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Rationale for Selection of Climate Models

As in most impacts work, the selection of a subset of general circulation models (GCMs) is
necessary due to computational, time, and resource constraints. As such, five GCMs were chosen
with the intent of ensuring that the subset captures a large range of the variability in climate
outcomes observed across the entire ensemble from the fifth phase of the Coupled Model
Intercomparison Project (CMIP5; Taylor et al. 2012).

Center (Modeling Group) Model Availability References
Acronym
LOCA SNAP
National Center for Atmospheric Gent et al. 2011;
Research cesMa X X Neale et al. 2013
i Schmidt et al. 2006
NASA Goddard Institute for Space GISS-E2-R X X
Studies
Canadian Centre for Climate Modeling Von Salzen et al.
CanESM2 X
and Analysis an 2013
. HadGEM2- Collins et al., 2011;
Met Office Hadley Centre ES X Davies et al. 2005
Atmosphere and Ocean Research Watanabe et al.
Institute, National Institute for 2010
Environmental Studies, and Japan MIROC5 X
Agency for Marine-Earth Science and
Technology

Variability in Climate Outcomes

While many different metrics could be used in this type of comparison, a logical approach is to
compare the projections from CMIP5 CGMs for annual and seasonal temperature and
precipitation. While these averaged metrics may not be perfect substitutes for comparing
extreme weather effects, the relationship should be sufficiently strong for selecting climate
models from the broader ensemble.

The following scatter plots! show the variability across the CMIP5 ensemble for projected changes
(2071-2100 compared to 1976-2005 baseline) in annual and seasonal (primarily summertime)
temperature and precipitation.?

! These scatter plots were developed using the LASSO tool, a product of EPA’s Office of Research and
Development — National Center for Environmental Assessment.

2 A number of the GCMs in the plots contain multiple initializations that are designed with numbers in
subscript. The dashed lines represent the median value for each axis.
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Figure 1. Variability of projected annual temperature and precipitation change across the CMIP5

ensemble for the contiguous US
Emissions Scenario: RCP85  Study area: conus.shp
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Figure 2. Variability of projected summertime temperature and precipitation change across the

CMIP5 ensemble for the contiguous US
Emissions Scenario: RCP85  Study area: conus.shp
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Figure 3. Variability of projected wintertime temperature and precipitation change across the
CMIP5 ensemble for the contiguous US
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Emissions Scenario: RCP85  Study area: conus.shp
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As shown in Figures 1-3, the five selected GCMs (CanESM2, CCSM4, GISS-E2-R, HadGEM?2-ES, and
MIROCS5) cover a large range of the variability across the entire ensemble in terms of annual and
season temperature and precipitation. This selection also balances the range alongside
considerations of model independence, broader usage by the scientific community, and skill at
reproducing observed climate. Sanderson et al. (2015a, 2015b) provide analysis of both model
skill at the global scale and independence of underlying code. These criteria were considered in
the selection process.
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Calculation of the Climate-oriented Water Quality Index (CWQl)

As mentioned in the manuscript, calculation of the Climate-oriented Water Quality Index (CWQI)
involves three major steps:
1. Obtain measurements on water quality constituents, obtained directly from the water
quality models,
2. Convert each measurement into a subindex using water quality curves and
3. Aggregate the subindex values into the WQI.

Step #1 involves post-processing of the water quality model outputs on a daily basis. These
outputs were aggregated the Level-lll Ecoregions, as was done in EPA (2015). Step #2 is the most
involved and uses four subindex calculations: Concentrations of total phosphorus, total nitrogen,
and DO, as well as water temperature. These are described below

Total Phosphorus subindex calculation

This is based on EPA (2015). The subindex (Slp) is calculated as follows:

SITP = 10, when TP > TPlO
Slrp = a*exp(TP x b), when TPyyo < TP < TPy
SITP = 100, When TP < TPlOO

Where TP is total phosphorus concentration in the Eco Region, TP10, TP10o, @, and b are all region-
specific parameters listed in EPA (2015).

Total Nitrogen subindex calculation

This is based on EPA (2015). The subindex (Slt) is calculated as follows:

Slry = 10, when TN > TNy,
Slry =axexp(TN *b),  whenTNygo < TN < TNy
SIry =100, when TN < TN

Where TN is total nitrogen concentration in the Eco Region, TN1g, TN1g, a, and b are all region-
specific parameters listed in EPA (2015).

DO subindex calculation

This is based on EPA (2015) but does not vary by region. The subindex (Slpo) is calculated as
follows:

Slpo = 10, when DO < 3.3 mg/L and DO saturation < 100%
Slpo = —80.29 + 31.88 *x DO — 1.401 * DO?,
when 3.3 mg/L < DO < 10.5 mg/L and DO saturation
< 100%
Slpo = 100, when DO > 10.5 mg/L and DO saturation < 100%
SIpp = 100 * exp((DOsat — 100) * —1.197 x 1072),  when 100% < DOsat < 275%
Slpo = 10, when DOsat > 275%

Where DO is Dissolved Oxygen, DOsat is DO saturation.
Water Temperature subindex calculation

This is based on the method and subindex curve from McClelland (1974), which uses deviations
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from an average seasonal water temperature and is penalized if temperatures are either higher or
lower than average. More details on this can be found in McClelland (1974) as well as Boehlert
(2015), where the same method is used. The subindex curve was not accompanied by an equation,
so this has been replicated by the authors using a polynomial fit. The equations used are as
follows:

SIy = 0.0021 * AT3 + 0.4339 * AT? — 12.826 * AT + 98.41, when 15 > AT > 0
SIy = 0.1789 % AT3 + 0.0885 * AT? — 3.9366 * AT + 92.07, when —15<AT <0
Sly =5, when AT > 15 or AT < —15

Where AT is the change in seasonal mean temperature.

Climate Oriented Water Quality Index

The four subindices are aggregated using the weights listed in McClelland (1974), which are
rescaled to sum to one such that the DO subindex weight becomes 0.36 and the other three
become 0.21. The final value of the is calculated using an arithmetic weighted average of the four
subindices.
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Maps of Future Changes in Air Temperature, Precipitation, Non-point Loadings, Flow, Water
Temperature, Dissolved Oxygen, Total Nitrogen, Total Phosphorus, CWQI, and WTP for all five
GCMs
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Figure 1: Mean projected changes in temperature (°C; left) and precipitation (%; right) for the five climate
models, two emissions scenarios, and the 2050 and 2090 eras. Changes are between the average of the 20-year
projected era and the 20-year baseline.
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Figure 2: Non-point source nitrogen and phosphorus agricultural loadings under the baseline (top) and climate
change (bottom) derived from HAWQS outputs. Variability in loading patterns across climate scenarios, emissions
scenarios, and time is driven by the response of the landscape model to changes in river runoff under climate
change.
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Figure 3: Percentage changes in mean projected HAWQS and US Basins river flow for both the GISS-E2-R and
MIROCS climate models, two emissions scenarios, and two eras.
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Figure 4: Changes (°C) in mean projected HAWQS and US Basins water temperature for both the GISS-E2-R and
MIROCS climate models, two emissions scenarios, and two eras.
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Figure 5: Percentage changes in mean HAWQS and US Basins nitrogen concentrations for both the GISS-E2-R
and MIROCS climate models, two emissions scenarios, and two eras.
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Figure 6: Percentage changes in mean HAWQS and US Basins phosphorus concentrations for both the GISS-E2-R
and MIROCS climate models, two emissions scenarios, and two eras.
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Figure 7: Percentage changes in mean HAWQS and US Basins dissolved oxygen for both the GISS-E2-R and
MIROCS climate models, two emissions scenarios, and two eras.
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Figure 8: Changes in mean HAWQS and US Basins levels of the Climate-Water Quality Index for both the GISS-
E2-R and MIROCS climate models, two emissions scenarios, and two eras.
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Figure 9: Changes in mean HAWQS and US Basins Willingness To Pay per person (USD/year) for both the GISS-
E2-R and MIROCS climate models, two emissions scenarios, and two eras.



