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Abstract: Accurate assessment of spatial and temporal precipitation is crucial for simulating
hydrological processes in basins, but is challenging due to insufficient rain gauges. Our study aims to
analyze different precipitation interpolation schemes and their performances in runoff simulation
during light and heavy rain periods. In particular, combinations of different interpolation estimates
are explored and their performances in runoff simulation are discussed. The study was carried out
in the Pengxi River basin of the Three Gorges Basin. Precipitation data from 16 rain gauges were
interpolated using the Thiessen Polygon (TP), Inverse Distance Weighted (IDW), and Co-Kriging (CK)
methods. Results showed that streamflow predictions employing CK inputs demonstrated the best
performance in the whole process, in terms of the Nash–Sutcliffe Coefficient (NSE), the coefficient of
determination (R2), and the Root Mean Square Error (RMSE) indices. The TP, IDW, and CK methods
showed good performance in the heavy rain period but poor performance in the light rain period
compared with the default method (least sophisticated nearest neighbor technique) in Soil and Water
Assessment Tool (SWAT). Furthermore, the correlation between the dynamic weight of one method
and its performance during runoff simulation followed a parabolic function. The combination of CK
and TP achieved a better performance in decreasing the largest and lowest absolute errors compared
to any single method, but the IDW method outperformed all methods in terms of the median absolute
error. However, it is clear from our findings that interpolation methods should be chosen depending
on the amount of precipitation, adaptability of the method, and accuracy of the estimate in different
rain periods.

Keywords: precipitation interpolation; runoff simulation; SWAT; the Three Gorges Basin

1. Introduction

Precipitation is a major driving force of hydrological processes. Spatial precipitation patterns are
consistently affected by topography and wind direction, which influence the estimation of the volume
of storm runoff, peak runoff, and time-to-peak simulated by hydrological models [1]. In general,
precipitation data are mainly sourced from precipitation gauges, re-analysis data or radar data [2].
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Due to accessibility, this study focuses on precipitation data derived from rain gauges. However,
obtaining accurate precipitation data in mountainous areas remains a challenge, mainly due to
insufficient rain gauges [3,4].

Various convenient interpolation methods have been developed to simulate precipitation
spatially [5,6]. The Thiessen Polygon (TP) and Inverse Distance Weighted (IDW) methods are the most
popular deterministic methods, and both have been employed at varying spatial and temporal scales
because of their simplicity [7]. Geostatistical methods, such as the Ordinary Kriging (OK), Co-Kriging
(CK) and all the kriging variants, use the spatial correlation structure among observed data to estimate
the spatial distribution of precipitation [7,8]. The precision of these methods is variable in different
regions [9], but these methods give similar average areal precipitation values with the exception of
extreme values [2]. When comparing different methods while considering sampling design, sample
size, area of the region studied, and the associated results, kriging methods generally perform better
than nongeostatistical methods [4,10]. Nevertheless, kriging methods usually overestimate the small
values and underestimate large values [11].

The concept of combining different estimates in the same event has gained wide
acceptance [12–14]. A number of different methods have been developed to merge radar and gauge
rainfall estimates such as Mean Field Bias [14], Kalman Filter [15], and geostatistical approaches [16].
Combining precipitation estimates can exploit the strengths and minimize the weakness of each
method, resulting in better predictions compared to the single method’s estimate [17]. Weighting
schemes of geostatistical merging have been widely used [18,19]. The weights of radar and gauge
rainfall estimates at each grid point are determined such that their linear combination minimizes the
expected error variance of the estimate [20]. For example, Hasan et al. used a weighted combination
approach to merge radar and spatially interpolated gauge rainfall estimates, and they concluded that
the errors from the multiple estimates were correlated [21]. Furthermore, Woldemeskel et al. used a
combination of thin plate smoothed splines and the IDW method to merge satellite and station data on
a monthly time scale. They found that there was an improvement in rainfall estimation, particularly in
regions with a sparse station network [22]. With the encouraging results reported by these preliminary
studies, the present study applies the theory of weighting method to combining interpolation estimates.
We therefore make the best use of available interpolation estimates and explore the influence of the
combination of interpolation methods’ estimates on runoff simulation.

In general, to achieve the process-oriented simulation of hydrological processes, the variable
basin inputs and runoff generation processes need to be adequately addressed by hydrological
models [23–27]. The Soil and Water Assessment Tool (SWAT) is one of most commonly used
hydrological models to predict the impact of weather data, land use, soil type, and slope on
runoff simulation [28–30]. A considerable body of research demonstrated that the precipitation
derived by interpolation methods for driving SWAT could enhance the performance of hydrological
simulation [30–33]. For example, Masih et al. concluded that the Inverse Distance Elevation Weighted
(IDEW) method outperformed the least sophisticated nearest neighbor (the default method used in
SWAT), primarily, in small sub-catchments in the Karkheh basin in Iran [34].

However, there are only a few studies investigating interpolation uncertainties in different
rain periods. The performance of process-based hydrological models is usually assessed through
comparison between simulated and measured streamflow [29]. Although necessary, it is not
sufficient to estimate the quality and realism of the modeling in the whole runoff process, because
streamflow integrates different processes of the sub-basins including heavy and light rain periods [35].
Improvements to flow predictions depend on a wide range of factors such as rainfall event
characteristics, runoff generation mechanisms, and applied models [36]. It is hard to assess whether
the interpolation data improves the performance of modeling the runoff process during either a heavy
or light rainfall period. Furthermore, large-scale processes are produced by integrating small-scale
processes in space and time [27,37]; errors in estimated precipitation will result in a scale dilemma
for runoff processes. Particularly in catchments with complex topography, the spatial distribution of
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precipitation is likely to be heterogeneous and the hydrological processes are more complex. This is the
case in the Three Gorges Basin, where the world’s largest hydropower project is implemented—The
Three Gorges Project. The project contributes significantly to socio-economic aspects in China, such as
flood control, power generation, navigation, and water supply [38]. Due to the scarcity of accurate
precipitation data, the development of water resource studies in this area is limited [33,39]. In a
previous study carried out in the Daning River basin of the Three Gorges Basin, precipitation input
was identified as a major source of error for runoff modeling [33].

In light of the issues discussed above, the main objectives of this study are: (i) to evaluate
the performances of different interpolation schemes; (ii) to investigate the underlying differences
in runoff process modeling with interpolation datasets during light and heavy rain events; and (iii)
to analyze the performance of combining different estimates and the influence on runoff process
modeling. The Pengxi River is one of the main tributaries on the north shore of the Three Gorges Basin.
It is selected as a test basin because it has prominent heterogeneity and uncertainty of precipitation
influenced by topography [39]. This paper is structured as follows: the description of study area,
available data, interpolation methods, and the hydrological model are provided in Section 2. In
Section 3, results of the precipitation estimates are demonstrated and different runoff processes are
analyzed. Finally, conclusions are presented in Section 4.

2. Materials and Methods

2.1. Study Area

The Pengxi River is one of the main tributaries of the Yangtze River in the Three Gorges Basin
(as shown in Figure 1), which is located in the Chongqing Municipality of China between the latitudes
of 30.50◦ N–31.42◦ N and longitudes of 107.56◦ E–108.54◦ E. It extends over Yunyang County, Kai
County and Wan County, with an altitude variation of 148–2549 m above mean sea level and an area of
5173 km2. The length of the mainstream of Pengxi River is about 182 km. The basin is in a subtropical
monsoon region, with relatively abundant rainfall and a humid climate. Average annual precipitation
and temperature over the basin are 800–1500 mm and 18.5 ◦C, respectively. The average annual runoff
is about 3.41 billion m3 [38]. Due to the serious extrusion of crustal movement and water erosion, the
gully topography is very complex, with approximately 63% mountainous land and 31% hills.
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2.2. Precipitation Data

Daily records for 16 selected rain gauges within or close to the Pengxi River basin (as shown in
Figure 1) were provided by the Changjiang Water Resources Committee. The mean daily precipitation
from 2009 to 2013 was 3.21 mm/d. The statistical information about the annual rainfall obtained
from the daily rainfall records is displayed in Table 1. It shows that the rain gauges with an elevation
of over 900 m, such as Guanmian gauge, Yanshui gauge, and Gaoluo gauge, have higher mean
annual precipitation.

Table 1. Rain gauges, location, and statistics of mean annual precipitation from 2009 to 2013.

Gauge Longitude (◦ E) Latitude (◦ N) Elevation (m) Mean Annual Precipitation (mm)

Xinghua 108.63 31.01 510 1040.5
Guanmian 108.67 31.55 969 1780.1

Dajin 108.45 31.50 387 1250.2
Yanshui 108.65 31.45 1134 1516.3

Wenquan 108.55 31.33 269 1274.6
Wushan 107.95 30.95 262 1180.1
Nanya 108.08 31.08 385 1085.5

Linjiang 108.22 31.10 204 1098.4
Zhonghe 108.13 31.18 230 1071.8
Zhengba 108.30 31.35 401 1197.1
Hexing 107.82 30.73 418 1068.6

Qiaoting 108.08 30.80 591 1176.1
Yujia 107.95 30.82 332 1174.3

Nanmen 108.23 30.97 127 1053.8
Yanjinkou 107.55 30.60 444 1070.0

Gaolou 109.08 31.60 1858 1752.5

2.3. Interpolation Schemes

The selection of interpolation methods in this paper was based on the popularity, in research
papers, of different methods of precipitation interpolation. The three tested methods were Thiessen
Polygons (TP), Inverse Distance Weighted (IDW), and Co-Kriging (CK). The literature review showed
that these three methods were applied far more than other methods [2].

2.3.1. Thiessen Polygon

The TP method was developed by Thiessen [40]. According to the location of rain gauges,
polygons are formed by the perpendicular bisectors of the lines joining nearby gauges. Thus, each
polygon contains only one rain gauge, and the weights of the rain gauges are computed by their
relative areas, which are estimated with the Thiessen polygon network. The average precipitation in
each sub-basin is calculated in Equation (1). In this study, the mean precipitation generated in each
sub-basin was incorporated into the hydrological simulation by creating a virtual rain gauge within
the centroid of each sub-basin.

Z(s0) =
Z(s1)F1 + Z(s2)F2 + . . . + Z(sn)Fn

F
=

n

∑
i=1

Z(si)
Fi
F

(1)

where Z(s0) is the average precipitation in the center of sub-basin; Z(si) represents measured
precipitation at the rain gauge i; Fi is the area of Thiessen polygon associated with gauge i; F is
the area of the sub-basin.

2.3.2. Inverse Distance Weighting

The IDW method is based on the assumption that the value at an unsampled point can be
approximated by the weighted average of observed values within a circular search neighborhood [41],



Water 2017, 9, 838 5 of 18

the radius of which can be defined by the range of a fixed number of closest points. In our case, we
adopted a localized IDW approach that only took the values of the rain gauges within a 50 km distance
into account, based on a similar study by Wagner et al. [32]. The weights used for averaging are a
decreasing function of the distance between the sampled and unsampled points. The weight λi is
proportional to the inverse distance between observations and s0:

Z(s0) =
N

∑
i=1

λiZ(si) (2)

where Z(s0) is the predicted values at s0; N is the number of the sample points; λi represents the

weights,
N
∑

i=1
λi = 1;Z(si) is the measured precipitation at si. The weight λi is determined according to:

λi =
d−p

i0
N
∑

i=1
d−p

i0

(3)

where di0 is the distance between the prediction point s0 and the known sample point si; the power
exponent p controls the decrease in weight with increasing distance. The higher exponents perform
better closer to the coast line and lower exponents are preferred closer to the mountain crest [42].
In general, p values are 1, 2 or 3 in mountainous areas [33]. In this paper, the value of p was fixed as 2.

2.3.3. Co-Kriging

The CK method, based on the Ordinary Kriging (OK) method, is an interpolation method that
introduces more than one relevant regionalized environmental factor affecting the interpolation
results [8]. Theoretically, there is no essential difference between OK and CK methods. The CK
method takes into account the combined effects of multiple variables that affect spatial information
and can be derived from the OK method. When an environmental variable is incorporated in the
study area, the information is introduced into CK as a second type of influencing factor. Some studies
found it was beneficial to incorporate elevation into geostatistical methods for daily precipitation
interpolation [7,43]. In this paper, the elevation data integrated as a correction factor was tested. The
calculation equation is:

Z(s0) =
n

∑
i=1

λiZ(si) + β[y(si)−my + mz] (4)

where
N
∑

i=1
λi = 1, Z(s0) is the predicted value at s0; Z(si) is the measured precipitation at si; y(si) is the

elevation of si; n is the number of rain gauges; λi and β are the weight coefficients of CK; my is the
average elevation of all rain gauges and mz is the average precipitation of all rain gauges.

An experimental semi-variogram is adopted to assess the weight λi, which represents the spatial
variation set against the distance, or separation, of input sample points. The empirical semi-variogram
y(h) is computed from the input data as follows:

y(h) =
1

2N

N

∑
i=1

[Z(xi)− Z(xi + h)]2 (5)

where N is the number of possible pairs of points; Z(xi) is the observed precipitation in the rain
gauges, and Z(xi + h) is the value at a location moved by vector h. The experimental semi-variogram
is a function of both distance and direction and is relatively easy to derive when the field has isotropy,
which only depends on h. In this study, a local CK approach was applied taking only stations within
a 50 km distance into account based on a similar study by Wagner et al. [32]. Next, a theoretical,
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continuous function needs to be fitted to the empirical semi-variogram. This function represents the
spatial dependence structure of the data. Exponential, Gaussian, and spherical are the most commonly
used variogram models for kriging applications in hydrology [44].

2.4. Combination of Interpolation Methods’ Estimates

A combined method is used to combine the interpolation methods’ estimates [17]. The basic
equation for combining two methods’ estimates is:

Z(s0)COM,t = wAZ(s0)A,t + wBZ(s0)B,t (6)

where on a given day (t), Z(s0)A,t and Z(s0)B,t are the interpolated precipitation obtained from the two
methods A and B. wA and wB are the weights applied to each method to provide a combined estimate
Z(s0)COM,t. In this paper, the weights wA and wB were tested as wA + wB = 1.

2.5. Hydrologic Model

The SWAT is a semi-distributed hydrological model developed by the United States Department
of Agriculture (USDA). Hydrologic processes simulated by SWAT include canopy storage, infiltration,
redistribution, evapotranspiration, lateral subsurface flow, and surface flow [38]. In this study, the
daily streamflow in the Pengxi River basin was simulated using SWAT. The Penman–Monteith and
CN methods were applied to estimate evapotranspiration and runoff, respectively, and establish the
water balance of each of the Hydrological Response Units (HRUs) [45–48].

In SWAT, the default precipitation interpolation method is a version of the least sophisticated
nearest neighbor technique. The theory of this method is that the unknown values can be extracted
by the nearby known points. The data from the rain gauge closest to the centroid of each sub-basin
are selected as the sole input for that particular sub-basin. Then, the areal rainfall data are inputted
directly into SWAT. The default method is best for qualitative data when other interpolation methods
are not applicable. The disadvantages of only one sample point are considered and other nearby
sample points are ignored for the estimated values, with no error estimate [8].

2.5.1. Model Setup

The available observed streamflow data from 2009 to 2013 in the Wenquan gauging station
(as shown in Figure 1) were collected from the Changjiang Water Resources Committee. The Digital
Elevation Model (DEM) map was obtained from the Data Center for Resource and Environmental
Science, Chinese Academy of Science (RESDC), and was available at a grid size of 30 m × 30 m.
Land use and land cover data were derived from GlobeLand30 and Landsat8. The soil map was
created from a 1:1,000,000 digital map in China and available from the Institute of Soil Science, Chinese
Academy of Science. Multi-year meteorological data including wind speed, temperature, and relative
humidity data in five meteorological stations (Daxian, Wanyuan, Fengjie, Wanxian, and Liangpin
stations, all of which are around the Pengxi River basin) were taken from the China Meteorological
Data Sharing Service System [49]

2.5.2. Model Evaluation

The prediction uncertainty was quantified to analyze the model performance, by means of the
Nash–Sutcliffe Coefficient (NSE), the coefficient of determination (R2), Root Mean Square Error (RMSE),
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Standard Deviation (SD), the Coefficient of Variation (CV) and Mean Absolute Error (MAE) which
were defined in Equations (7)–(12).

ENS = 1−

n
∑

i=1
(xsim,i − xmea,i)

2

n
∑

i=1
(xmea,i − xmea,i)

2
(7)

R2 =


n
∑

i=1
(xmea,i − xmea,i)(xsim,i − xsim,i)√

n
∑

i=1
(xmea,i − xmea,i)2

n
∑

i=1
(xsim,i − xsim,i)2


2

(8)

RMSE =

{
1
n

n

∑
i=1

(xsim,i − xmea,i)
2

}0.5

(9)

SD =

√√√√√ n
∑

i=1
(xsim.i − xsim.i)

2

n− 1
(10)

CV =
SD

xsim,i
(11)

MAE =

n
∑

i=1
|xsim,i − xmea,i|

n
(12)

where n was the number of simulation days; xsim,i and xmea,i were the SWAT daily simulated
streamflow and measured streamflow (m3/s), respectively; xsim,i and xmea,i were the daily simulated
average value and measured streamflow (m3/s), respectively.

3. Results and Discussion

3.1. Analysis of the Spatial Interpolation of Precipitation Distribution

In this paper, the SWAT was set up for the entire Pengxi River basin. Using watershed delineation
and area threshold definition of each sub-basin in the SWAT, 25 sub-basins were derived (as shown in
Figure 1). The precipitation in each centroid of the sub-basins, from 2009 to 2013, was calculated using
three interpolation methods. The spatial rainfall variability in the sub-basins and the areal average
annual rainfall input for each sub-basin are shown in Table 2. It indicates that CV values varied from
0.017 to 0.194 among sub-basins, with a range in SD of 16.2 to 214.0 mm. The greatest variability in
a sub-basin level input was observed in sub-basin #22, in which the annual average rainfall (from
low to high) was 806.9 mm for the default method, 1104.1 mm for the IDW method, 1208.5 mm for
the TP method, and 1299.6 mm for the CK method. The smallest variation (a CV of 0.017) occurred
in sub-basin #3, but there was still a 1.9% difference between the TP and IDW methods. This could
be explained by the information presented in Figure 2, which illustrates high-intensity isolines in
sub-basin #22, indicating a heterogeneous rainfall pattern, and low-intensity isolines in sub-basin #3
relating to a more homogeneous distribution of rainfall. The averaged SD and CV values for each
sub-basin were 121.1 mm and 0.11, respectively. These interpolation methods result in considerable
uncertainty of the spatial variability of rainfall, particularly at the sub-basin level, which is supported
by similar studies [2,33].
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Table 2. The spatial rainfall variability in sub-basins and the areal rainfall input for each sub-basin.

Sub-Basin
Annual Average Precipitation (mm) Mean

(mm) SD CV
Default TP IDW CK

1 1379.4 978.4 960.0 974.6 1073.1 204.3 0.190
2 1379.4 1012.8 1084.2 1193.2 1167.4 159.6 0.137
3 999.3 978.4 960.0 974.6 978.1 16.2 0.017
4 1208.6 926.4 943.6 1037.4 1029.0 129.2 0.126
5 999.3 1012.8 1084.2 1193.2 1072.4 88.7 0.083
6 1208.6 1195.6 1000.3 1074.6 1119.8 99.9 0.089
7 1024.5 1195.6 1000.3 1074.6 1073.7 86.9 0.081
8 871.1 1012.8 1084.2 1193.2 1040.3 135.0 0.130
9 1024.5 856.6 979.6 1045.7 976.6 84.6 0.087

10 1024.5 1012.8 1084.2 1193.2 1078.7 82.5 0.077
11 834.5 898.1 959.6 1065.9 939.6 98.5 0.105
12 871.1 959.4 976.2 1105.4 978.0 96.6 0.099
13 871.1 857.0 898.7 901.4 882.0 21.6 0.024
14 835.7 959.4 976.2 1105.4 969.2 110.3 0.114
15 1024.5 946.1 921.4 968.3 965.1 43.9 0.046
16 1024.5 1208.5 1104.1 1299.6 1159.2 120.1 0.104
17 826.8 1245.5 1057.9 1284.1 1103.6 209.2 0.190
18 826.8 1012.8 1084.2 1193.2 1029.2 153.9 0.150
19 965.3 1245.5 1057.9 1284.1 1138.2 151.8 0.133
20 1024.5 1012.8 1084.2 1193.2 1078.7 82.5 0.077
21 944.8 1383.8 1016.8 1096.1 1110.4 192.4 0.173
22 806.9 1208.5 1104.1 1299.6 1104.8 214.0 0.194
23 944.8 1383.8 1016.8 1096.1 1110.4 192.4 0.173
24 872.1 867.7 1056.0 1173.7 992.4 149.3 0.151
25 959.3 1195.6 1000.3 1074.6 1057.4 103.7 0.098

Notes: TP is abbreviation of Thissen Polygen; IDW is abbreviation of Inverse Distance Weighting; CK is abbreviation
of Co-Kriging; SD is abbreviation of standard deviation; CV is abbreviation of coefficient of variation.

Rainfall mapping of the results obtained by the four methods (Default, TP, IDW, and CK) in four
typical months (March, June, September, and December) are shown in Figure 2. Valuable spatial and
temporal visualizations of the rainfall distribution throughout the study region are provided. The
changes in the spatial rainfall pattern from month to month are clearly depicted in all maps. The
spatial trend in the rainfall distribution decreased from the northwest to the southeast during March,
whereas an inverse trend is evident during June and September. The maximum precipitation (310
mm) is observed throughout the region during June to September, whereas the opposite trend is true
during December. In addition, variations in the temporal rainfall pattern are clearly visible, with
higher rainfall levels during June and September and lower rainfall levels in March and December.

Furthermore, important differences in the precipitation distribution among the four methods
are also evident in the maps. As represented in Figure 2, the inefficient use of rain gauges in the
default method resulted in jumping values of areal rainfall input in several sub-basins. For example,
precipitation of over 90 mm was only depicted in the sub-basins #22 and #24 in March, while in
sub-basins #4 and #6 the precipitation ranged from 60.1 to 70 mm. The TP method made use of
the recorded data from rain gauges. The areal rainfall input of sub-watershed #4 was calculated by
involving Guanmian and Yanshui gauges as well as Dajin and Wenquan gauges. A better description
of the spatial rainfall distribution was obtained by weighting the nearby stations compared with the
default method. The isolines obtained by the IDW, CK methods showed a homogeneously distributed
spatial rainfall distribution from north to south. Spatial distributions of the CK rainfall estimates
are represented by a continuous and smooth surface, which accurately represented the thermal and
dynamic forcing mechanisms of the topography. In contrast, the map produced by the IDW method
presents more isolines around the rain stations, for example, in the area between sub-basins #1 and
#2, with lower precipitation in March, which is where the Guanmian gauge is located. This could be
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explained by the fact that the interpolated results using IDW were more significantly impacted by the
nearby stations [33].
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3.2. Analysis of Runoff Process by Spatial Interpolation of Precipitation

To illustrate the reliability of the SWAT performance, the observed precipitation data from 16
rain gauges were used as input data. Model calibration and validation were performed using the
observed streamflow in the Wenquan gauging station. The model simulated a period of five years
(2009–2013); data from the first year were considered as warm up time for the model, followed by
model calibration using data from 2010 to 2011, whereas the remaining two years (2012–2013) of the
dataset were employed for validating the model. The R2 during the calibration and validation periods
was 0.69 and 0.64, respectively. The NSE during calibration and validation periods was 0.77 and 0.73,
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respectively. More details about model calibration and validation and parameter optimization in the
Pengxi River basin are available in the study by Shi et al. [34].

The performances of different interpolation methods were evaluated with the aforementioned
calibrated parameters (described in Section 2.5.2). Results from the streamflow simulations in 2012
were shown in daily scales. The NSE, R2 and RMSE indices for each dataset are displayed in Table 3.
The best value for both NSE and R2 is 1 (unit-less). For RMSE, a smaller value indicates better
prediction. Results showed that the CK dataset performed very well on the daily scale simulation of
discharge, and it had better NSE (0.82), R2 (0.82), and RMSE (29.89) indices when compared to the
runoff simulation using the default method (0.64, 0.76, and 42.85). The IDW method proved to be
the second best dataset that was applied to the runoff simulation, with a NSE, R2, and RMSE of 0.76,
0.83, and 35.06, respectively. The NSE, R2, and RMSE indices of the TP method showed comparable
values to the IDW method: 0.75, 0.81, and 35.29, respectively. These results demonstrated that the three
interpolation schemes could improve runoff simulation in SWAT.

Table 3. Performance assessment of runoff modeling with different interpolated precipitation in 2012.

Method NSE R2 RMSE

Default 0.64 0.76 42.85
TP 0.75 0.81 35.29

IDW 0.76 0.83 35.06
CK 0.82 0.82 29.89

Notes: NSE is abbreviation of Nash-Sutcliffe coefficient; R2 is abbreviation of coefficient of determination; RMSE is
abbreviation of Root Mean Square Error.

The default method produced a discrete and abrupt surface, while the other methods produced
a smooth and gradual surface [8]. The smoothness depended on the criteria used in the selection
of the weight values in relation to the distance between the point of interest and the sample points.
The TP method typically showed reasonable performance for gauges, when the nearby gauge was
representative of the estimated gauge [32]. The main reason why the IDW method outperformed the
TP method depended on the differences in spatial precipitation distribution. The TP method produced
a discrete and abrupt precipitation distribution, while the IDW method resulted in a smooth and
gradual precipitation field. The smoothness relies on the criteria used in the selection of the weight
values in relation to the distance between the point of interest and sample points [8]. This was in
agreement with findings of Ruelland et al., who pointed out that IDW interpolation could significantly
reduce error by adjusting the weighting factors used to reflect the relative influence of each station [50].

The precipitation dataset produced by the CK method had the best performance in terms of NSE,
R2, and RMSE, due to its estimated weights for donors found using a semi-variogram. On the other
hand, the performance of the CK method could be ascribed to the very frequent application of an
elevation correction factor in the case of the CK-based dataset. The CK method was found to be useful
for regionalization of hydrological signatures [5,51]. It solved a problem of hydrological modeling
in that the precipitation data were poorly resolved in space and could not capture heterogeneous
orographic effects [52]. In particular, most available rain gauges in the Pengxi River basin were located
at low elevations, which often led to an underestimation of precipitation input by other methods.

Figure 3 shows the differences between the simulated streamflow of different datasets and the
observed streamflow in Wenquan gauging station of 2012. Large differences in flow were evident
during the peaks. The same conclusion was obtained by Chen et al. that the hydrological response in the
catchment associated with different interpolation methods could reflect a large difference [53]. Based on
differences in the specific characteristics of streamflow, the year 2012 could be approximately divided
into three periods. In the first period, 1 January to 20 March, there was no obvious improvement
in the runoff process given by interpolation methods compared with the default method. However,
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interpolation methods performed well in the second period, from 21 March to 16 September, but poorly
in the third period, from 17 September to 31 December.
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For further analysis, the focus was set on the performances of interpolation methods during the
three periods, the results of which are summarized in Table 4. In the first period, the values of MAE
ranged from 3.54 to 6.19 mm/d during 1 January to 20 March. Results clearly demonstrated that the
default method performed marginally better than the other methods in simulating streamflow, and the
R2 and RMSE were 0.14 and 4.2, respectively. The values of NSE in four methods were negative. In the
second period, the CK method performed much better than other methods, with the lowest values of
MAE and RMSE. The default method presented the weakest behavior during this period. In terms
of R2, the values were greater than 0.5 which were considered acceptable. The IDW method with an
exponent of one performed similarly to the CK method, while the correlation in two points of the IDW
method decreased almost linearly with increasing distance [32]. The CK method outperformed the
IDW method in terms of NSE, with a value of 0.82. In the third period, the default method was slightly
better than other methods with the MAE of 6.92 mm and RMSE of 8.6 mm. However, the values of
NSE were also negative in the four methods.

Overall, the comparison of different methods in the three periods demonstrated that the CK
method could reliably estimate precipitation-driven peaks in flow, as the peaks in precipitation and
streamflow were closely matched in the time during 21 March to 16 September. However, in the first
and third periods, an NSE less than zero occurred which indicated that the mean observed value was
a better predictor than the simulated values [54]. In these two periods, the stimulated streamflow
was underestimated or overestimated by the four methods. This situation could be explained by
the fact that when extreme rainfalls occurred, i.e., higher or lower rainfall than the surrounding
stations, the methods either overestimated or underestimated average rainfall because the estimation
methods were affected by the surrounding rainfall stations [55]. In addition, we concluded that the
response between precipitation and streamflow, as estimated by the SWAT, was not obvious in the
light rain periods (dry periods) and prominent in heavy rain period (wet period). Several authors have
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previously addressed that SWAT’s predictive capabilities were less well-suited for drier conditions
and consistently better during wet periods [56–58]. Different responses of the runoff to light and
heavy rain could be attributed to the runoff response parameters in the SWAT [38]. One potential
explanation for the difference performances is the model’s adjustment for curve number, which
based upon antecedent moisture conditions does not accurately reflect the seasonal variations [57].
Another potential explanation is that the storage in the stream network riparian zone is not adequately
represented in SWAT. Field research indicates that during dry periods, the water table in the riparian
zone continues to be lowered by transpiration, which leads to water table depression results in
storage [59].

Table 4. Performance assessment of runoff simulation with different interpolation schemes during
three periods.

Method
First Period Second Period Third Period

MAE
NSE R2 RMSE MAE

NSE R2 RMSE MAE
NSE R2 RMSE

(mm) (mm) (mm) (mm) (mm) (mm)

Default 3.54 −4.36 0.14 4.2 26.88 0.59 0.75 60.6 6.92 −7.13 0.56 8.6
TP 6.19 −14.6 0.13 7.2 22.7 0.73 0.81 48.8 12.58 −24.05 0.59 14.8

IDW 5.62 −11.68 0.12 6.5 22.09 0.74 0.83 48.1 9.56 −14.85 0.72 11.8
CK 5.97 −14.57 0.1 7.2 20.12 0.82 0.83 40.5 13.78 −28.67 0.74 16.1

Note: MAE is abbreviation of Mean Absolute Error.

3.3. Combination of Interpolation Methods’ Estimates for Runoff Process Simulation

3.3.1. Combining Interpolation Methods’ Estimates

As noted previously, the relative influence of these various drivers of runoff could also be assessed
by using multiple regression analysis. The correlation matrix, based on spatial interpolation of
precipitation data in different methods, is presented in Table 5. It is evident that precipitation estimates
from interpolation methods were significantly correlated with each other. The spatially interpolated
precipitation estimate from the CK method showed a significant correlation with the estimate from the
IDW method, and the R2 was 0.96. By contrast, there were lower values of correlation between each
of the CK and IDW methods and the TP method: 0.83 and 0.89, respectively. This implies that there
was less variance of interpolated precipitation between the CK and IDW methods, considering the
adaptable weights, compared with the TP method.

Table 5. Correlation matrix between TP, IDW, and CK in interpolating precipitation in 2012.

Method TP IDW CK

TP 1 0.89 0.83
IDW — 1 0.96
CK — — 1

To account for the characteristics of interpolated precipitation among methods, further study
was conducted to find out the model performance of combining interpolation methods’ estimates.
Based on the algorithm in Hasan et al. [17] (as shown in Equation (6)), the results of three combination
modes are shown in Figure 4. It can be seen that the relationship between the weight of one method
and the performance of daily streamflow prediction accuracy, R2, of the combined estimates followed
a parabolic function. In the combination of IDW and TP methods’ estimates (Figure 4a), when the IDW
method occupied a weight of 0.65, the peak of the fitting curve reached an R2 of 0.835 and a NSE of
0.77. The CK method had a weight of 0.45 and the R2 was 0.842 in the fitting curve for the combination
of CK and TP methods’ estimates (Figure 4b), with an NSE of 0.83. As for the combination of IDW and
CK methods’ estimates, the R2 was 0.836 and NSE was 0.83 when the CK method had a weight of 0.25
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(Figure 4c). Overall, the combination of the CK and TP methods’ estimates improved results compared
to the best performance of a single method with an R2 of 0.83 (see Table 3).
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3.3.2. Performance Comparison

To further figure out the impact of the selection of the combination method on absolute error
magnitude, the absolute error distributions of different methods are presented as box plots in Figure 5.
The center represented the middle 50%, or 50th percentile, of the data set and was derived using the
lower and upper quartile values. The median value was displayed inside the “box”. The maximum
and minimum values were displayed with vertical lines (“whiskers”) connecting the points to the
center box. As regards comparison among these methods, the results were quite variable, with the
largest absolute error ranging from 22.08 m3/s (in the IDW method) to 215.6 m3/s (in the CK method)
in the four methods.
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In Figure 5, the largest and lowest absolute errors are derived from the CK and TP methods,
respectively. The largest absolute error in the CK method was 215.6 m3/s on 1 September when the
observed streamflow was 755.6 m3/s, and the lowest absolute error occurred on 3 July: −275.8 m3/s
using the TP method when the observed streamflow was 321 m3/s. For the combination of CK and TP
methods’ estimates, the absolute errors were decreased to 55 m3/s on 1 September and 257.48 m3/s on
3 July. On the right of Figure 5, it can be noted that the mean absolute error of 0.44 m3/s, found with the
combination method, was the least, compared with the values of−2.36,−6.21, and 1.92 m3/s for the TP,
IDW, and CK methods alone, respectively. However, the mean values were influenced by the outliers.
The median values of the four methods were 3.4 m3/s, 0.4 m3/s, 4.5 m3/s, and 4.0 m3/s, respectively,
which suggested that the IDW method outperformed other methods. It shows that combining estimates
allowed minimization of the largest and lowest errors, resulting in better predictions compared with
the single best method [8,17], but the median absolute error is still remarkable.

4. Conclusions

This paper detailed the results of the runoff process in SWAT with different interpolation
precipitation datasets developed on the Three Gorges Basin. The performances of spatial interpolation
of precipitation using the TP, IDW, and CK methods were evaluated, and the causes of the differences
in model performance between light and heavy rain were revealed. Furthermore, combinations of the
different interpolation estimates and the influence this has on runoff process simulation were analyzed.
The major results were summarized as follows:

(i) Three interpolation methods were noticeably better than the default approach at streamflow
modeling during the whole process. The CK methods showed the best performance in terms of NSE,
R2, and RMSE indexes.
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(ii) Compared with the default method in SWAT, the TP, IDW, and CK methods were less reliable
in accurately predicting low flows in light rain periods (dry periods) but performed better in heavy
rain periods (wet periods). In the dry periods, the three methods obviously reflected a trend of
underestimation or overestimation of precipitation because the estimation methods were affected
by the surrounding rainfall stations. In addition, the poor performance in the dry periods also
demonstrated that SWAT’s predictive capabilities were less well-suited in drier conditions for poor
precipitation-runoff response in the SWAT.

(iii) Three merging interpolated estimates were examined; they differed in the correlation between
the dynamic weight of one method and the performance of runoff simulation. The combination of
TP and CK methods’ estimates performed best in accurately predicting streamflow in terms of R2, for
minimizing the largest and lowest errors. However, by taking the median absolute error of streamflow
into account, it was clear from our findings that the IDW method produced the least absolute errors
compared to other methods including the combined estimates.

Overall, our study underlines that interpolation methods should be embedded in SWAT during
the heavy rain period to capture rainfall characteristics for runoff process simulation. Furthermore,
through the analysis of simulation results, a combination of interpolation estimates yielded no obvious
improvement in hydrological modeling in terms of absolute errors. The spatial interpolation of
precipitation for runoff process simulation needs to be further explored in the future. The results
further elucidate the effect of spatial interpolation of precipitation on predicting runoff processes.
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