sizes that are
coarser than 30 m. P304 and B203 are exceptions. T003 has the largest increase (44%) in mean annual
flow, and B204 has the smallest increase (8%) in mean annual flow. Of the eco-hydrologic variables
that we examined, mean summer flow is the most sensitive to DEM resolution, especially for SDWs,
and generally increases with coarser DEMs. Among SDWs, T003 has the largest increase (150%) in
mean summer flow with coarsening DEM. Among TSWs, P303 has the smallest decrease (21%) in
mean summer flow. Mean annual ET values for SDWs are more sensitive to DEM resolution than
TSWs. Coarsening the DEM reduces the mean annual ET. B201 has the largest change (33% decreases)
in mean annual ET, and P301 has the smallest change (16% decreases) in mean annual ET. For most
watersheds, coarsening DEM decreases the mean annual NPP. Compared with TSWs, mean annual
NPP for SDWs is more sensitive to DEM resolution. T003 has the largest (50%) decrease in mean
annual NPP, and P303 has smallest (14%) decrease in mean annual NPP.
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We investigated the effect of DEM resolution on the sensitivity of each flux to inter-annual climate
variation by calculating the COV at each resolution (Figure 9). TSWs tended to have a higher COV than
SDWs for estimated annual streamflow, summer flow, annual ET, and annual NPP at 5 m. Coarsening
the DEM has varied effects on the COVs among watersheds, and on the variables of interest. SDWs
have higher changes in COV with the coarsening DEM resolution than TSWs. SDWs have larger
increases in COV for annual NPP and larger decreases in COV for summer flow. There is not a large
difference in the change of COV values for annual flow and annual ET between TSWs and SDWs. The
COV values of annual NPP have the largest change with coarsening DEM, and the COV values of
annual flow have the smallest change.
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Water 2016, 8, 321 17 of 20

5. Discussion and Summary

This study was performed to improve our understanding of how DEM resolution affects
ecohydrologic estimates in the context of using a model to evaluate climate change effects in small
mountain watersheds. Three hypotheses were posed to test the DEM sensitivity within the TSW and
SDW groups of watersheds and among the variables of interest: (1) model estimates for transient snow
watersheds (TSWs) will have a higher sensitivity to DEM resolution than the model estimates for
snow-dominated watersheds (SDWs); (2) changes in the spatial variation of the wetness index will
explain the watershed sensitivity to DEM resolution; and (3) flow estimates will be more sensitive to
DEM resolution than ET and NPP estimates.

This study showed that there is a clear threshold resolution (10 m) above which coarser resolutions
have large effects on streamflow prediction accuracy (Figure 7). Among the eight watersheds, TSWs
tend to have both a lower streamflow accuracy and a larger reduction of streamflow accuracy with
coarsening DEM resolution (Table 3). Among TSWs, streamflow accuracy for P304 and D102 is the
most sensitive to DEM resolution, but P301 is the second least-sensitive watershed to DEM resolution
between the eight watersheds. The first hypothesis, that sensitivity to DEM resolution is closely
linked to snow accumulation and melt characteristics, is not supported. The change in peak SWE
with coarsening DEM is very minor for all eight watersheds. P301 with the lowest sensitivity to DEM
resolution has the largest change in watershed absolute difference in SWE between 5 m and 150 m
(Figure 5). Thus, the difference in the dominant precipitation phase between TSWs and SDWs does not
lead to consistent differences in the sensitivity of flow estimates to changes in the model resolution.

Table 3. Watershed sensitivity to DEM resolution.

Watershed
Group Watershed Change in Spatial Variance

of Wetness Index (%)
Change in Streamflow

Accuracy (Equation (4)) (%) Model-Based Rank 5

TSWs

P301 ´9 1 (3) 2 ´25 3 (´14) 4 7
P303 ´31 (´14) ´64 (´44) 3
P304 ´1 (5) ´71 (´42) 1
D102 ´26 (´11) ´71 (´41) 2

SDWs

B201 ´5 (´1) ´54 (´33) 5
B203 ´4 (11) ´55 (´25) 4
B204 7 (12) ´30 (´15) 6
T003 11 (25) ´15 (´5) 8

Notes: 1 The largest change in spatial variance of wetness index between the five resolution models; 2 The
mean change in spatial variance of wetness index between the five resolution models; 3 The largest change
in streamflow accuracy between the five resolution models (Equation (4)); 4 The mean change in streamflow
accuracy between the five resolution models (Equation (4)); 5 Ranked from highest to lowest sensitivity to DEM
resolution, based on change in modeled streamflow accuracy.

Among topographic parameters, we hypothesized that the change in the spatial variation of the
wetness index can explain the watershed sensitivity to DEM resolution. Changing the spatial variance
of the wetness index has a complex relationship with coarsening DEM, and varies between watersheds.
However, the lowering in the spatial variance of the wetness index with coarsening DEM corresponds
with a reduction of the streamflow accuracy (Table 3). For example, when the 5 m resolution model was
compared with coarser resolution models, P301 and D102 had the smallest reduction (´9%) and the
largest reduction (´26%) of the spatial variance of the wetness index, respectively, which corresponds
to the smallest and largest reductions of streamflow accuracy for the watersheds (´25% and ´71%,
respectively). Among the eight watersheds, T003 has the smallest reduction (´15%) of the streamflow
accuracy, and that watershed shows an increase (11%) of the spatial variance of the wetness index.
RHESSys does not use the wetness index directly to calculate lateral flow. However, the wetness index
includes the component of topographic slope and flow-accumulating area. RHESSys actually uses these
components to determine the lateral flow paths. Previous studies using TOPMODEL [10] also showed
that decreasing resolution reduces the spatial variance of the wetness index [6,34]. Pradhan et al. [34]
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showed that when a coarser DEM resolution (1000 m) reproduced the cumulative distribution of
the wetness index at the fine resolution (50 m), the streamflow estimates using the coarser 1000 m
DEM resolution matched the simulated streamflow in the 50 m DEM resolution TOPMODEL without
recalibration. Results in this study suggest that the change in the wetness index distribution will also be
a good indicator of whether coarsening the DEM will lead to reduced accuracy for an explicit routing
model. Kenward et al. [31] tested the impact of DEM resolution on the streamflow accuracy and
spatial pattern of a predicted saturated area using DHSVM [35] which has a similar routing scheme to
RHESSys. Their study also showed that the spatial distribution of the wetness index corresponded to
the depth to saturation and runoff production for a rain-dominated system in the WF-38 experimental
watershed at the Mathantango Creak, PA. Our study confirms that the impact of DEM resolution
on flow paths is also likely to be important for snow and rain-snow transition watersheds and that
the impact of model resolution on the lateral redistribution of water may be more important than its
impact on snow accumulation and melt for models of low-order, headwater watersheds.

Among the model accuracy measures, PerErr has the highest sensitivity to DEM resolution.
Changes in PerErr are directly related to changes in annual ET. We note that annual ET estimates
and their COV are strongly sensitive to DEM resolution (Figures 8 and 9). Changes in the wetness
index distribution may also be important in ET estimates, particularly in water-limited environments.
The impact of DEM resolution on ET is discussed in more detail below.

Among the model estimates, we hypothesized that the flow estimate to DEM resolution will
be more sensitive than ET and NPP estimates. Our modeling results found that among the four
ecohydrologic estimates of interest, DEM resolution has the largest effects on the mean summer flow
and COV of the annual ET and NPP (Figures 7 and 8). One of the eight watersheds, T003 had the
smallest reduction in streamflow accuracy with coarsening DEM, but large changes in the mean
summer flow (150%), the COV of the annual ET (65%), and the COV of the annual NPP (60%) are
observed. These results emphasize that accurate streamflow prediction does not guarantee a model’s
ability to capture long-term ecohydrologic responses to climate change. Our study also suggests that
using a fine-resolution DEM in ecohydrologic modeling is essential in order to capture the long-term
observed summer flow. Since summer flow is an important water resource and has substantial
implications for aquatic organisms in California, fine-scale hydrologic modeling for assessing the effect
of climate change in Sierra Nevada is necessary [36].

Our modeling study showed that a coarsening DEM resolution results in an increase in the COV
of both ET and NPP. This result implies that coarser-resolution models overestimate the sensitivity of
these processes to climate variation. This result is important for interpreting and predicting ecosystem
responses to climate change. The reduced sensitivity of ET and NPP for the finer-resolution models
may be related to the substantial variation in topographic properties in mountain environments. The
high variation in topographic properties may lead to spatial variation in the sizes of water storage and
flow path convergence. As discussed above, coarsening the DEM tends to reduce spatial variation in
the wetness index. The vegetation response to changing climate may be lower for the finer-resolution
model because this spatial variation in water storage and flow path convergence provides additional
opportunities for plants to access water. A higher-resolution DEM, for example, may lead to greater
areas of local flow path convergence typified by riparian areas and local depressions with greater
soil moisture. ET in these areas may be less sensitive to inter-annual climate variation. The higher
COV of ET and NPP with coarsening DEM resolution may also illustrate the role of micro-refuge
created by substantial variation in other topographic properties in mountain environments [37].
Dobrowski et al. [37] provide case studies where terrain allows for local climate conditions to be
decoupled from the regional climate; when sites decouple from the regional climate, micro-refuges can
occur for species. The finer-resolution model may create microclimate conditions, as well as areas of
increased moisture storage, that are less sensitive to the forcing climate variability.

In summary, this study demonstrates that using fine-scale DEM in ecohydrologic modeling
influences the accuracy of streamflow estimation in headwater mountain catchments and substantially
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alters estimates of climate-driven inter-annual variation in ET and NPP in these systems. Results
emphasize that these effects may be largely due to the role of the DEM in the model estimation of
hydrologic flowpaths rather than the model estimation of snow accumulation and melt. This study
found that coarser-resolution models tend to have lower streamflow accuracy and overestimate climate
sensitivity for ET and NPP. These results have important implications for model-based studies used to
assess ecosystem responses to climate change, and, in particular, caution that coarser-resolution models
may overestimate climate sensitivity. The analysis, however, demonstrates a non-linear relationship
between model accuracy/sensitivity and DEM resolution and suggests that increasing resolution from
30 m to 10 m makes substantial improvements. Further increasing the resolution to 5 m results in
smaller gains in performance, relative to the increase in computation cost.
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