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Abstract: This paper proposes a river stage modeling approach combining maximal overlap
discrete wavelet transform (MODWT), support vector machines (SVMs) and genetic algorithm
(GA). The MODWT decomposes original river stage time series into sub-time series (detail and
approximation components). The SVM computes daily river stage values using the decomposed
sub-time series. The GA searches for the optimal hyperparameters of SVM. The performance
of MODWT–SVM models is evaluated using efficiency and effectiveness indices; and compared
with that of a single model (multilayer perceptron (MLP) and SVM), discrete wavelet transform
(DWT)-based models (DWT–MLP and DWT–SVM) and MODWT–MLP models. The conjunction
of MODWT, SVM and GA improves the performance of the SVM model and outperforms the
single models. The MODWT–based models using the SVM model enhance model performance
and accuracy compared to those of using MLP model. Also, hybrid models coupling MODWT,
SVM and GA improve model performance and accuracy in daily river stage modeling as compared
with those combined with DWT. The MODWT–SVM model using the Coiflet 12 (c12) mother wavelet,
MODWT–SVM-c12, produces the best efficiency and effectiveness among all models. Therefore,
the conjunction of MODWT, SVM and GA can be an efficient and effective approach for modeling
daily river stages.

Keywords: maximal overlap discrete wavelet transform; discrete wavelet transform; support vector
machine; multilayer perceptron; genetic algorithm; daily river stage modeling

1. Introduction

Modeling the nonlinear behavior of hydrological variables accurately is essential for effective
water resource management including water supply, reservoir operation, drought forecasting, flood
damage reduction and aquatic ecosystem conservation in South Korea. Soft computing approaches
such as artificial neural networks (ANNs), support vector machines (SVMs) and adaptive neuro-fuzzy
inference system (ANFIS) have been widely applied for modeling complex nonlinear hydrological
relationships including precipitation, streamflow, rainfall-runoff, evaporation and groundwater [1–9].

Recently, hybrid time series modeling approaches utilizing wavelet transform have been one of the
research themes studied actively in the hydrological field [8–14]. In terms of signal analysis, the wavelet
transform is a signal decomposition method which splits an original signal into sub-signals, including
detail and approximation (smooth) components. Adamowski and Sun [10] suggested a hybrid model
combining discrete wavelet transform (DWT) and ANN for streamflow forecasting. Kisi et al. [11]
predicted short- and long-term air temperatures using wavelet-based genetic programming. Okkan
and Serbes [12] modeled reservoir inflow using a combination of DWT and black box models
including ANNs, multiple linear regression and least square support vector machines (LS-SVMs).
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Raghavendra and Deka [14] proposed a combined model of wavelet packet transform (WPT) and SVM
for groundwater level prediction. Seo et al. [8] developed two hybrid water level forecasting models,
including DWT-based ANN (WANN) and DWT-based ANFIS (WANIFS). Seo et al. [9] developed
three hybrid river stage forecasting models, including WPT-based ANN (WPANN), WPT-based ANFIS
(WPANFIS) and WPT-based SVM (WPSVM).

Several methods can be used for decomposing a signal. Time windowing and Fourier analysis
methods have provided the temporal and frequency decompositions of a signal, respectively. Both
methods lack the ability to extract the signal components for multiple time scales [15]. Furthermore,
the time windowing method requires the selection of an appropriate averaging time. The Fourier
analysis method may require preprocessing including tapering, data windowing, detrending and
mean subtraction [15]. Unlike the time windowing and Fourier analysis methods, DWT decomposes
a signal in time and frequency domains, and provides the effective extraction of signal components
for multiple time scales. However, DWT also has drawbacks such as signal length restriction
and lack of translation-invariance [15]. DWT is limited to a signal length that is a power-of-two
multiple. The power-of-two restriction on signal length should be relaxed for applying the DWT.
The signal decomposition by the DWT depends on whether an event spans or is within a wavelet
averaging window. It is also sensitive to the starting position of the signal [15]. Like the DWT,
the maximal overlap discrete wavelet transform (MODWT) decomposes a signal in the time and
frequency domains. However, the MODWT keeps down-sampled values at each decomposition
level, whereas the DWT discards the values. There is no need to relax the power-of-two restriction
for applying the MODWT. In other words, the MODWT can be applied for all signal lengths [15].
In addition, the MODWT provides several merits over the DWT. Further details on them can be found
in Cornish and Percival [15]. Therefore, the advantages of MODWT over other methods suggest that
the conjunction of MODWT and soft computing models may be a more effective and efficient approach
for river stage modeling.

This study proposes the coupling of MODWT, SVM and genetic algorithm (GA) for daily river
stage modeling. MODWT and SVM are adopted for decomposing an original signal and estimating
the river stage, respectively. The GA is applied for searching the optimal hyperparameters of the SVM.
For investigating the model performance (efficiency and effectiveness), a case study was conducted
for daily river stage modeling in the Chogang Watershed, South Korea. The model performance is
assessed based on statistical indices (efficiency and effectiveness indices) and graphical comparison.
The performances of the MODWT–SVM models are compared with those of the single models
(multilayer perceptron (MLP) and SVM), DWT-based models (DWT–MLP and DWT–SVM) and
MODWT–MLP models.

2. Materials and Methods

2.1. Data Used

The Chogang Watershed in South Korea was chosen for applying the DWT- and MODWT-based
river stage modeling approaches. The watershed is a tributary of the Geum River, which has the third
largest river basin in South Korea. As depicted in Figure 1, the study area is a mountainous watershed
located in the eastern region of the Geum River Basin. The watershed area is 664.62 km2, the stream
length is 63.18 km, the average watershed elevation is 369.18 m, and the average watershed slope is
39.94% (http://www.wamis.go.kr, accessed on 19 May 2017).

Daily river stage data for four streamflow gauging stations were collected from the Water
Management Information System (WAMIS) (http://www.wamis.go.kr, accessed on 19 May 2017).
The WAMIS is a portal information system for providing various information on the water resources
of South Korea. As seen in Figure 1, the gauging stations include Simcheon, Songcheon, Baekhwagyo
and Hwanggan. The data for the period of 2008–2016 were prepared for river stage modeling. The data
were partitioned into training (2008–2013) and testing datasets (2014–2016) on a yearly basis, and also
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into low (x < µ), medium (µ ≤ x ≤ µ + 2σ) and high stages (x > µ + 2σ) groups [16], where x is the
river stage value, and µ and σ are the mean and standard deviation of the river stage time series.Water 2017, 9, 525  3 of 24 
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2.2. Discrete Wavelet Transform (DWT)

DWT, which is a simpler version of continuous wavelet transform, is a multiresolution analysis
(MRA) technique which decomposes an original signal into approximation and detail components.
This section outlines the basic concept of DWT. Detailed information on the DWT can be found in
Nason [17]. According to Mallat [18], DWT can be written as the following equation [10]:

ψj,k(t) =
1√∣∣∣sj

0

∣∣∣ψ ∗
(

t− kτ0sj
0

sj
0

)
, (1)

where j and k are integer values controlling wavelet scale and translation; s0 is the fixed scale step
(commonly s0 = 2); ψ is the mother wavelet; and τ0 is the location parameter (commonly τ0 = 1).
For a discrete signal X = {Xt, t = 0, 1, · · · , N − 1}, the DWT computes the wavelet coefficient for
the discrete wavelet of scale 2j and location 2jk using the following equation [16]:

WX(j, k) = 2−j/2
N−1

∑
t=0

Xt ψ ∗ (2−jt− k), for s0 = 2 and τ0 = 1, (2)

where WX(j, k) is the wavelet coefficient and N = an integer power of two.
Mallat’s algorithm [18] is generally applied for the practical implementation of DWT.

The algorithm uses low- and high-pass filters instead of wavelets. Figure 2 shows a flowchartfor
three-level DWT. As seen in Figure 2, an original signal is decomposed into detail components (D1, D2

and D3) and an approximation component (A3) using the algorithm. The filters are determined
depending on the mother wavelets which are selected in advance. The mother wavelets include
Daubechies wavelet (Daublet), Daubechies’ least-asymmetric wavelet (Symmlet), Coiflet, Morlet
(Gabor wavelet), Meyer wavelet, and Shannon wavlets (Littlewood–Paley wavelet), and so on. Details
on different wavelets can be found in Percival and Walden [19] and Nason [17]. For decomposing input
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signals using wavelet analysis, the decomposition level should be determined beforehand. The level L
was determined based on Equation (3) [20]:

L = int[log(n)] (3)

where int[·] is the function that returns the nearest integer of a number and n is the data length.Water 2017, 9, 525  4 of 24 
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2.3. Maximal Overlap Discrete Wavelet Transform (MODWT)

MODWT is a mathematical technique which transforms a signal into multilevel wavelet and
scaling coefficients. MODWT has several merits in comparison with DWT as discussed in Cornish
et al. [15]. For example, MODWT can be properly defined for arbitrary signal length, while the DWT is
limited to a signal length with an integer multiple of a power of two. This section outlines the concept
of MODWT. Details on MODWT can be found in Percival and Walden [19].

For a discrete signal X = {Xt, t = 0, 1, · · · , n− 1}, the elements of the jth level MODWT wavelet
and scaling coefficients, Wj and Vj, can be written as Equations (4) and (5), respectively [19]:

Wj, t =
n−1

∑
l=0

h̃◦j, lXt−l mod n j = 1, 2, · · · , L, (4)

Vj, t =
n−1

∑
l=0

g̃◦j, lXt−l mod n, (5)

where Wj, t is the tth element of the jth level MODWT wavelet coefficient; Vj, t is the tth element of the

jth level MODWT scaling coefficient;
{
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}
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{
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}
are the jth level MODWT high- and low-pass

filters (wavelet and scaling filters) yielded by periodizing
{
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and

{
g̃j, l

}
to length n, respectively;{

h̃j, l

}
and

{
g̃j, l

}
are the jth level MODWT high-pass filter (h̃j, l ≡ hj, l/2j/2) and low-pass filter

(g̃j, l ≡ gj, l/2j/2);
{

hj, l

}
and

{
gj, l

}
are the jth level DWT high- and low-pass filters; and L is the

highest decomposition level. The filters are determined depending on the mother wavelets, as in DWT.
Figure 3 shows a flowchart for three-level MODWT. As seen in Figure 3, the MODWT-based

MRA decomposes an original signal X into a low-pass filtered approximation component (A3) and
high-pass filtered detail components (D1, D2 and D3). The MODWT-based MRA can be written as
Equations (6)–(8) [19];

X =
L

∑
j=1

Dj + AJ0 , (6)

Dj, t =
n−1

∑
l=0

h̃◦j, lWj, t+l mod n, (7)
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Aj, t =
n−1

∑
l=0

g̃◦j, lVj, t+l mod n, (8)

where AL is the approximation component and Dj is the detail components (j = 1, 2, · · · , L).Water 2017, 9, 525  5 of 24 
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2.4. Multilayer Perceptron (MLP)

ANN is a multilayered computing system for modeling complex nonlinear and multi-dimensional
relationships. MLP, which is the most commonly applied ANN structure, consists of several layers.
For hydrological applications, MLP with three layers, including input, output and hidden layers,
is typically used, as shown from Figure 4. As described in Günther and Fritsch [21], three-layered MLP
with J hidden nodes calculates Equation (9):

o(x) = f

(
w0 +

J
∑

j=1
wj · f

(
w0j +

n
∑

i=1
wijxi

))

= f

(
w0 +

J
∑

j=1
wj · f

(
w0j + wT

j x
))

,
(9)

where x = {xi, i = 1, 2, · · · , n} is the input vector; f is the activation function; o(x) is the output
vector; w0 is the intercept for output node; wj is the connection weight; w =

{
w1j, · · · , wnj

}
is the

connection weight vector; and w0j is the intercept for the jth hidden node. Details on the MLP are
given in Günther and Fritsch [21].
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For MLP modeling, the number of hidden nodes and the type of activation function should
be determined in advance. The optimal number of hidden nodes can be determined utilizing
trial-and-error or optimization methods. The activation functions used in the MLP include logistic
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sigmoid, linear and hyperbolic tangent functions. Although the activation functions depend on the
type of network and training algorithm, the logistic sigmoid activation function is often employed
since it is real-valued, continuous, differentiable and computationally easy to perform. Furthermore,
the logistic sigmoid activation function is often used to introduce nonlinear behavior in the MLP [21].

2.5. Support Vector Machine (SVM)

The SVM, which is a class of statistical models developed by Vapnik [22], is a supervised machine
learning model for solving classification and regression problems. In a SVM, a nonlinear mapping
function maps original data into a high-dimensional space. This section outlines the basic concept
of SVM. Details on the SVM can found in Vapnik [22] and Noori et al. [23]. Given a training dataset
{xi, yi}n

i=1, where x ∈ Rm is the input vector of m component and y ∈ R is the target value, the SVM
for regression can be formulated as Equation (10) [22]:

f (x) = wT · φ(x) + b, (10)

where w is the weight vector; φ(x) is the mapping function; and b is the bias.
The parameters, w and b, are estimated by minimizing Equation (11) [22]:

Rreg = C
1
n

n

∑
i=1

Lε(yi, f (xi)) +
1
2
||w||2, (11)

where Rreg is the regularized risk function; C is the regularization parameter; and Lε is the ε-insensitive
loss function. The function can be written as Equation (12) [22]:

Lε(y, f (x, w)) =

{
0 if |y− f (x, w)| ≤ ε

|y− f (x, w)|−ε otherwise
, (12)

where ε is the parameter of insensitive loss function. The hyperparameters, C and ε, should be
determined beforehand. Thus, the SVM conducts linear regression in the high-dimensional space
utilizing the ε-insensitive loss function. By introducing the non-negative slack variables ξ and ξ∗,
the Rreg is converted into the optimization problem as in Equation (13) [22]:

min
w, b, ξ, ξ∗

1
2
||w||2 + C

n

∑
i=1

(ξi + ξ∗i ),

subject to


yi −

[
wT · φ(xi) + b

]
≤ ε + ξi[

wT · φ(xi) + b
]
− yi ≤ ε + ξ∗i

ξi ≥ 0, ξ∗i ≥ 0, i = 1, 2, · · · , n
.

(13)

By introducing the dual set of Lagrange multipliers, αk and α∗k , the SVM can be written as
follows [22]:

max − 1
2

n

∑
i=1

n

∑
j=1

(αi − α∗i )(αj − α∗j )K(xi, xj) − ε
n

∑
i=1

(αi + α∗i ) +
n

∑
i=1

yi(αi − α∗i ),

subject to


∑n

i=1 (αi − α∗i ) = 0
0 ≤ αi ≤ C, i = 1, 2, · · · , n
0 ≤ α∗i ≤ C, i = 1, 2, · · · , n

.

(14)

Thus, the non-linear regression function of SVM can be expressed as Equation (15) [22]:

f (x) =
m

∑
k=1

(αk − α∗k )K(xk, x) + b, (15)
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where xk is the support vector; m is the number of support vectors; and K(xk, x) = φ(xk) · φ(x) is
the kernel function. Figure 5 shows a three-layer SVM model architecture with eight inputs and one
output. The radial basis function (RBF), which is suitable for regression problems, was used in this
study. The function can be written as Equation (16) [22]:

K(xi, xj) = exp
(
−γ‖xi − xj‖2

)
, (16)

where γ is the kernel parameter (γ = 1/2p2) and p is the width parameter.
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For SVM modeling, the optimal hyperparameters, including regularization, insensitive loss
function and kernel parameters, should be selected in advance. Since the hyperparameters are difficult
to determine by a trial-and-error approach, the optimal hyperparameters are usually selected utilizing
optimization algorithms.

2.6. Genetic Algotrithm (GA)

GA, which is a class of evolutionary algorithms, is a stochastic optimization algorithm based on
evolution strategy. GAs have been successfully applied to search for approximate or exact solutions
to optimization problems [24]. A GA was applied to search the optimal hyperparameters of SVM
in this study. The main genetic operators consist of selection, crossover and mutation operators.
The selection operator chooses excellent chromosomes (set of candidate parameters), which are also
called individuals, to be reproduced. The crossover operator exchanges genes (candidate parameters)
between two chromosomes. The mutation operator determines whether a chromosome mutates to the
next generation or not. The crossover and mutation operators generate new offspring and population
(set of all parameters) in the next generation. The evolution process can be summarized as follows [25]:

• Step 1. Generate an initial random population {θ(0)1 , θ
(0)
2 , · · · , θ

(0)
n }.

• Step 2. Compute the fitness f (θ(k)i ) of each chromosome in the population, and assign probability

p(k)i typically proportional to the fitness.

• Step 3. Reproduce new population {θ(k+1)
1 , θ

(k+1)
2 , · · · , θ

(k+1)
n } using selection, crossover and

mutation operators.
• Step 4. Repeat from step 2 to step 3 until stop conditions are met. The algorithm yields θ∗ ≡

arg max
θ
(k)
i

f (θ(k)i ) as the optimum.
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For applying the GA optimization, the tuning parameters should be set in advance. The main
tuning parameters include population size, number of generations, elite count, and crossover and
mutation rates. The population size is the number of chromosomes in population (typically, population
size = 20–100). The number of generations is related to the improvement in the fitness function.
The crossover rate is the probability that crossover will occur between chromosomes (typically,
crossover rate = 0.80–0.95). The mutation rate is the probability that a mutation will occur in a
parent chromosome (typically, mutation rate = 0.5–1.0) [25,26]. The elite count is the number of
best fitness individuals to survive at each generation, which can be computed using the following
equation [25]:

elite count = max(1, int(popSize× 0.05)) (17)

where popSize is the population size and int(·) is the function which returns integer part.

2.7. River Stage Modeling Using DWT and MODWT

In river stage modeling using DWT and MODWT, the DWT and MODWT decompose original
input signals (daily river stage data) into sub-signals (detail and approximation components).
The sub-signals are then used as the inputs of single models, MLP and SVM. As depicted in Figure 6,
the DWT- and MODWT-based river stage modeling approaches are comprised of a three-step algorithm.
The algorithm is outlined as follows:

• Step 1. Decompose original input signals into sub-signals (detail and approximation components)
utilizing DWT and MODWT.

• Step 2. Select effective inputs among the sub-signals.
• Step 3. Train and test single models, MLP and SVM, utilizing the effective inputs.
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Figure 6. Flowchart of river stage modeling using DWT and MODWT.

2.8. Model Efficiency Evaluation

The efficiencies of single, DWT- and MODWT-based river stage modeling approaches were
assessed utilizing dimensionless and residual error-based indices (see Appendix A).
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- Dimensionless indices: coefficient of efficiency (CE), index of agreement (d) and coefficient of
determination (r2)

- Residual error-based indices: root-mean-square error (RMSE), mean absolute error (MAE), mean
squared relative error (MSRE) and mean higher order error (MS4E)

The CE, d and r2 provide the measures of correlation between the estimated and observed data.
The CE measures the capability of the model which estimates stage values different from the mean
stage. The r2 measures the variability of observed stage which is explained by a model. The d measures
overall agreement between the estimated and observed data. The RMSE and MS4E measure goodness
of fit at high stages, whereas the MSRE measures it at moderate stages. The MAE measures overall
agreement between the estimated and observed data [27,28]. Higher dimensionless and lower residual
error-based indices indicate whether a model produces superior efficiency to other models. Details on
the indices can be found in Dawson and Wilby [27].

2.9. Model Effectiveness Evaluation

The effectiveness of single, DWT- and MODWT-based river stage modeling approaches are
assessed utilizing average absolute relative error (AARE) and threshold statistics (TS) (see Appendix B).
AARE and TS evaluate model effectiveness by measuring the predictive ability of a model. Furthermore,
AARE and TS provide a more appropriate assessment since they give appropriate weight on all
magnitude flows [29–32]. Lower AARE and higher TS values indicate that a model produces superior
effectiveness to other models.

3. Results and Discussion

3.1. Model Development

One of the most important steps for developing single, DWT- and MODWT-based models is to
select effective inputs. In this study, the optimal lags of inputs were determined based on average
mutual information (AMI), autocorrelation function (ACF), partial autocorrelation function (PACF)
and cross correlation function (CCF) [33,34]. The optimal lag for the river stage series of the Simcheon
gauging station can be defined as a lag value at which the ACF, PACF and AMI show significant
correlation. Specifically, the optimal lag is determined when the ACF reaches zero or a small value,
or the PACF decays within the confidence interval, or the AMI attains the first minimum [33,34].
The optimal lags for other gauging stations were determined as lag values at which the CCFs between
Simcheon and other gauging stations showed significant correlation, respectively. Based on the
methods, the optimal lags were determined as lag 6 for Simcheon and lag 1 for the other gauging
stations (Songcheon, Baekhwagyo and Hwanggan). Table 1 summarizes the input combination for
developing the models.

Table 1. Input combination for model development.

Input Sets Input Variables Output Variables

Set 1 SSiC(t-6), SSiC(t-5), SSiC(t-4), SSiC(t-3), SSiC(t-2), SSiC(t-1), SSoC(t-1), SSoC(t) SSiC(t)

Set 2 SSiC(t-6), SSiC(t-5), SSiC(t-4), SSiC(t-3), SSiC(t-2), SSiC(t-1), SSoC(t-1), SSoC(t),
SBH(t-1), SBH(t) SSiC(t)

Set 3 SSiC(t-6), SSiC(t-5), SSiC(t-4), SSiC(t-3), SSiC(t-2), SSiC(t-1), SSoC(t-1), SSoC(t),
SBH(t-1), SBH(t), SHG(t-1), SHG(t) SSiC(t)

S: daily river stage, SiC: Simcheon, SoC: Songcheon, BH: Baekhwagyo, HG: Hwanggan.

For the decomposing of input signals using DWT and MODWT, the decomposition level should
be determined beforehand. In this study, the level L = 3 was determined based on Equation (3). Mother
wavelets should be also selected ahead of time. Since the accuracy of DWT- and MODWT-based models
depends on mother wavelets, nine mother wavelets were used, including Daublets (d6, d12 and d18),
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Symmlets (s6, s12 and s18) and Coiflets (c6, c12 and c18). The Daublet, also called Daubechies wavelet,
is a collection of orthogonal wavelets with compact support. The Symmlet, also called least-asymmetric
wavelet, is a modified version of Daublet which is proposed to enhance symmetry. The Symmlet is an
orthogonal, continuous, compactly supported, but nearly symmetric wavelet. The Coiflet, also called
Coifman wavelet, is a discrete wavelet with compact support which is more symmetric than the
Daublet. Figures 7 and 8 show examples of sub-times series decomposed by three-level DWT and
MODWT utilizing the c12 mother wavelet, respectively. The sub-time series include detail components
(D1, D2 and D3) and an approximation component (A3) based on the c12 mother wavelet.
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For the MLP, DWT- and MODWT–MLP models, the number of hidden nodes was determined
utilizing a trial-and-error approach as described in Seo et al. [8]. For selecting the optimal number of
hidden nodes, the RMSE values of the MLP, DWT–MLP and MODWT–MLP models were estimated by
varying the number of hidden nodes from 1 to 2k, where k is the number of input nodes. The optimal
number of hidden nodes was determined based on the minimum RMSE. In this study, the output
of each node was computed using the logistic sigmoid activation function. The MLP, DWT–MLP
and MODWT–MLP models were trained using a backpropagation algorithm. In the algorithm,
the connection weights are updated iteratively such that the overall error is decreased. Input and
target data were normalized to the interval of (0, 1) for efficient training [21].

For SVM, DWT–SVM and MODWT–SVM models, the most significant step is to determine the
optimal hyperparameters including regularization, insensitive loss function and kernel parameters.
In this study, the optimal hyperparameters were selected using a GA. For applying the GA optimization,
the tuning parameters of the GA should be set in advance. Considering the typical range of tuning
parameters [25,26], they were set as follows: population size = 50, number of generations = 100, elite
count = 3, crossover rate = 0.8 and mutation rate = 0.1.

3.2. Model Performance Assessment

The performance (efficiency and effectiveness) of single models (MLP and SVM), DWT-based
models (DWT–MLP and DWT–SVM) and MODWT-based models (MODWT–MLP and MODWT–SVM)
was evaluated utilizing performance criteria (efficiency and effectiveness indices). Table 2 summarizes
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the performance evaluation for the single, DWT- and MODWT-based models with higher performance
for the overall stage.

Table 2. Comparison of higher performance models for the overall stage.

Models CE d r2 RMSE
(m)

MAE
(m)

MSRE
(10−5)

MS4E
(10−6 m4)

AARE
(%)

TS0.01
(%)

TS0.02
(%)

TS0.05
(%)

TS0.10
(%)

TS0.50
(%)

TS1.00
(%)

MLP3 0.961 0.990 0.961 0.0419 0.0243 492.090 99.187 0.025 35.7 62.8 88.3 96.2 99.9 100.0
SVM2 0.969 0.992 0.969 0.0374 0.0196 357.683 98.212 0.026 35.0 61.7 87.5 95.8 99.9 100.0

DWT-MLP1-d18 0.996 0.999 0.996 0.0129 0.0089 60.130 0.482 0.009 68.0 92.1 99.4 99.8 100.0 100.0
DWT-MLP1-s6 0.996 0.999 0.996 0.0130 0.0089 54.750 0.765 0.009 68.4 91.7 99.4 99.9 100.0 100.0

DWT-MLP1-s18 0.995 0.999 0.995 0.0153 0.0097 91.610 1.208 0.010 68.3 88.3 99.1 99.8 100.0 100.0
DWT-SVM3-c12 0.990 0.997 0.991 0.0211 0.0117 125.750 9.914 0.012 63.2 85.3 96.9 99.5 100.0 100.0
DWT-SVM1-s18 0.989 0.997 0.990 0.0218 0.0117 119.140 9.382 0.012 64.2 84.0 97.2 99.3 100.0 100.0
DWT-SVM2-s18 0.989 0.997 0.990 0.0221 0.0114 124.370 11.197 0.012 65.4 84.5 97.3 99.3 100.0 100.0

MODWT-MLP3-s6 0.993 0.998 0.993 0.0177 0.0119 91.980 3.250 0.012 53.8 85.5 98.7 99.7 100.0 100.0
MODWT-MLP2-d6 0.993 0.998 0.993 0.0178 0.0114 94.810 2.051 0.012 60.4 84.7 98.0 99.6 100.0 100.0
MODWT-MLP3-c6 0.993 0.998 0.993 0.0178 0.0109 93.410 2.035 0.011 64.6 85.6 97.8 99.7 100.0 100.0

MODWT-SVM2-c12 0.997 0.999 0.997 0.0113 0.0049 29.540 1.430 0.005 90.1 97.6 99.3 99.5 100.0 100.0
MODWT-SVM1-c12 0.997 0.999 0.997 0.0118 0.0048 31.020 1.879 0.005 91.6 97.2 99.1 99.7 100.0 100.0
MODWT-SVM1-s18 0.997 0.999 0.997 0.0115 0.0068 32.530 0.657 0.007 78.7 94.3 99.5 99.8 100.0 100.0

For example, MODWT-SVM2-c12 means MODWT-based SVM model for Set 2 and c12 mother wavelet. TSx means
the threshold statistics for the absolute relative error level of x%.

For the overall stage, the performance of MODWT–SVM models was compared with that of single
models. The MODWT–SVM models yielded higher dimensionless indices and slightly lower residual
error-based indices than the single models. The AARE values of the MODWT–SVM models were
lower than those of the single models. For the absolute relative error (ARE) levels of 0.01%, 0.02%,
0.05%, 0.10% and 0.50%, the TS values of the MODWT–SVM models were higher than those of the
single models. These results indicated that the MODWT–SVM models achieved better efficiency and
effectiveness than the single models for the overall stage, based on the statistical indices.

The performance of the MODWT–SVM models was compared with that of DWT-based models for
the overall stage. The MODWT–SVM models yielded slightly higher dimensionless indices and slightly
lower residual error-based indices than the DWT-based models, except for MS4E. The AARE values of
the MODWT–SVM models were slightly lower than those of the DWT-based models. For the ARE
levels of 0.01%, 0.02%, 0.05%, 0.10% and 0.50%, the TS values of the MODWT–SVM models were mostly
higher than those of the DWT-based models. These results demonstrated that the MODWT–SVM
models achieved slightly better efficiency and effectiveness than the DWT-based models for the overall
stage, based on statistical indices.

For the overall stage, the performance of the MODWT–SVM models was compared with that of
the MODWT–MLP models. The MODWT–SVM models yielded slightly higher dimensionless indices
and slightly lower residual error-based indices than MODWT–MLP models. The AARE values of the
MODWT–SVM models were slightly lower than those of the MODWT–MLP models. For the ARE
levels of 0.01%, 0.02%, 0.05%, 0.10% and 0.50%, the MODWT–SVM models yielded higher TS values
than the MODWT–MLP models. From these results, it was found that the MODWT–SVM models
performed better than the MODWT–MLP models for the overall stage, in terms of model efficiency
and effectiveness.

When all the models were compared for the overall stage, the MODWT–SVM models yielded
better dimensionless indices and lower residual error-based indices than the other models, except for
MS4E. The AARE values of the MODWT–SVM models were lower than those of the other models.
The TS values of the MODWT–SVM models were mostly higher than those of the other models. These
results demonstrated that the MODWT–SVM models produced better efficiency and effectiveness than
the other models for the overall stage. For the overall stage, the MODWT–SVM2–c12 model achieved
the best efficiency, and the MODWT–SVM2–c12 and the MODWT–SVM1–c12 models produced the
best effectiveness among all the models.

For more specific model comparison, the model performance was evaluated for low, medium and
high stages. Table 3 summarizes performance evaluation for single, DWT- and MODWT-based models
with higher performance for the low stage.
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Table 3. Comparison of higher performance models for the low stage.

Models CE d r2 RMSE
(m)

MAE
(m)

MSRE
(10−5)

MS4E
(10−6 m4)

AARE
(%)

TS0.01
(%)

TS0.02
(%)

TS0.05
(%)

TS0.10
(%)

TS0.50
(%)

TS1.00
(%)

MLP3 0.797 0.943 0.808 0.0313 0.0195 0.0103 10.772 0.0200 43.1 68.6 91.3 98.0 100.0 100.0
SVM2 0.770 0.936 0.785 0.0332 0.0209 0.0116 13.287 0.0214 41.8 66.8 89.9 97.3 100.0 100.0

DWT-MLP1-d18 0.970 0.992 0.972 0.0120 0.0087 0.0015 0.133 0.0090 68.3 92.0 99.7 100.0 100.0 100.0
DWT-MLP1-s6 0.973 0.993 0.976 0.0114 0.0088 0.0014 0.086 0.0090 67.2 92.5 99.8 100.0 100.0 100.0

DWT-MLP1-s18 0.954 0.988 0.954 0.0148 0.0097 0.0023 0.625 0.0100 67.2 87.7 99.1 99.8 100.0 100.0
DWT-SVM3-c12 0.952 0.987 0.952 0.0152 0.0094 0.0024 0.930 0.0096 69.4 88.6 98.3 99.8 100.0 100.0
DWT-SVM1-s18 0.958 0.989 0.958 0.0143 0.0085 0.0021 0.768 0.0088 73.6 89.7 98.3 99.8 100.0 100.0
DWT-SVM2-s18 0.954 0.988 0.954 0.0149 0.0085 0.0023 1.665 0.0087 74.7 89.9 98.6 99.8 100.0 100.0

MODWT-MLP3-s6 0.958 0.989 0.965 0.0142 0.0109 0.0021 0.259 0.0112 53.4 88.0 99.4 100.0 100.0 100.0
MODWT-MLP2-d6 0.959 0.989 0.960 0.0141 0.0102 0.0021 0.271 0.0104 61.3 87.7 99.2 100.0 100.0 100.0
MODWT-MLP3-c6 0.962 0.990 0.963 0.0135 0.0089 0.0019 0.399 0.0091 69.7 90.0 99.2 99.8 100.0 100.0

MODWT-SVM2-c12 0.992 0.998 0.992 0.0063 0.0033 0.0004 0.174 0.0034 95.8 99.4 99.7 99.8 100.0 100.0
MODWT-SVM1-c12 0.992 0.998 0.992 0.0064 0.0030 0.0004 0.164 0.0031 97.5 99.5 99.5 100.0 100.0 100.0
MODWT-SVM1-s18 0.990 0.998 0.990 0.0069 0.0047 0.0005 0.030 0.0048 88.5 98.8 99.8 100.0 100.0 100.0

For the low stage, the performance of the MODWT–SVM models was compared with that of the
single models. The MODWT–SVM models yielded higher dimensionless indices and lower residual
error-based indices than the single models for the low stage, except for MS4E. The AARE values of
the MODWT–SVM models were lower than those of the single models. For the ARE levels of 0.01%,
0.02%, 0.05% and 0.10%, the TS values of the MODWT–SVM models were higher than those of the
single models. These results indicated that the MODWT–SVM models achieved better efficiency and
effectiveness than the single models for the low stage, based on the statistical indices.

The performance of the MODWT–SVM models was compared with that of the DWT-based models
for the low stage. The MODWT–SVM models yielded higher dimensionless indices and lower residual
error-based indices than the DWT-based models. The AARE values of the MODWT–SVM models
were lower than those of the DWT-based models. For the ARE levels of 0.01%, 0.02%, 0.05% and
0.10%, the MODWT–SVM models yielded higher TS values than the DWT-based models. These results
demonstrated that the MODWT–SVM models achieved better efficiency and effectiveness than the
DWT-based models for the low stage, based on the statistical indices.

For the low stage, the performance of the MODWT–SVM models was compared with that of
the MODWT–MLP models. The MODWT–SVM models yielded higher dimensionless indices and
lower residual error-based indices than the MODWT–MLP models. Also, the MODWT–SVM models
produced lower AARE values than the MODWT–MLP models. For the ARE levels of 0.01%, 0.02% and
0.05%, the TS values of the MODWT–SVM models were higher than those of the MODWT–MLP models.
These results indicated that the MODWT–SVM models achieved better efficiency and effectiveness
than the MODWT–MLP models for the low stage, based on the statistical indices.

When all the models were compared for the low stage, the MODWT–SVM models yielded higher
dimensionless indices and lower residual error-based indices, except for MS4E. The AARE values of the
MODWT–SVM models were lower than those of the other models. The TS values of the MODWT–SVM
models were mostly higher than those of the other models. From these results, it was found that the
MODWT–SVM models produced better efficiency and effectiveness than the other models for the low
stage. Among all the models, the MODWT–SVM2–c12 and MODWT–SVM1–c12 models achieved the
best efficiency and effectiveness for the low stage.

Table 4 summarizes the performance evaluation for the single, DWT- and MODWT-based models
with higher performance for the medium stage.
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Table 4. Comparison of higher performance models for the medium stage.

Models CE d r2 RMSE
(m)

MAE
(m)

MSRE
(10−5)

MS4E
(10−6 m4)

AARE
(%)

TS0.01
(%)

TS0.02
(%)

TS0.05
(%)

TS0.10
(%)

TS0.50
(%)

TS1.00
(%)

MLP3 0.603 0.911 0.723 0.0385 0.0248 0.0155 29.965 0.0253 24.7 58.7 89.4 97.5 100.0 100.0
SVM2 0.606 0.913 0.730 0.0383 0.0246 0.0154 27.321 0.0252 25.8 58.3 89.8 97.2 100.0 100.0

DWT-MLP1-d18 0.977 0.995 0.984 0.0093 0.0069 0.0009 0.051 0.0070 77.4 96.8 100.0 100.0 100.0 100.0
DWT-MLP1-s6 0.975 0.994 0.980 0.0096 0.0066 0.0010 0.100 0.0067 80.2 95.8 99.3 100.0 100.0 100.0

DWT-MLP1-s18 0.976 0.994 0.979 0.0095 0.0066 0.0009 0.061 0.0068 80.9 95.4 100.0 100.0 100.0 100.0
DWT-SVM3-c12 0.875 0.970 0.898 0.0216 0.0124 0.0049 5.589 0.0127 58.7 87.6 96.1 99.3 100.0 100.0
DWT-SVM1-s18 0.832 0.959 0.856 0.0251 0.0129 0.0066 15.514 0.0131 56.9 84.8 97.5 98.9 100.0 100.0
DWT-SVM2-s18 0.854 0.965 0.874 0.0234 0.0121 0.0057 11.551 0.0124 58.7 85.5 97.5 98.9 100.0 100.0

MODWT-MLP3-s6 0.936 0.984 0.949 0.0154 0.0100 0.0025 1.056 0.0103 63.3 90.1 98.9 99.6 100.0 100.0
MODWT-MLP2-d6 0.946 0.987 0.951 0.0142 0.0085 0.0021 0.989 0.0087 72.1 91.2 98.9 99.3 100.0 100.0
MODWT-MLP3-c6 0.945 0.987 0.952 0.0143 0.0094 0.0021 0.723 0.0096 66.1 88.7 99.3 99.6 100.0 100.0

MODWT-SVM2-c12 0.952 0.988 0.955 0.0134 0.0057 0.0019 2.688 0.0058 88.3 97.2 99.3 99.3 100.0 100.0
MODWT-SVM1-c12 0.950 0.988 0.953 0.0137 0.0058 0.0020 2.914 0.0059 88.3 96.8 99.3 99.3 100.0 100.0
MODWT-SVM1-s18 0.940 0.985 0.946 0.0149 0.0083 0.0023 2.110 0.0084 71.7 93.6 99.3 99.3 100.0 100.0

For the medium stage, the performance of the MODWT–SVM models was compared with that
of the single models. The MODWT–SVM models yielded higher dimensionless indices and lower
residual error-based indices than the single models. Also, the MODWT–SVM models produced lower
AARE and higher TS values for the ARE levels of 0.01%, 0.02%, 0.05% and 0.10%. These results
indicated that the MODWT–SVM models achieved better efficiency and effectiveness than the single
models for the medium stage.

The performance of the MODWT–SVM models was compared with that of the DWT-based
models for the medium stage. The MODWT–SVM models yielded higher dimensionless indices
than the DWT–SVM models, but lower dimensionless indices than the DWT–MLP models. Also,
the MODWT–SVM models produced lower residual error-based indices than the DWT–SVM models,
but higher residual error-based indices than the DWT–MLP models, except for MAE. The AARE values
of the MODWT–SVM models were lower than those of the DWT–SVM models. The MODWT–SVM
models, except for the MODWT–SVM1–s18 model, yielded lower AARE values than the DWT–MLP
models. For the ARE levels of 0.01%, 0.02%, 0.05% and 0.10%, the TS values of the MODWT–SVM
models were higher than those of the DWT–SVM models. The MODWT–SVM models, except for
the MODWT–SVM1–s18 model, yielded higher TS values than the DWT–MLP models for the ARE
levels of 0.01% and 0.02%, whereas the MODWT–SVM models produced lower TS values than the
DWT–MLP models for the ARE levels of 0.05% and 0.10%. These results indicated that the DWT–MLP
models performed better than the MODWT–SVM models for the medium stage, in terms of model
efficiency and effectiveness.

For the medium stage, the performance of the MODWT–SVM models was compared with that
of the MODWT–MLP models. The MODWT–SVM models, except for the MODWT–SVM1–s18
model, yielded slightly higher dimensionless indices than the MODWT–MLP models. Also,
the MODWT–SVM models, except for the MODWT–SVM1–s18 model, produced slightly lower
residual error-based indices, except for MS4E in the MODWT–MLP models. The AARE values
of the MODWT–SVM models were lower than those of the MODWT–MLP models. For the ARE
levels of 0.01%, 0.02% and 0.05%, the MODWT–SVM models yielded higher TS values than the
MODWT–MLP models. These results indicated that the MODWT–SVM models, except for the
MODWT–SVM1–s18 model, achieved better efficiency than the MODWT–MLP models for the medium
stage. Also, the MODWT–SVM models performed better than the MODWT–MLP models for the
medium stage, in terms of model effectiveness.

When all the models were compared for the medium stage, the DWT-MLP models yielded higher
dimensionless indices and lower residual error-based indices than the other models, except for the
MAE of the MODWT–SVM2–c12 and the MODWT–SVM1–c12 models. The MODWT–SVM2–c12
and MODWT–SVM1–c12 models yielded better effectiveness indices than the other models. From
these results, it was found that the DWT–MLP models produced better efficiency than other models,
whereas the MODWT–SVM2–c12 and MODWT–SVM1–c12 models achieved better effectiveness than
the other models for the medium stage. Among all the models, the DWT–MLP1–d18 model achieved
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the best efficiency and the MODWT–SVM2–c12 model produced the best effectiveness for the medium
stage, based on the statistical indices.

Table 5 summarizes performance evaluation for the single, DWT- and MODWT-based models
with higher performance for the high stage.

Table 5. Comparison of higher performance models for the high stage.

Models CE d r2 RMSE
(m)

MAE
(m)

MSRE
(10−5)

MS4E
(10−6 m4)

AARE
(%)

TS0.01
(%)

TS0.02
(%)

TS0.05
(%)

TS0.10
(%)

TS0.50
(%)

TS1.00
(%)

MLP3 0.921 0.979 0.921 0.0850 0.0518 0.0741 818.660 0.0527 20.8 38.7 67.0 82.1 99.1 100.0
SVM2 0.927 0.981 0.928 0.0814 0.0502 0.0679 670.961 0.0511 17.9 39.6 67.0 83.0 99.1 100.0

DWT-MLP1-d18 0.994 0.999 0.996 0.0229 0.0152 0.0054 3.743 0.0155 40.6 80.2 96.2 98.1 100.0 100.0
DWT-MLP1-s6 0.993 0.998 0.995 0.0245 0.0159 0.0061 6.646 0.0162 44.3 76.4 97.2 99.1 100.0 100.0

DWT-MLP1-s18 0.992 0.998 0.993 0.0266 0.0175 0.0072 7.794 0.0177 41.5 72.6 97.2 99.1 100.0 100.0
DWT-SVM3-c12 0.981 0.995 0.987 0.0410 0.0237 0.0171 75.787 0.0241 37.7 59.4 90.6 98.1 100.0 100.0
DWT-SVM1-s18 0.981 0.995 0.984 0.0412 0.0272 0.0173 45.099 0.0277 26.4 47.2 89.6 97.2 100.0 100.0
DWT-SVM2-s18 0.978 0.994 0.984 0.0443 0.0270 0.0201 67.891 0.0275 27.4 49.1 88.7 97.2 100.0 100.0

MODWT-MLP3-s6 0.987 0.997 0.987 0.0348 0.0224 0.0124 27.195 0.0227 31.1 58.5 94.3 98.1 100.0 100.0
MODWT-MLP2-d6 0.985 0.996 0.987 0.0365 0.0263 0.0137 15.645 0.0268 23.6 49.1 87.7 98.1 100.0 100.0
MODWT-MLP3-c6 0.984 0.996 0.986 0.0378 0.0269 0.0147 15.432 0.0274 29.2 50.9 84.9 99.1 100.0 100.0

MODWT-SVM2-c12 0.994 0.999 0.995 0.0230 0.0124 0.0055 5.664 0.0126 60.4 87.7 97.2 98.1 100.0 100.0
MODWT-SVM1-c12 0.993 0.998 0.994 0.0248 0.0131 0.0064 9.493 0.0133 64.2 84.0 96.2 99.1 100.0 100.0
MODWT-SVM1-s18 0.996 0.999 0.996 0.0201 0.0155 0.0042 0.570 0.0158 38.7 68.9 98.1 100.0 100.0 100.0

For the high stage, the performance of the MODWT–SVM models was compared with that of the
single models. The MODWT–SVM models yielded higher dimensionless indices and lower residual
error-based indices than the single models. The AARE values of the MODWT–SVM models were
lower than those of the single models. For the ARE levels of 0.01%, 0.02%, 0.05%, 0.10% and 0.50%,
the TS values of the MODWT–SVM models were higher than those of the single models. These results
demonstrated that the MODWT–SVM models achieved better efficiency and effectiveness than the
single models for the high stage, based on the statistical indices.

The performance of the MODWT–SVM models was compared with that of the DWT-based models
for the high stage. Although the MODWT–SVM1–s18 model yielded slightly higher dimensionless
indices and slightly lower residual error-based indices than the DWT–MLP models, the MODWT–SVM
and the DWT–MLP models produced similar dimensionless indices and residual error-based indices.
The AARE values of the MODWT–SVM models were lower than those of the DWT–MLP models.
For the ARE levels of 0.01%, 0.02% and 0.05%, the TS values of the MODWT–SVM models were
mostly higher than those of the DWT–MLP models. These results indicated that the MODWT–SVM
and DWT–MLP models achieved similar efficiency, whereas the MODWT–SVM models produced
better effectiveness than the DWT–MLP models for the higher stage, based on the statistical indices.
The MODWT–SVM models yielded higher dimensionless indices and lower residual error-based
indices than the DWT–SVM models. The AARE values of the MODWT–SVM models were lower
than those of the DWT–SVM models. For the ARE levels of 0.01%, 0.02%, 0.05% and 0.10%, the TS
values of the MODWT–SVM models were higher than those of the DWT–SVM models. These results
demonstrated that the MODWT–SVM models achieved better efficiency and effectiveness than the
DWT–SVM models for the high stage, based on the statistical indices.

For the high stage, the performance of the MODWT–SVM models was compared with that of the
MODWT–MLP models. The MODWT–SVM models yielded higher dimensionless indices and lower
residual error-based indices than the MODWT–MLP models. The AARE values of the MODWT–SVM
models were lower than those of the MODWT–MLP models. For the ARE levels of 0.01%, 0.02%,
0.05% and 0.10%, the MODWT–SVM models yielded higher TS values than the MODWT–MLP models.
These results indicated that the MODWT–SVM models achieved better efficiency and effectiveness
than the MODWT–MLP models for the high stage, based on model performance.
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When all the models were compared for the high stage, the MODWT–SVM and DWT–MLP
models achieved better efficiency and effectiveness than the other models. Among all the models,
the MODWT–SVM1–s18 and MODWT–SVM2–c12 models were the best for the high stage, in terms of
efficiency and effectiveness.

3.3. Graphical Comparison

This study compared the accuracy of single, DWT- and MODWT-based models graphically.
The graphical comparison included scatter plots, error time series plots and error boxplots. Figures 9–11
show the scatter plots for the single, DWT- and MODWT-based models during the testing period.
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Figure 9. Scatter plots for the MLP and SVM models.
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Figure 11. Scatter plots for the MODWT-based models.

From Figures 9 and 11d–f, the scatter points of the MODWT–SVM models were closer to y = x
lines (blue lines) than those of the single models. The best-fitting lines (red lines) of the MODWT–SVM
models were closer to the y = x lines than those of the single models. These results indicated that
the MODWT–SVM models were more accurate than the single models. From Figures 10 and 11,
the scatter points of the MODWT–SVM and DWT–MLP models were located closer to the y = x lines
than those of the DWT–SVM and MODWT–MLP models. The best-fitting lines of the MODWT–SVM
and DWT–MLP models were closer to the y = x lines than those of the DWT–SVM and MODWT–MLP
models. These results indicated that the MODWT–SVM and DWT–MLP models were more accurate
than the DWT–SVM and MODWT–MLP models.

Figures 12–14 show error time series plots and error boxplots for the single, DWT- and
MODWT-based models during the testing period. The error is defined as the difference between
the estimated and observed river stage time series as follows:

Erri = S∗i − Si (18)

where Erri is the ith error; S∗i is the ith estimated river stage value; and Si is the ith observed river
stage value. The error boxplots summarize the distribution of the error values graphically. From
Figures 12 and 13d–f, the errors of the MODWT–SVM models were lower than those of the single
models. From Figures 13 and 14, the errors of the DWT–MLP and MODWT–SVM models were lower
than those of the MODWT–MLP and DWT–SVM models. From Figures 12–14, it can be seen that
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the MODWT–SVM models produced lower errors than the other models. These results indicated
that the MODWT–SVM models were more accurate than the single models. The DWT–MLP and
MODWT–SVM models produced more accurate results than the MODWT–MLP and DWT–SVM
models. Also, the MODWT–SVM models were more accurate than the other models, based on the
graphical comparison. Consequently, the MODWT–SVM and DWT–MLP–d18 models were found to
produce better performance and accuracy than the other models, based on the performance assessment
and graphical comparison. The MODWT–SVM1–c12 model was the optimal model among all the
models. These indicated that the model performance depended on the input combination and mother
wavelets, and the MODWT–SVM model using the c12 mother wavelet can improve model performance
and accuracy in daily river stage modeling.
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4. Conclusions

This study proposes a conjunction model of MODWT, SVM and GA for modeling daily river
stages. MODWT was adopted for decomposing an original river stage time series into sub-time
series (detail and approximation components). The SVM computed the daily river stages using
sub-time series as inputs. The GA was adopted for selecting the optimal hyperparameters of the SVM.
The performance of the MODWT–SVM models was compared with that of the single models (MLP3
and SVM2 models), DWT-based models (DWT–MLP and DWT–SVM models) and the MODWT–MLP
models. The model performance for the overall stage was assessed based on the statistical indices
(efficiency and effectiveness indices) and a graphical comparison. Furthermore, the model performance
was assessed more specifically for the low, medium and high stages based on the statistical indices.
The main conclusions are summarized as follows:

(1) For the overall stage, the MODWT–SVM models achieve better efficiency and effectiveness based
on the statistical indices, and are more accurate than the single models based on the graphical
comparison. For the low, medium and high stages, the MODWT–SVM models perform better
than the single models, in terms of efficiency and effectiveness. These results indicate that
the conjunction of MODWT, SVM and GA can improve the performance of SVM models and
outperform single models in daily river stage modeling.

(2) For the overall stage, the MODWT–SVM models achieve better efficiency and effectiveness based
on the statistical indices, and are more accurate than the MODWT–MLP and DWT-based models
based on the graphical comparison. For the low and high stages, the MODWT–SVM models
performed better than the MODWT–MLP and DWT-based models, in terms of efficiency and
effectiveness. For the medium stage, the DWT–MLP models outperform the MODWT–SVM
models, in terms of the statistical indices. These results demonstrate that the MODWT–based
models using the SVM model can improve model performance and accuracy better than those
using the MLP model in daily river stage modeling. Also, hybrid models coupling MODWT,
SVM and GA can enhance model performance and accuracy in daily river stage modeling as
compared with those combined with DWT.

(3) The MODWT–SVM2–c12 model achieves the best efficiency for the overall, low and high
stages, based on the efficiency indices; the MODWT–SVM1–c12 model for the low stage;
the DWT–MLP1–d18 model for the medium stage; and the MODWT–SVM1–s18 model for
the high stage. Also, the MODWT–SVM1–c12 model achieves the best effectiveness for the
overall and low stages; the MODWT–SVM2–c12 model for the overall, low, medium and high
stages; and the MODWT–SVM1–s18 model for the high stage. These results indicate that the
performance of the MODWT–SVM models is dependent on input combination and mother
wavelets. Furthermore, the MODWT–SVM model using the c12 mother wavelet can improve
model efficiency and effectiveness in daily river stage modeling. Therefore, the results obtained
from this study demonstrate that the conjunction of MODWT, SVM and GA can be an efficient
and effective method for modeling daily river stages.

This study investigated the performance of single and hybrid models for a single watershed.
In order to enhance the applicability of the models, a hydrological modeling approach which utilizes the
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river stage modeling approach that was proposed in this study for different hydrological, geographical
and climate conditions can be suggested for future study.
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Appendix A. Model Efficiency Indices

Coefficient of efficiency (CE): CE = 1−

N
∑

i=1
(Si−S∗i )

2

N
∑

i=1
(Si−S)

2
,

Index of agreement (d): d = 1−

N
∑

i=1
(Si−S∗i )

2

N
∑

i=1
(|S∗i −S|+|Si−S|)2

,

Coefficient of determination (r2): r2 =


N
∑

i=1
(Si−S)(S∗i −S̃)√

N
∑

i=1
(Si−S)

2 N
∑

i=1
(S∗i −S̃)

2


2

,

Root-mean-square error (RMSE): RMSE =

{
1
N

N
∑

i=1

[
S∗i − Si

]2}0.5

,

Mean absolute error (MAE): MAE = 1
N

N
∑

i=1

∣∣S∗i − Si
∣∣,

Mean squared relative error (MSRE): MSRE = 1
N

N
∑

i=1

(Si−S∗i )
2

S2
i

,

Mean higher order error (MS4E): MS4E =

N
∑

i=1
(Si−S∗i )

4

N ,

where S∗i is the ith estimated river stage value, Si is the ith observed river stage value, S is the average
of the observed river stage values, S̃ is the average of the estimated river stage values, and N is the
data length.

Appendix B. Model Effectiveness Indices

Average absolute relative error (AARE): AARE = 1
N

N
∑

i=1

∣∣∣ Si−S∗i
Si

∣∣∣× 100%,

Threshold statistics (TS): TSx = nx
N × 100%,

where nx is the total number of estimated river stage data in which the absolute relative error is less
than x%.

References

1. Besaw, L.E.; Rizzo, D.M.; Bierman, P.R.; Hackett, W.R. Advances in ungauged streamflow prediction using
artificial neural networks. J. Hydrol. 2010, 386, 27–37. [CrossRef]

2. Kim, S.; Shiri, J.; Kisi, O. Pan evaporation modeling using neural computing approach for different climatic
zones. Water Resour. Manag. 2012, 26, 3231–3249. [CrossRef]

3. Awchi, T.A. River discharges forecasting in northern Iraq using different ANN techniques. Water Resour.
Manag. 2014, 28, 801–814. [CrossRef]

4. Chen, L.; Singh, V.P.; Guo, S.; Zhou, J.; Ye, L. Copula entropy coupled with artificial neural network for
rainfall-runoff simulation. Stoch. Environ. Res. Risk Assess. 2014, 28, 1755–1767. [CrossRef]

5. Daliakopoulos, L.N.; Tsanis, L.K. Comparison of an artificial neural network and a conceptual rainfall-runoff
model in the simulation of ephemeral streamflow. Hydrol. Sci. J. 2016, 61, 2765–2774. [CrossRef]

http://dx.doi.org/10.1016/j.jhydrol.2010.02.037
http://dx.doi.org/10.1007/s11269-012-0069-2
http://dx.doi.org/10.1007/s11269-014-0516-3
http://dx.doi.org/10.1007/s00477-013-0838-3
http://dx.doi.org/10.1080/02626667.2016.1154151


Water 2017, 9, 525 23 of 24

6. Ehsani, N.; Fekete, B.M.; Vörösmarty, C.J.; Tessler, Z.D. A neural network based general reservoir operation
scheme. Stoch. Env. Res. Risk Assess. 2016, 30, 1151–1166. [CrossRef]

7. Safari, M.-J.-S.; Aksoy, H.; Mohammadi, M. Artificial neural network and regression models for flow velocity
at sediment incipient deposition. J. Hydrol. 2016, 541, 1420–1429. [CrossRef]

8. Seo, Y.; Kim, S.; Kisi, O.; Singh, V.P. Daily water level forecasting using wavelet decomposition and artificial
intelligence techniques. J. Hydrol. 2015, 520, 224–243. [CrossRef]

9. Seo, Y.; Kim, S.; Kisi, O.; Singh, V.P.; Parasuraman, K. River stage forecasting using wavelet packet
decomposition and machine learning models. Water Resour. Manag. 2016, 30, 4011–4035. [CrossRef]

10. Adamowski, J.; Sun, K. Development of a coupled wavelet transform and neural network method for flow
forecasting of non-perennial rivers in semi-arid watershed. J. Hydrol. 2010, 390, 85–91. [CrossRef]

11. Kisi, O.; Shiri, J.; Nazemi, A.H. A wavelet-genetic programming model for predicting short-term and
long-term air temperatures. J. Civ. Eng. Urban. 2011, 1, 25–37.

12. Okkan, U.; Serbes, Z.A. The combined use of wavelet transform and black box models in reservoir inflow
modeling. J. Hydrol. Hydromech. 2013, 61, 112–119. [CrossRef]

13. Ravikumar, K.; Tamilselvan, S. On the use of wavelets packet decomposition for time series prediction.
Appl. Math. Sci. 2014, 8, 2847–2858. [CrossRef]

14. Raghavendera, N.S.; Deka, P.C. Forecasting monthly groundwater level fluctuations in coastal aquifers using
hybrid wavelet packet-support vector regression. Cogent Eng. 2015, 2, 999414. [CrossRef]

15. Cornish, C.R.; Bretherton, C.S.; Percival, D.B. Maximal overlap wavelet statistical analysis with application
to atmospheric turbulence. Bound.-Layer Meteorol. 2006, 119, 339–374. [CrossRef]

16. Tiwari, M.K.; Chatterjee, C. Development of an accurate and reliable hourly flood forecasting model using
wavelet-bootstrap-ANN (WBANN) hybrid approach. J. Hydrol. 2010, 394, 458–470. [CrossRef]

17. Nason, G. Wavelet Methods in Statistics with R; Springer: New York, NY, USA, 2008; ISBN 978-0-387-75961-6.
18. Mallat, S.G. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans.

Pattern Anal. Mach. Intell. 1989, 11, 674–693. [CrossRef]
19. Percival, D.B.; Walden, A.T. Wavelet Methods for Time Series Analysis; Cambridge University Press: Cambridge,

UK, 2000; ISBN 978-0-521-68508-5.
20. Nourani, V.; Alami, M.T.; Aminfar, M.H. A combined neural-wavelet model for prediction of Ligvanchai

watershed precipitation. Eng. Appl. Artif. Intell. 2009, 22, 466–472. [CrossRef]
21. Günther, F.; Fritsch, S. Neuralnet: Training of neural networks. R J. 2010, 2, 30–38.
22. Vapnik, V.N. Statistical Learning Theory; Wiley: New York, NY, USA, 1998; ISBN 978-0-471-03003-4.
23. Noori, R.; Karbassi, A.R.; Moghaddamnia, A.; Han, D.; Zokaei-Ashtiani, M.H.; Farokhnia, A.; Ghafari

Gousheh, M. Assessment of input variables determination on the SVM model performance using PCA,
gamma test and forward selection techniques for monthly stream flow prediction. J. Hydrol. 2011, 401,
177–189. [CrossRef]

24. Sivanandam, S.N.; Deepa, S.N. Introduction to Genetic Algorithms; Springer: Berlin, Germany, 2007;
ISBN 978-3-540-73189-4.

25. Scrucca, L. GA: A package for genetic algorithms in R. J. Stat. Softw. 2013, 53, 1–37. [CrossRef]
26. Obitko, M. Introduction to Genetic Algorithms. 1998. Available online: http://www.obitko.com/tutorials/

genetic-algorithms/ (accessed on 28 June 2017).
27. Dawson, C.W.; Wilby, R.L. Hydrological modelling using artificial neural networks. Prog. Phys. Geogr. 2001,

25, 80–108. [CrossRef]
28. Dawson, C.W.; Abrahart, R.J.; See, L.M. HydroTest: A web-based toolbox of evaluation metrics for the

standardised assessment of hydrological forecasts. Environ. Model. Softw. 2007, 22, 1034–1052. [CrossRef]
29. Jain, A.; Srinivasulu, S. Development of effective and efficient rainfall-runoff models using integration of

deterministic, real-coded genetic algorithms and artificial neural network techniques. Water Resour. Res.
2004, 40, W04302. [CrossRef]

30. Srinivasulu, S.; Jain, A. A comparative analysis of training methods for artificial neural network
rainfall-runoff models. Appl. Soft Comput. 2006, 6, 295–306. [CrossRef]

31. Jain, A.; Kumar, A.M. Hybrid neural network models for hydrologic time series forecasting. Appl. Soft
Comput. 2007, 7, 585–592. [CrossRef]

32. Panagoulia, D.; Tsekouras, G.J.; Kousiouris, G. A multi-stage methodology for selecting input variables in
ANN forecasting of river flows. Glob. NEST J. 2017, 19, 49–57.

http://dx.doi.org/10.1007/s00477-015-1147-9
http://dx.doi.org/10.1016/j.jhydrol.2016.08.045
http://dx.doi.org/10.1016/j.jhydrol.2014.11.050
http://dx.doi.org/10.1007/s11269-016-1409-4
http://dx.doi.org/10.1016/j.jhydrol.2010.06.033
http://dx.doi.org/10.2478/johh-2013-0015
http://dx.doi.org/10.12988/ams.2014.43172
http://dx.doi.org/10.1080/23311916.2014.999414
http://dx.doi.org/10.1007/s10546-005-9011-y
http://dx.doi.org/10.1016/j.jhydrol.2010.10.001
http://dx.doi.org/10.1109/34.192463
http://dx.doi.org/10.1016/j.engappai.2008.09.003
http://dx.doi.org/10.1016/j.jhydrol.2011.02.021
http://dx.doi.org/10.18637/jss.v053.i04
http://www.obitko.com/tutorials/genetic-algorithms/
http://www.obitko.com/tutorials/genetic-algorithms/
http://dx.doi.org/10.1177/030913330102500104
http://dx.doi.org/10.1016/j.envsoft.2006.06.008
http://dx.doi.org/10.1029/2003WR002355
http://dx.doi.org/10.1016/j.asoc.2005.02.002
http://dx.doi.org/10.1016/j.asoc.2006.03.002


Water 2017, 9, 525 24 of 24

33. Wu, C. Hydrological Predictions Using Data-Driven Models Coupled with Data Preprocessing Techniques.
Ph.D. Thesis, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 2010.

34. Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002;
ISBN 978-0-387-21706-2.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Data Used 
	Discrete Wavelet Transform (DWT) 
	Maximal Overlap Discrete Wavelet Transform (MODWT) 
	Multilayer Perceptron (MLP) 
	Support Vector Machine (SVM) 
	Genetic Algotrithm (GA) 
	River Stage Modeling Using DWT and MODWT 
	Model Efficiency Evaluation 
	Model Effectiveness Evaluation 

	Results and Discussion 
	Model Development 
	Model Performance Assessment 
	Graphical Comparison 

	Conclusions 
	Model Efficiency Indices 
	Model Effectiveness Indices 

