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Abstract: Assessing the impact of climate change on streamflow is critical to understanding the
changes to water resources and to improve water resource management. The use of hydrological
models is a common practice to quantify and assess water resources in such situations. In this
study, two hydrological models with different structures, e.g., a physically-based distributed model
Liuxihe (LXH) and a lumped conceptual model Xinanjiang (XAJ) are employed to simulate the
daily runoff in the Xijiang basin in South China, under historical (1964–2013) and future (2014–2099)
climate conditions. The future climate series are downscaled from a global climate model (Beijing
Climate Centre-Climate System Model, BCC-CSM version 1.1) by a high-resolution regional climate
model under two representative concentration pathways—RCP4.5 and RCP8.5. The hydrological
responses to climate change via the two rainfall–runoff models with different mathematical structures
are compared, in relation to the uncertainties in hydrology and meteorology. It is found that
the two rainfall–runoff models successfully simulate the historical runoff for the Xijiang basin,
with a daily runoff Nash–Sutcliffe Efficiency of 0.80 for the LXH model and 0.89 for the XAJ
model. The characteristics of high flow in the future are also analysed including their frequency
(magnitude–return-period relationship). It shows that the distributed model could produce more
streamflow and peak flow than the lumped model under the climate change scenarios. However the
difference of the impact from the two climate scenarios is marginal on median monthly streamflow.
The flood frequency analysis under climate change suggests that flood magnitudes in the future
will be more severe than the historical floods with the same return period. Overall, the study
reveals how uncertain it can be to quantify water resources with two different but well calibrated
hydrological models.

Keywords: climate change; regional climate model; RCP scenarios; Liuxihe model; Xinanjiang model;
Xijiang basin; China

1. Introduction

Climate change is expected to cause a significant variation of hydrological and water cycle systems
by altering the radiative balance of the atmosphere, which may consequently result in changes of
climatic variables, such as pressure, temperature, precipitation and others [1]. For regional water
management, the influence of climate change on water resources and hydrological systems can be
reflected both on the contents and approaches, such as the intensity and patterns of extreme rainfall
events, the magnitude and frequency of extreme floods and droughts, the quality and quantity of local
water availability and the vulnerability and management of water resource systems. Although not
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all of these impacts are necessarily negative, it is be crucial for local stakeholders and management
committees to evaluate them as early as possible to understand how global climate change in the
future could affect regional water supplies, because of the great socio-economic importance of water
and other natural resources [2].

Global climate models (GCMs) are one of the primary tools to obtain present climate and
projections of future global climate change using various greenhouse gas emission scenarios. Therefore,
the following three procedures are suggested to study climate change impacts on hydrology and water
resources: (1) use of GCMs to produce future global climate scenarios with different emission scenarios,
(2) use of downscaling techniques to match GCM output with the scales compatible with hydrological
models, and (3) use of hydrological modelling systems to simulate and analyse the effects of future
climate change in the study area at various scales [3].

However, using hydrologic modelling systems to study global climate change impacts still
involves two challenges: (1) scale differences between GCMs and hydrological models, (2) the
different response of hydrological systems due to different hydrologic model structures and catchment
characteristics. It was pointed out that the GCMs cannot represent the features and dynamics at the
local subgrid-scale as significantly as at the continental scale [4,5]. Although statistical downscaling
and dynamic downscaling techniques have been developed and widely applied in regional climate
models (RCMs) to transform and obtain finer resolutions of GCM data, the application of regional
hydrology and water resource studies using GCM/RCM data at the sub-grid scale is yet difficult [6,7].
Since the GCMs accuracy decreases when the spatial and temporal resolution becomes finer and the
skill drops for surface variables such as precipitation, evapotranspiration and soil moisture, all of which
are key elements for hydrological models [3]. Thus more uncertainties are expected for the projected
future change of precipitation sums, intensities and patterns using downscaling techniques [6,8,9].
Therefore, the number of studies focusing on regional hydrological impact assessments of climate
change is relatively small, in contrast to a large number of GCM downscaling studies [10].

In terms of the different response of hydrological systems, the range of diversity of regional
hydrological responses under climate change scenarios, due to different hydrological model structures,
has not been widely investigated and reported in the literature. Clark et al. (2008) [11] proposed a
methodology to diagnose differences in 79 hydrological model structures by combining components
of four hydrological models. Although the results suggested that the choice of model structure is just
as important as the choice of model parameters, further study is still required to evaluate the model
structural differences in various climate regimes. Boorman and Sefton (1997) [12] investigated the
range of uncertainties resulting from two climate scenarios and eight climate sensitivity tests that were
applied to three catchments using two conceptual hydrological models in the UK. It was concluded
that the variation of the climate change impact on flow can be significant between catchments, and the
different flow response indices can change in opposite directions even for the same climate scenario.
The study also suggested that more studies should be conducted to compare the impacts due to
different hydrological models, which would help to quantify the uncertainties resulting from the
different model strictures and parameters.

Panagoulia and Dimou (1997a, b) [13,14] examined and compared the differences of two
hydrological models under historical and future climate conditions. It was shown that the model’s
sensitivity to greater temperature and precipitation varies in different climates. Jiang et al. (2007) [2]
utilised six-monthly water balance models from the Dongjiang basin, China to assess uncertainty
in hydrological responses to the climatic scenarios resulting from the use of different hydrological
models. The results indicated that the climate change impacts on hydrological systems vary and
depend on the hydrological model structures, even under the same future climate scenarios. Li et al.
(2014) [15] used two rainfall–runoff models, Hydrologic Simulation Model (SIMHYD) and GR4J to
simulate the monthly and annual runoff in the upstream catchments of the Yarlung Tsangpo River
basin (YTR). The two rainfall–runoff models successfully simulate the historical runoff and show
similar simulation results for the eight catchments in the YTR basins. Fischer et al. (2013) [16] used the
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standardized precipitation index (SPI-24) and the standardized discharge index (SDI-24) were used to
analysis the hydrological long-term dry and wet sequences on the Xijiang River without using any
hydrological models.

The studies reported in the literature and discussed above have only used two or more lumped
hydrological models to simulate the impact of postulated climate changes and then analyse the
hydrological responses from different hydrological models, which however only represent the results
of the lumped hydrological models. It is therefore desirable to compare the differences in hydrological
impact of alternative climates resulting from the use of physically-based distributed hydrological
models, because the spatially explicit data of elevation, land use cover, and soil properties can not
only represent the catchment characteristics and reflect on the parameterisation [17], but also take
full advantage of gridded GCM/RCM output to predict hydrological responses to various climate
scenarios [18].

In this study, a physically-based distributed model Liuxihe (LXH) and a conceptual lumped model
Xinanjiang (XAJ) are used and their capabilities in reproducing historical water balance components
and in predicting the hydrological impacts of alternative climates are compared. The main objective
of this study is to show how uncertain it could be to quantify and assess water resources with two
different but well-calibrated models under climate change. In this context, the study is focused on
quantifying how large a difference one can expect when using lumped and distributed hydrological
models to simulate the impact of climate change as compared to the model capabilities in simulating
historical river flow discharges. The study is performed in two steps: first, the performance of
models in reproducing historical streamflow components is evaluated; and second, the differences
in the simulated hydrological flows under climate change by the lumped and distributed models are
evaluated and compared.

2. Data and Methodology

2.1. Methodology

In this study, a physically-based distributed model, LXH, and a conceptual lumped model,
XAJ, were constructed on the Xijiang Basin located in South China. The parameters for each model
were calibrated and validated with historical observation data. The trial-and-error method based
on the results of model parameter sensitivity analysis using global extend FAST (Fourier Amplitude
Sensitivity Test) method was employed for the LXH model parameter calibration, whereas, the shuffle
complex evolution algorithm developed at the University of Arizona (SCE-UA) [19] was used to
optimize the parameters for the XAJ lumped model. Once calibrated, the two models were fed with
the RCM historical simulations to verify the reliability of the climate data against the observations.
Subsequently, two hydrological models were driven by the RCM with two emission scenarios (RCP4.5
and RCP8.5) to produce multiple runoff simulations. The RCM-based daily climate simulations were
expected to capture the changes in daily climate variables that directly related to the analysis of extreme
events relating to daily precipitation intensity and flood frequency.

2.2. Study Area and Hydrological Data

The study area is the Xijiang (West River) basin, a tributary of the Pearl River in southern China.
The main Xijiang basin is a coastal area, located in the Guangxi province in South China. It has
a sub-tropical monsoon climate, characterized by large interannual variability of precipitation and
widely distributed floods with high frequency, which result in massive damage to property and life.

The average annual runoff recorded at the Wuzhou flow station is 224 billion cubic meters,
accounting for 81.4% of the total runoff in Guangxi province. Thus the hydrological data of Wuzhou
station is capable of reflecting the occurrence and the magnitude of floods in the Xijiang basin. Due to
the data availability and reliability, the considered hydrological models were constructed on the Xijiang



Water 2017, 9, 793 4 of 18

basin using the Wuzhou flow station as the catchment outlet. Therefore the whole drainage area is the
upstream area above Wuzhou station, which is around 337,000 km2.

Although the Xijing basin is characterized by construction, like many other large rivers in China,
the influence of the construction of reservoirs/dams on annual water discharge is much lower than
the variability in precipitation [20], especially as the regulation of hydraulic structures on the main
stream are usually on an hourly basis instead of daily, which has less influence on daily/monthly
streamflow simulations.

The data for model calibration and validation include observed daily evaporation, rainfall and
streamflow data. All the data were obtained from the published Yearly Hydrological Books of China
for the period from 1960 to 2006. In this study, the 74 major stations shown in Figure 1, which are
almost evenly distributed over the whole basin, with 60 years of continuous records (1960–1988), were
selected for model calibration (1 January 1973 to 1 January 1978) and validation (1 January 1979 to
31 December 1984 and 1 January 2006/1/1 to 31 December 2013).
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Figure 1. Xijiang Basin (upstream of Wuzhou flow station).

2.3. Climate Change Scenarios and Datasets

The climate data used in this study are driven by the GCM, Beijing Climate Centre Climate System
Model version 1.1 (BCC_CSM1.1). The projection of the climate change data on the Xijiang basin is
simulated by a regional climate model (RegCM4.0) under two emission scenarios of the representative
concentration pathways—RCP4.5 and RCP8.5. This is based on a period of transient simulations from
1950 to 2099, with a 0.5◦ horizontal resolution [21].

The outputs of RegCM4.0 consists of historical, RCP4.5, and RCP8.5 datasets, and each
dataset provides projected mean temperature, maximum temperature, minimum temperature and
precipitation on a daily basis. The representative concentration pathways (RCPs) are used for climate
modelling and research, which describe four possible climate future scenarios depending on how
much radiative gas is emitted in the future. The RCP4.5 is the intermediate emissions scenario in
which the radiative force is stabilised at 4.5 W/m2 by 2100 without overshoot. The RCP8.5 is the high
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emissions scenario in which the radiative force rises to 8.5 W/m2 by 2100 [22]. For the projection of
climate change, the difference between the 2006–2099 period in the RCP4.5 and RCP8.5 experiment,
and the 1961–2005 period in the historical experiment, will be analysed in this study.

3. Hydrological Modelling and Parametrisation

3.1. Lumped Xinanjiang Model (XAJ)

The Xinanjiang model (XAJ) is a rainfall–runoff watershed model for use in humid and
semi-humid regions, developed in 1973 in China [23]. XAJ has been widely used in China since
1980, mainly for flood simulation and forecasting. The model assumes that runoff production occurs on
the repletion of storage to capacity values, which are assumed to be distributed throughout the basin.
The runoff is divided into three components, including surface runoff, interflow and groundwater.
The basin is divided into a set of sub-basins, the outflow hydrograph from each sub-basin is first
simulated and then routed down the channels to the basin outlet. The flow chart of XAJ is shown in
Figure 2.
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3.2. Distributed Liuxihe Model (LXH)

The Liuxihe Model (LXH) is a physically-based, distributed hydrological model for river basin
flood forecasting/simulation [24]. The LXH consists of several submodels, including the basin
digitization model (BDM), the evapotranspiration model (EM), the runoff production model (RPM),
the runoff routing model (RRM), and the parameter deriving model (PDM). The LXH model divides
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the catchment into a number of gridded cells, and each cell consists of three layers vertically,
representing the surface, unsaturated and saturated zones. The EM module is then used to calculate
the evapotranspiration for each cell. The RPM and RRM modules calculate the runoff produced for
each cell and route runoff to the catchment outlet, respectively. The PDM module is responsible for
model parameterisation. The detailed model structures are shown in Figure 3.
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The DEM used in this study is derived from the 1” × 1” resolution shuttle radar topography
mission (SRTM) data, provided by the Chinese Geospatial Data Cloud (http://www.gscloud.cn).
The Xijiang Basin is a mountainous area, with a range of elevation from sea level to about 2830 m.
The spatial resolution of raw DEM is about 90 m and was bilinear resampled to 500 m resolution for
BDM in the LXH model.

The land use data was obtained from the 1km resolution of the global land cover database
provided by the Global Observatory of Maryland University and the Institute of Geographic Sciences
and Natural Resources Research, Chinese Academy of Sciences. The data was resampled to
500 m resolution using the nearest neighbour algorithm. There are 12 types of land use in Xijiang
Basin, including water body, evergreen coniferous forest, evergreen broad-leaved forest, deciduous
broad-leaved forest, mixed forest, forested grassland, closed shrub, open shrub, and grassland, which
accounting for 0.390%, 1.617%, 0.939%, 0.326%, 0.001%, 7.407%, 25.351%, 0.133%, 0.001%, 22.507%,
41.295% and 0.034%, respectively. This suggests that the cultivated land is the main land use type,
accounting for 41.295% of area in Xijiang Basin.

The soil properties used in this study were obtained from the Nanjing Soil Institute of the Chinese
Academy of Sciences. There are seven types of soils in Xijiang Basin, including clay, silty loam,
loam, sandy, loam, sandy loam and sand, which account for 57.94%, 4.20%, 22.56%, 14.90%, 0.05%,
respectively. It is clear that clay accounts for more than half of the catchment area. The soil property
parameters, such as soil thickness, water content at saturated condition, field capacity, wilting point,
infiltration rate and hydraulic conductivity, were calculated by the soil water characteristics hydraulic
properties calculator.

http://www.gscloud.cn
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3.3. Model Calibration and Validation

Considering the data consistency and reliability due to the relocation of the Wuzhou flow station,
the observed daily hydrological data selected for the model calibration was from 1 January 1973 to
1 January 1978, and the model validations were from 1 January 1979 to 31 December 1984 and 1 January
2006 to 31 December 2013. In order to evaluate the performance of the modelling results, it is a common
practice to employ some criteria for judging model performance. Five different criteria, including
the Nash–Sutcliffe efficiency coefficient (NS), correlation coefficient (Cor), root mean square error
(RMSE), total water balance error coefficient (Dv) and average logarithm mean square error (MSLE),
were used for different assessment purposes. The M and Q represent the simulated and observed flow
respectively in the equations below:

The Nash–Sutcliffe efficiency coefficient (NS) is one of the most popular evaluation criteria for
hydrological modelling to measure the degree of association between observed and simulated values:

NS = 1 −

n
∑

i=1
(Mi(θ)− Qi)

2

n
∑

i=1
(Qi − Qi)

2
(1)

The correlation coefficient (Cor) is the linear correlation to describe the discrete degree between
the observation and the simulation. The closer to one, the more correlated it is.

Cor =

n
∑

i=1
(Qi − Qi)(Mi(θ)− Mi(θ))

n
∑

i=1

√
(Qi − Qi)

2
(Mi(θ)− Mi(θ))

2
(2)

Root mean square error (RMSE) is used to evaluate the total water error, which is simply the
average of the squared errors for all the simulation results, providing an objective measure of the
difference between the observed and simulated values:

RMSE =

√
1
n

n

∑
i=1

(Mi(θ)− Qi)
2 (3)

The total peak flow error (PF) is the ratio of total peak flow runoff error to observed peak flow
runoff. The M and Q in this equation represent the sum of peak flows in each year during the
simulation period:

PF =

n
∑

i=1
(Mi(θ)− Qi)

n
∑

i=1
(Qi)

· 100% (4)

The mean square logarithm error (MSLE) is high in low-flow error and small in peak-flow
error, which can be used to estimate the total water error, but more to focus on low-flow and
base-flow components:

MSLE =
1
n

n

∑
i=1

(ln(Mi(θ))− ln(Qi))
2 (5)

The statistics for the two models for the calibration and validation periods are listed in Table 1.
It suggests that the distributed LXH model and lumped XAJ model have better performance on
calibration (1 January 1973 to 1 January 1978) and validation one period (1 January 1979 to 31 December
1984) than the validation two period (1 January 2006 to 31 December 2013). Since the simulated peak
flows from both models in the validation two period, especially the small and medium size peak flows
are much less present in the observations. It may imply that the difference reflects the influence of
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human activities on the hydrological processes in the past 30 years, since the 1980s. Since a large
number of water conservancy projects, water storage, and water diversion projects may have changed
the natural runoff conditions in the Xijiang basin, part of the small- and medium-sized peak flows
were actually blocked by water conservancy projects, which is why it was not consistent with the
model simulations.

Table 1. Statistics of the LXH and XAJ model calibration and validation.

Criterions
NS Cor RMSE PF MSLE

LXH XAJ LXH XAJ LXH XAJ LXH XAJ LXH XAJ

Calibration 0.80 0.89 0.92 0.95 2898 2072 –1.9% –3.1% 0.52 0.11
Validation 1 0.81 0.83 0.92 0.91 2513 2365 –5.3% –8.6% 0.56 0.08
Validation 2 0.60 0.72 0.92 0.93 3298 2721 15% 18.1% 0.66 0.17

Although the NS and Cor criteria indicate that both the LXH and XAJ models show relatively
good performance for the Xijing basin simulation, the MSLE suggests that the XAJ model outperformed
the LXH model in the base flow simulation, but the LXH model is more accurate than XAJ in the
peak flow simulations according to the PF statistic. However, considering the computational cost and
the parametrisation process, the lumped XAJ model is much more cost-effective than the distributed
LXH model.

4. Results and Discussion

The reliability and accuracy of historical precipitation data produced from the climate models
(RF) was first evaluated against the observed rainfall data through the two hydrological models during
validation period one, in order to examine the data reliability and accuracy produced by the climate
model. Then the rainfall data under the RCP4.5 and RCP8.5 scenarios obtained from the climate models
were assessed against the observation data through the two hydrological models during validation
period two. Finally, the projected rainfall data under the RCP4.5 and RCP8.5 scenarios from 2006 to
2099 were used as the input in the two hydrological models and the related flood frequency analysis
was carried out.

4.1. Evaluation of Rainfall Products from the Climate Model

According to the availability of the climate rainfall data and observation flow data, the historical
rainfall climate data was assessed against the rain gauge measurements through the two hydrological
models during the model validation period one (1 January 1979 to 31 December 1984). The position of
the RCM grids and catchment boundaries are illustrated in Figure 4, which displays how the RCM
data are used to feed the distributed LXH model, while the RCM data were averaged to the catchment
mean value to feed the lumped XAJ model, according to the weighting of grid area on the catchment.

Figure 5 shows that the cumulative catchment rainfall derived from historical precipitation
in the climate model has fairly good agreement with the cumulative rain gauge measurements
over the Xijiang basin, with only a 2.43% difference in total cumulative rainfall. However, Figure 6
indicates that the scatter is relatively high and the RF data tend to underestimate, compared to the rain
gauge measurements.
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The NS statistic (0.45 in XAJ and 0.83 in LXH) suggested that the simulation results driven by the
RF in the two models are slightly more accurate than the mean of the observed data, although the trend
of the hydrographs agreed with the observations (see Figures 7 and 8). Additionally, the streamflow
simulations in the XAJ and LXH models driven by RF produced more peak flows but much less peak
flow volume than the observation and the simulation using rain gauge measurements, especially in
the XAJ model. Since the LXH model is fully distributed and supposed to represent the distribution of
the gridded rainfall from the climate model better than the lumped XAJ model, it subsequently had
better performance for peak flow simulations.
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In summary, the historical precipitation data (RF) and RCP rainfall products from the climate
model are consistent with rain gauge observations in terms of the pattern of the catchment rainfall
accumulation curve and the total precipitation over the catchment. Also, the patterns of the
hydrographs driven by the climate models generated rainfall data in two hydrological models that
are quite similar to the observation and the hydrographs driven by the rain gauges. Nevertheless, the
climate model rainfall data tended to trigger more small and medium peak flows, but to underestimate
the high peak flows during the two validation periods. It implies that the rainfall data from the climate
model is possibly more reliable for use in monthly and annual water resource simulation and analysis.

4.2. Future Rainfall–Runoff Simulations

The projected rainfall data under the RCP4.5 and RCP8.5 scenarios from 2006 to 2099 were used
as the input in the two hydrological models. However, the simulation results were averaged to the
monthly and annual time scale for analysis.

For the distributed LXH model, the modelled flow results are listed in Table 2 and the box plots
are illustrated in Figure 9. Both the RCP4.5 and RCP8.5 scenario suggests that the highest flow will
occur in July, whereas the lowest flow is expected in November, according to the monthly flow median
value, although the difference derived from the two scenarios is rather marginal. For the high flow in
July, the average streamflow in the Xijiang basin under the RCP4.5 scenario is 12,850 m3/s, less than
the flow modelled under RCP8.5, which is 13,916 m3/s, around 8.30% difference. For the low flow in
November, the average streamflow in the Xijiang basin under the RCP4.5 scenario is 991 m3/s, higher
than flow modelled under RCP8.5, which is 931 m3/s, around 6.05% difference.

Compared to the distributed LXH model, the simulation results achieved in the lumped XAJ
model show the highest flow in the Xijiang basin will occur in August, whereas the lowest flow is
expected in December, according to the mean monthly flow median value under the two RCP scenarios
(see Figure 10).
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Table 2. Statistics for projected monthly flow simulations using the LXH model (unit: m3/s).

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

RCP4.5

Min 429 1042 645 3410 3144 3955 4249 4764 2711 339 243 268
Q1 1610 3750 3782 6536 6604 7232 10,512 10,712 5483 1415 583 609

Median 2792 4917 5470 8545 7826 9702 12,850 12,692 7599 2282 991 1199
Q3 4065 6557 8807 10,619 9280 12,536 15,967 16,267 9896 4317 2032 1857

Max 6630 10,550 14,131 16,013 11,810 19,743 23,287 23,715 15,834 8285 3721 3662

RCP8.5

Min 208 518 1118 1934 3225 3741 4982 6077 1518 430 255 211
Q1 1357 2831 3668 5910 6740 6544 10,607 10,680 4882 1487 603 688

Median 2437 4193 5475 7903 7870 9147 13,916 13,132 7658 2405 931 1156
Q3 3705 6467 8215 9824 10,050 11,623 16,507 15,731 10,835 3593 1638 1681

Max 6714 11,071 12,783 14,577 13,793 19,055 25,257 21,240 17,868 6734 2884 3130
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Table 3 shows that the highest average streamflow in the Xijiang basin under the RCP4.5 scenario
is 10,323 m3/s in August, less than 10,514 m3/s under RCP8.5, which is around 1.85% difference.
During the dry season, the lowest mean monthly flow simulation found under the RCP4.5 scenario is
1451 m3/s, higher than the flow modelled under RCP8.5, which is 1422 m3/s, around 1.99% difference.
Similar to the assessment in the LXH model, the two RCP scenarios produced much less variation in
the average monthly flow in the Xijiang basin under climate change from 2006 to 2099.

Table 3. Statistic of projected monthly flow simulation using the XAJ model (unit: m3/s).

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

RCP4.5

Min 452 1085 956 2168 1312 2709 2458 3146 2179 1384 707 534
Q1 1237 2172 2927 4550 4776 5342 7451 7990 5557 2561 1408 1126

Median 1977 3274 4230 6127 6297 6827 9375 10,323 7109 3663 1976 1451
Q3 2748 4588 6596 8445 7630 9266 12,114 13,425 9556 4698 2536 2005

Max 4838 8050 10,908 13,647 11,315 12,305 18,193 19,545 13,801 7712 4103 3324

RCP8.5

Min 356 496 819 1817 2540 2161 3036 4650 1989 1024 723 517
Q1 1175 1938 2546 4357 5014 5005 7455 8893 5398 2732 1525 1106

Median 1706 2690 4209 6190 6216 6940 10,281 10,514 7437 3620 1810 1422
Q3 2672 4286 6138 7593 7722 8957 12,449 13,145 9762 4476 2312 1804

Max 4816 7264 10,868 11,241 10,965 14,122 19,467 19,285 16,082 6960 3231 2809
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Regarding the RCP rainfall performance in the two hydrological models, Figure 11 illustrates the
comparisons of the median monthly flow simulation under two climate change scenarios in the LXH
and XAJ models. It is clear to show that the distributed LXH model produced more streamflow than
the lumped XAJ model during January to August, especially during the high rainfall rate seasons, but
more streamflow was modelled in the XAJ model than the LXH model during September to December.
Since the distributed model can reflect the spatial rainfall distribution better than the lumped model
and thus has more influence on the peak flow volume, while the lumped XAJ model outperformed
the LXH model on the base flow in this study, which was also due to the different rainfall–runoff
mechanisms and mathematical structures of the two models.
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In addition, the annual flow simulation shown in Figure 12 illustrates the variation between
the two scenarios in the two hydrological models. It suggests that the RCP4.5 rainfall produced the
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smallest and the highest annual streamflow in the XAJ and LXH model, respectively, in the Xijiang
basin before 2050. Nevertheless, the RCP8.5 rainfall produced the smallest annual streamflow in XAJ
and the highest annual streamflow in the LXH model from 2050 to 2099. In general, for both RCP
rainfall products, more annual streamflow is modelled in the LXH model than in the XAJ model.
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hydrological models.

In order to analyse the flood magnitude under different scenarios in the future, this study used
the Log–Pearson Type 3 (LP3) distribution to estimate flood magnitude under climate change, which is
the recommended distribution for estimating return period values of flood magnitude in China [25].
The distribution has the following form with the data being preliminary log transformed [26]:

f (x) =
(x − ξ)α−1e−(x−ξ)/β

βαΓ(α)
(6)

where ξ is a location; α is a shape; and β is a scale parameter.
The method of L-moments was used to estimate the parameters of LP3 distribution in this study.

L-moments are analogous to conventional moments defined as linear combinations of probability
weighted moments (PWMs) [26]. The method is proven to be superior to other common parameter
estimation techniques such as the maximum likelihood [27] and the method of moments [28].

The details of the parameter estimation procedure based on L-moments can be found in Hosking
and Wallis (1997) [26] and Das (2016) [28]. The above LP3 flood frequency model was applied to
the annual maximum (AM) flow series derived from the observed flow data and future flow series
simulated using hydrological models based on future climate data.

The predicted return period flood magnitudes for different series are plotted in Figure 13, which
indicate that the range of design values increase along with the return period. This also provides an
uncertainty bound which can be expected in the future.
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Figure 13. Comparisons of flood magnitude under two climate change scenarios in two hydrological
models based on the return period.

According to the lumped XAJ model simulation results, the future flood magnitude is similar to
the historical floods, and the floods under the climate change scenarios with less than 100-year return
periods are less severe than the historical floods, and the floods with a 1000-year return period are
rather close to the historical records. However, the floods simulated under same future scenarios in the
distributed LXH model are much more severe than the historical floods, especially under the RCP8.5
scenarios. Consequently, the mean flood magnitude in the future illustrated in Figure 13 indicates that
the floods under climate change are likely to be more severe than the historical floods.

5. Summary and Concluding Comments

In this study, two hydrological models with different mathematical structures were used and
their differences in reproducing historical streamflow and in predicting the hydrological impacts of
two climate change scenarios (RCP4.5 and RCP8.5) were compared. The study was performed on the
Xijiang catchment, a tributary of the Pearl River, located in a subtropical humid region in southern
China. The main focus of the study was to test how uncertain one can expect the estimations to be
when using fully-distributed and lumped rainfall–runoff models to simulate hydrological responses
to climate changes, as compared to their capacities in simulating historical runoff. The following
conclusions are drawn from the study:

(1) Both the distributed LXH model and lumped XAJ models can reproduce almost equally well the
historical runoff data series. The simulated peak flows were more accurate in the LXH model,
while the base flow was better simulated by the XAJ model.

(2) The cumulative catchment daily rainfall produced from the climate model matched the rain
gauge measurements very well, but they tended to produce more small and medium peak flows
and to underestimate the high peak flows during the hydrological model simulations.

(3) Using RCP4.5 and RCP8.5 precipitation data as input to the tested models, marginal variations
were found in the median flow simulation in the same hydrological model, which may imply that
the difference of the impact from the two climate scenarios on the monthly streamflow simulation
in this study was small.
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(4) Under future climate conditions, the distributed LXH model produced more streamflow than the
lumped XAJ model during January to August, but more streamflow was modelled in the XAJ
model than in the LXH model from September to December.

(5) The RCP4.5 climate data could result in the smallest and the highest annual streamflow in the
XAJ and LXH models respectively before 2050, but the RCP8.5 rainfall data could produce the
smallest annual streamflow in the XAJ and the highest annual streamflow in the LXH model from
2050 to 2099.

(6) The flood frequency analysis suggests that the floods under climate change in the future will
be more severe than the historical floods, especially under the RCP8.5 scenario in the LXH
model simulations.

This study shows that the difference in the streamflow simulations depend on the climate
scenarios, the season, and the hydrological model structures that span from complex to simple,
reflecting a decreasing ability to specifically represent the distributed (spatial) nature of the
rainfall–runoff process. In this study, the exanimated distributed model could produce more streamflow
and peak flow than the lumped model under the climate change scenarios, but the lumped model
outperformed in the base flow simulation. This suggests that attention must be paid when using the
hydrological models to simulate hydrological responses under climate change. Comparing the median
monthly modelled flow driven by the RCP4.5 and RCP8.5 scenarios, the RCP4.5 data could produce
more flow during the dry season while the RCP8.5 data could trigger higher flow in the flood season.

The approach of using different hydrological models with different climate scenarios could also
be appropriate for the uncertainty analysis of monthly, seasonal and annual scale runoff changes. It is
noted that this study does not consider the uncertainty of hydrological model parameters. Future
water resource scenarios predicted by any particular hydrological model represent only the results
specific to that model. More studies using different hydrological models for different catchments need
to be carried out in order to provide more general conclusions.
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