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Abstract: Watershed models have gradually been adapted to support both decision and policy
making for global environmental pollution control. In this study, two watershed models with
different complexity, the Soil and Water Assessment Tool (SWAT) and the Generalized Watershed
Loading Function (GWLF), were applied in two catchments in data scarce China, namely the Tunxi
and the Hanjiaying basins with contrasting climatic conditions (humid and semi-arid, respectively).
The performances of both models were assessed via comparison between simulated and measured
monthly streamflow, sediment yield, and total nitrogen. Time series plots as well as four statistical
measures (the coefficient of determination (R2), the Nash–Sutcliffe efficiency (NSE), percent bias
(PBIAS), and RMSE (root mean square error)—observations standard deviation ratio (RSR)) were
used to estimate the performance of both models. The results show that both models were generally
able to simulate monthly streamflow, sediment, and total nitrogen loadings during the simulation
period. However, SWAT performed better for detailed representations, while GWLF could produce
much better average values of the observed data. Thus, GWLF offers a user-friendly prospective
alternative watershed model that requires little input data and that is applicable for areas where
the input data required for SWAT are not always available. SWAT is more suitable for projects that
require high accuracy and offers an advantage when measured data are scarce.
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1. Introduction

China is the biggest developing country in the world, and its rapid economic development
has resulted in a large number of significant water quality issues such as eutrophication of lakes
and reservoirs, deterioration of river water, and groundwater pollution [1,2]. To resolve these
environmental issues, the Chinese government gradually resorted to mathematical models to provide
a scientific basis for quantitative environmental management rather than exclusively depending on
empirical qualitative analyses [3]. Currently, numerous watershed models with various capabilities are
widely used in hydrological research and environmental resource management around the world [4,5].
These are powerful tools that enable us to understand the natural processes, as well as to find solutions
for problems, while assessing the environmental conditions on a the watershed scale [6]. However,
typically, there is a trade-off between model complexity, input data availability, and prediction ability
in a certain application objective [7]. Butts et al. developed a hydrological modeling framework that
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allows for the application of different model structures by providing varying levels of model complexity.
The authors reported that an increase of model complexity did not increase model performance for
a number of investigated cases. Accordingly, different models with different complexities had to be
selected for an exploration of the applicability of watershed models.

SWAT is a semi-distributed and physical-based hydrological model, which has evolved from
multiple previous models over more than 30 years [8,9]. Considerable applications in a wide range of
regions and environmental conditions have indicated SWAT to be an effective and acceptable tool both
for scientific research and policy making [10]. It has been extensively implemented throughout the
world, e.g., in America [11], Africa [12], and Australia [13]. In China, it has been used in the Chaohe
basin in the north of China [14], the Heihe basin in the west of China [15], and the Three Gorges
Reservoir Region in the south of China [16]. The primary categories to which SWAT has been applied
include hydrologic assessments [17,18], pollutant assessments [19], and climate change impacts [20,21].
The GWLF is a simpler, continuous process-based model, which has been used in America [22],
Ireland [23], and China [24] for various purposes. The Ministry of Environmental Protection of China
has endorsed the GWLF as an alternative model to promote water quality and to meet environmental
quality standards [25]. Both models were used to support the development of Total Maximum Daily
Loads (TMDLs) [26]. Due to their wide applicability, acceptance by the authorities, as well as their
different complexities, SWAT and GWLF were selected and compared in China for regions where
monitoring networks are incomplete compared to developed countries.

There have been many studies that compared watershed models. Li et al. [27] compared the
conceptual, lumped Water and Snow balance MODeling system (WASMOD) model to SWAT for
the Yingluoxia watershed and found that MASMOD provided the same, or even better results than
SWAT for the simulated hydrograph. Parajuli et al. [28] employed both the Annualized AGricultural
Non-Point Source (AnnAGNPS) and SWAT in south-central Kansas and their study indicated SWAT
as the most appropriate model for this particular watershed. Wilcox et al. [29] simulated the runoff on
six uncalibrated catchments using both a simple model and a complex model. Although their results
demonstrated that more complex catchment models yield more accurate results, the superiority of
complex models is not immutable for all watersheds. These studies show that different models lead to
different performance in different applications. A model comparison without considering the regional
differences is easily one-sided. Niraula et al. [30] applied the SWAT and GWLF models in east central
Alabama to identify critical source areas (CSAs) of sediment and nutrients. Both models performed
well for streamflow; however, SWAT slightly outperformed GWLF for sediment, total nitrogen (TN),
and total phosphorus (TP). The purpose of their study was to assess whether different model choice
would lead to a variance in the locations of CSAs and the authors did not conduct a comprehensive
comparison between the simulation results of SWAT and GWLF. Moreover, the authors conducted the
models on one site only, suggesting limited implications. Therefore, the objective of this study was to
conduct a comprehensive comparison between SWAT and GWLF and to evaluate their applicability in
two catchments with different climate, landuse, and soil type for monthly stream flow, sediment, and
total nitrogen in the data scarce China.

2. Materials and Methods

2.1. Study Sites

The study sites were chosen based on data availability and differences in climate, landuse and soil
types (Figure 1). The Tunxi catchment is located in Anhui Province, which was selected to represent
the humid south of China. It covers an area of approximately 2674 km2 with forest covering 74%,
agriculture area 15.8%, urban 4.6% and others. Red soil (55%), paddy soil (13%), and purple soil (9.8%)
are the predominant soil types. The basin had a subtropical humid monsoon climate with a mean
annual temperature of 15.5 ◦C and a mean annual precipitation of 1752 mm during the period from
1993 to 2013. The daily temperature was always above 0 ◦C. The 6736 km2 of the Hanjiaying basin
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were selected as a representation of the semi-arid north of China. It is one of the largest subbasins
of the Luan River watershed and located in Hebei Province, which is situated in the north of the
Qinling Mountains-Huaihe River line. Forest (49%) and agricultural land (25%) are the major land
uses within the basin. Brown soil (65%), and cinnamon soil (22%) are predominant in this watershed.
The basin plays an important role for ecological servicing and water supply to the region. The climate
is dominated by a temperate continental monsoon climate with a mean annual temperature of 5.62 ◦C
and a mean annual precipitation of 446 mm from 1993 to 2013. Monthly mean temperatures range
below 0 ◦C during the period from November to March and above 10 ◦C during the summer months
(June–August).
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2.2. Watershed Models

SWAT is a distributed-parameter model, which was primarily designed by the Agricultural
Research Service (ARS) of the United States Department of Agriculture (USDA) to assess the effect
of land management practices on water, sediment, and agricultural chemical yields in large complex
watersheds over extended periods of time [31]. GWLF is a combined distributed/lumped parameter
model, which is based on a combination of simple runoff, sediment, and groundwater relationships and
empirical chemical parameters [32]. Both SWAT and GWLF models are continuous, pollutant-loading
models that operate with a daily time step.

Table 1 lists the major processes and related methods considered by SWAT and GWLF models.
SWAT and GWLF differ greatly in the way in which they delineate the watershed. Based on the
topological structure of river networks, SWAT first discretized the watershed into a number of
subbasins, subsequently dividing each subbasin into hydrologic response units (HRUs) according to
the unique land use, soil, and slope combinations [31]. In SWAT, each physical and chemical process is
modeled at HRU scale within the subbasin and then routed along the river network toward the outlet
of the watershed. However, the conception of subbasin does not exist in GWLF; therefore, it can only
identify surface loading from different land covers and the results of each area are simply added into
the watershed summation. In some sense, the model is distributed but lacks a spatial conception as
well as a channel route component. For sub-surface modeling however, it is considered a lumped
parameter model because it used uniform parameters for the entire watershed, ignoring the spatial
variability of physical and chemical processes [33]. The differences in emphasis on simplifying the real
environment lead to the diverse properties of various watershed models.

The hydrological process is the most important component in any watershed model as the drive
force during the whole simulation. Both models simulate the hydrological component based on the
water balance equation for the shallow aquifer. The SWAT model provides two methods to estimate
surface runoff: the modified SCS-curve number and the Green-Ampt infiltration method. In this study,
both models used different versions of SCS-CN to estimate the surface runoff volume, considering the
remaining amount for infiltration [34]. The GWLF describes groundwater with the linear reservoir
model, while SWAT uses empirical relationships. In addition, SWAT can calculate the lateral flow in
the unsaturated zone.
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Table 1. Summary of the major processes and related methods used by SWAT and GWLF.

Description SWAT GWLF

Model capabilities
Hydrology, sediment, nutrients, pesticides, bacteria, and other water
quality factors; channel and reservoir routing, crop growth, transport
in soil, management practices, and impoundment structures

Hydrology, sediment, and nutrients

Temporal resolution Daily Monthly
Spatial representation Hydrologic response units Landuse category
Interception Water balance -

Potential evapotranspiration (PET) Penman–Monteith method; Priestley-Taylor method [35];
Hargreaves method [36] Hamon method [37]

Runoff SCS-CN [34]; Green and Ampt [38] SCS-CN [39]
Infiltration/percolation Water balance Water balance
Lateral flow Kinematic storage model [40] -
Base flow Empirical relations Linear reservoir model [41]

River flow routing Manning’s equation; variable storage routing method or Muskingum river
routing method -

Sediment yield Modified Universal Soil Loss Equation (MUSLE) [42,43] Universal Soil Loss Equation [44]
Sediment channel routing Simplified Bagnold model or physics based approach -

Nitrogen forms in output Organic nitrogen, nitrate, nitrite, ammonium, and total nitrogen Dissolved nitrogen, solid-phase nitrogen,
and total nitrogen

Atmospheric nitrogen deposition Wet and dry deposition Nitrogen deposition
Nitrogen cycle and transmission in land phase Mass balance and empirical relation -
Nitrogen cycle and transmission in routing phase QUAL2E model [45] -
Nitrogen load Empirical relations User defined concentration
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In GWLF, erosion is simulated via the Universal Soil Loss Equation (USLE), which predicts the
average erosion, using a function of rainfall energy [44]. Then, a sediment delivery ratio and transport
capacities are applied to determine monthly sediment yield for each source area [33]. In contrast,
SWAT uses a modified version of the Universal Soil Loss Equation (MUSLE), which introduces a runoff
factor displacing energy factor to daily estimate erosion and sediment yield. A delivery ratio is not
required and sediment yields of single storms can be calculated [42,43].

Both models are also quite different in the way they estimate nutrient loads. The GWLF simply
calculates nutrient loads by multiplying N and P concentration coefficients with the runoff volume or
sediment yield at a monthly scale. It uses denitrification loss fractions to calculate the denitrification
amount. With the daily time step, SWAT models nutrient cycles via different pools to simulate their
mineralization, decomposition, and immobilization between inorganic and organic forms within the
soil. Then, the amount of mineral and organic nutrients transported in both land phase and routing
phase is calculated.

In addition to these basic components, SWAT has the additional powerful ability to simulate
crop growth, management, as well as the amount of pesticide, bacteria, algae, dissolved oxygen,
carbonaceous biological oxygen demand (CBOD), and their routing in the channel or reservoir.

2.3. Model Inputs

Table 2 summarizes the data used for the model setup in this study. To avoid different results
based on variations of model input data, we kept the input data of GWLF consistent with SWAT.
The SWAT (Version 2012) and the ReNuMa (Regional Nutrient Management) (Version 2.2.2) modeling
platform of GWLF (Version 2) were used. Thirty-meter resolution DEMs were used to determine the
watershed and sub-watershed boundaries in SWAT and GWLF identified runoff source areas based
on the same delineation. At both sites, land use data were used to obtain major cover classification
information and SWAT needs extra spatial datasets. Soil datasets were only used in SWAT to partition
the watershed into HRUs along with landuse and slope datasets. In SWAT, a combination of these three
datasets divided the Tunxi watersheds into 40 subbasins and 307 HRUs, while it divided Hanjiaying
into 33 subbasins and 258 HRUs. In GWLF, there were nine major landuse classes in Tunxi and seven
in Hanjiaying. Meteorological data of each subbasin were obtained from the weather station nearest
to its centroid for SWAT, while average climatic data were used for GWLF. Agriculture management
information of the Tunxi watershed was referenced to [46] and obtained from the local government in
Hanjiaying. Furthermore, population data were also required for the GWLF.

Table 2. Input data used in SWAT and GWLF.

Type of Data SWAT GWLF Tunxi Hanjiaying

DEM Digital elevation map Digital elevation map 30 m 30 m

Landuse Grid Proportion 1:100,000 1:100,000

Soil Grid and properties - 1:1,000,000 1:1,000,000

Meteorological
data

Daily air temperature (maximum, minimum, average), Daily average
temperature and

precipitation

28 stations 30 stationsdaily precipitation, daily wind,
daily solar radiation,

(2000–2013) (2006–2014)daily relative humidity

Flow discharge monthly Monthly 1 station 1 station
(2000–2013) (2006–2014)

Sediment yield monthly Monthly 1 station 1 station
(2000–2011) (2006–2014)

Nutrient load monthly Monthly 1 station 1 station
(2002–2013) (2006–2014)

2.4. Model Calibration, Validation, and Evaluation

In the Tunxi watershed, the period from 2001 to 2008 was chosen for model calibration, and
the data in 2000 were used as “warm up” to define appropriate initial conditions, and the latest five
years from 2009 to 2013 were used for model validation of streamflow and total-nitrogen, while the
sediment was validated from 2009 to 2011. For the Hanjiaying watershed, the periods of 2006–2011
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and 2012–2014 were selected as the calibration and validation periods, respectively for flow, sediment,
and total-nitrogen, while 2005 was used as the warm-up period. The simulation of SWAT and GWLF
was conducted with a monthly time step and followed the calibration sequence: flow, sediment,
and nitrogen.

Although multiple sets of parameters can obtain optimal fitting with the measured data, we
only selected one of them as representation to facilitate comparison of both models. Tables 3 and 4
show the parameters that were chosen and defined in this study. In SWAT, a sensitivity analysis was
conducted prior to model calibration and more than 20 major parameters were selected in Tunxi and
Hanjiaying. Calibration was manually and automatically conducted via SUFI-2 uncertainty analysis
through the SWAT-CUP program [47]. The SCS curve number (CN2) was the most critical parameter
for both stations, which is directly related to the runoff yield. As the value of CN decreased, overland
flow reduced, but infiltration potential increased. The base flow recession constant, αALPHA_BF, is a
direct index of groundwater flow response to recharge from the vadose zone [48]. Values vary from
0.1–0.3 for land with slow response to recharge to 0.9–1.0 for land with rapid response. The SLSOIL
was the key parameter, which we chose to adjust the lateral flow yield. By default, it is equal to
the value of the average slope length of the subbasin (SLSUBBSN), which tends to result in a high
lateral flow ratio. Therefore, we appropriately reduced its value for both sites. In Hanjiaying, two
additional parameters were considered due to their influence on the snowmaking process. SMTMP
defines the base temperature above which snowmelt is allowed. SNOCOVMX is the threshold depth
of snow above which the basin would be completely (100%) covered with snow. The soil property
parameter SOL_K was also included because the soil categories in the Hanjiaying basin are relatively
coarse. Parameters related to groundwater balance and channel routing were also taken into account.
Seven parameters were chosen to calibrate the sediment simulation with respect to erosion, maximal
sediment amount, and routing in the channel. For nitrogen, four parameters about nitrite and one
parameter about organic nitrogen were considered. Furthermore, we distributed several parameters
depending on landuse, soil texture, and slope. When the calibration of one variable was completed,
we retained an unchanged parameter range and began calibration of the next variable, unless results
were not satisfactory [47].

For the GWLF, parameters related to watershed specific characteristics such as runoff source areas
and populations were identified via GIS data analysis. Transport and nutrient parameters could be
estimated using default coefficients according to [49]. In this study, we used them as initial values and
manually calibrated them. A total of 11 parameters were selected for calibration. The meaning of each
parameter is listed in detail in Tables 3 and 4. After model calibration, the values of input parameters
remained unchanged during the validation process.

The model performance for fitting measured constituent data was qualitatively evaluated via time
series plots and quantitatively evaluated via four widely used statistics in watershed model evaluation
(Table 5).

The coefficient of determination (R2) indicates the degree of linear relationship between simulated
and observed data. A R2 value close to one indicates a better performance. However, it is very sensitive
to extremely high values. The Nash–Sutcliffe efficiency (NSE) is one of the most commonly used
criteria [50]. This is a normalized statistic, which can be used to determine the goodness of fit. The
NSE ranges from −∞ to 1, with 1 indicating a perfect match. The squared difference in equation
becomes the limitation of the NSE for overestimating higher values and neglecting lower values [51].
Percent bias (PBIAS) is an error index, generally used to measure the deviation of the constituent
of data. It calculates the average tendency of the simulated data to be either larger or smaller than
their observed counterparts with zero indicating the optimal value [52]. The RMSE (root mean square
error)-observations standard deviation ratio (RSR) combines the feature of an error index RMSE and
a normalization factor so that it can be applied to various constituents [53]. RSR ranges from the
optimal value of 0 to infinity and the smaller the RSR, the better the simulation results will be. Model
performance was judged based on statistics performance ratings as previously recommended [28,53].
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Table 3. Parameters selected for the calibration for streamflow.

Model Parameter Name Description Default Range
Calibrated Value

Tunxi Watershed Hanjiaying Watershed

SWAT

CN2 Initial SCS Runoff curve number for moisture
condition II 40–100 Varies (45–95) 1 Varies (43–77) 1

GWQMN Threshold depth of water in shallow aquifer
required for the return flow to occur 0–500 364.2203 201.3421

ALPHA_BF Base flow alpha factor 0–1 0.7759 0.381446
RCHRG_DP Deep aquifer percolation factor 0–0.5 0.0493 0.042637

ESCO Soil evaporation compensation factor 0–1 0.6737 0.59
CH_N2 Manning’s “n” value for the main channel 0.01–0.3 0.0148 0.22892
CH_K2 Main channel conductivity 0.01–500 102.495 407.831421
SLSOIL Slope length for lateral subsurface flow 10–120 Varies (21–99) 2 Varies (145–258) 2

SNOCOVMX Minimum snow water content that corresponds to
100% snow cover 0–500 - 12.482321

SMTMP Snowmelt base temperature −20–20 - −1.019328
SOL_K Saturated hydraulic conductivity 0–2000 - Varies (7–66) 1

GWLF

CN2 Initial SCS Runoff curve number for moisture
condition II 0–100 Varies (45–100) 1 Varies (23–98) 1

Recession coefficient Groundwater discharge coefficient 0.1 0.25 0.0017
Seepage coefficient Groundwater seepage constant 0 0.044 0.0096

Unsaturated available water Available soil water capacity - 8.75 17.54
1 varied with landuse; 2 varied with slope.
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Table 4. Parameters selected for the calibration for sediment.

Model Parameter Name Description Default Range
Calibrated Value

Tunxi Watershed Hanjiaying Watershed

SWAT

USLE_K USLE equation soil erodibility (K) factor 0–0.65 Varied (0.12–0.60) 3 Varied (0.09–0.54) 3

USLE_P USLE equation support parameter 0–1 Varied (0.22–0.49) 2 Varied (0.28–0.40) 2

PRF_BSN Peak rate adjustment factor for sediment routing in
the main channel 0–2 0.0483 0.795668

SPEXP Exponent parameter for calculating sediment
re-entrained in channel 1–1.5 1.3454 1.171564

SPCON Linear parameter for calculating sediment
re-entrained in channel 0.0001–0.01 0.0052 0.00255

CH_COV1 Channel erodibility factor −0.05–0.6 0.26 0.193029
CH_COV2 Channel cover factor −0.001–1 0.4776 0.26354

CMN Rate factor for humus mineralization of active
organic nitrogen 0.0001–0.003 0.0014 0.0004

CDN Denitrification exponential rate coefficient 0–3 1.0039 0.004
SDNCO Denitrification threshold water content 0–1 0.3846 0.1541

NPERCO Nitrite percolation coefficient 0–1 0.3646 0.3441

SHALLST_N Concentration of nitrate in groundwater contribution
to streamflow from subbasin 0–1000 0.735 25.5726

ERORGN Organic N enrichment ratio 0–5 0.0025 0.1253

GWLF

Sediment delivery ratio Used to calculate sediment supply - 0.039 0.1078

Erosivity coefficient Used to calculate rainfall erosivity - 0.08 (November–February) 0.1 (November–February)
0.45 (March–October) 0.27 (March–October)

USLE parameter Integrated parameter - Varied (0–0.14) 1 Varied (0–0.1) 1

Urban N accumulation rate - - 0.045 0.1
Nitrogen runoff coefficient Rural runoff N concentration - Varied (0.4–2) 1 Varied (0.5–4.5) 1

N (mg/L) in groundwater N concentration in groundwater - 0.6 7
N (mg/kg) in sediment N concentration in sediment - 1000 2147

1 varied with landuse; 2 varied with slope; 3 varied with soil texture.
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Table 5. Statistics used to evaluate models.

Statistics Excellent Very Good Good Fair Unsatisfactory

R2 =
(∑n

i=1(Yobs,i−Yobs)(Ysim,i−Ysim))
2

∑n
i=1(Yobs,i−Yobs)

2
∑n

i=1(Ysim,i−Ysim)
2 (0.90, 1] (0.75, 0.9] (0.65, 0.75] (0.50, 0.65] (0, 0.5]

NSE = 1 − ∑n
i=1(Ysim,i−Ysim)

2

∑n
i=1(Yobs,i−Yobs)

2 (0.90, 1] (0.75, 0.9] (0.65, 0.75] (0.50, 0.65] (−∞, 0.5]

RSR =

√
∑n

i=1(Yobs,i−Ysim,i)
2√

∑n
i=1(Yobs,i−Yobs)

2
[0.00, 0.25) [0.25, 0.50) [0.50, 0.60) [0.60, 0.70) [0.70, +∞)

PBIAS =
∑n

i=1(Yobs,i−Ysim,i)×100
∑n

i=1 Yobs,i

[0, 5) [5, 10) [10, 15) [15, 25) [25, +∞)
[0, 5) [5, 15) [15, 30) [30, 55) [55, +∞)
[0,10) [10, 25) [25, 40) [40, 70) [70, +∞)
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3. Results and Discussion

3.1. Flow

Figure 3 illustrates a comparison between observed and simulated monthly mean streamflow
series of both SWAT and GWLF models in two sites; the numerical criteria of model performance are
summarized in Table 6.

In the Tunxi watershed, SWAT and GWLF almost replicated the entire trend of the discharge
hydrograph with the simulated peak values and low flows consistently and perfectly matching the
observed data throughout all years (Figure 3a). The high R2 and NSE (above 0.9) values and the
reasonably low RSR (below 0.25) for the calibration and validation periods indicate the excellent
correlation and agreement between measured and simulated runoff for both models. Both SWAT and
GWLF models underestimated streamflow by 9.69% and 4.03% during calibration, respectively, while
overestimating the flow volume by 1.17% and 2.97% during the validation period. The average runoff
simulated by SWAT and GWLF were both close to the average of observations. For the Hanjiaying
watershed, the performance of both models degraded compared to the results for Tunxi. The shape
of the monthly hydrograph was largely reproduced and relatively large fluctuations were found for
the simulation of peak and low flows, contrasting with the measured data (Figure 3b). Based on the
similar values of R2, NSE, and RSR between SWAT and GWLF, both models were equally able to
predicted monthly streamflow during the entire duration of the simulation. However, GWLF produced
marginally better PBIAS values and slightly more accurate average monthly flow than SWAT, especially
during the validation period. According to these results, both models had an almost equal ability to
simulate the monthly streamflow with sufficient accuracy after adequate calibration. Furthermore, the
average runoff simulated by SWAT and GWLF were both close to the average of the observations.
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The critical reason for why the performance of both models was highly consistent at the same site
is that the same runoff calculating method (SCS CN) was utilized in both models. Furthermore, the
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distinctly different behavior between the Tunxi and Hanjiaying watersheds of both models indicates
that the SCS is more suitable for areas with high flow. Some previous applications in areas with less
runoff yielded relatively poor statistics. Shen et al. [54] obtained a NSE of 0.711 and 0.690 during
calibration and validation periods for the monthly runoff of the Three Gorges Reservoir with mean
monthly observed values below 0.05 m3/s. Parajuli et al. [28] obtained a NSE of 0.56 and a PBIAS of
−95.06 in Red Rock Creek with normal flow volume below 1 m3/s. Li et al. [27] obtained a NSEs of
0.948 and 0.923, and REs of −0.071 and −0.084 during calibration and validation periods for the Heihe
River basin in China with mean monthly observed runoff above 49 m3/s. Other publications reported
that the performance of SWAT and GWLF in simulating low flows is not as useful as those of high or
normal flows [22,55]. In fact, Chahinian et al. [56] compared four different infiltration-runoff models
and all tested models had difficulties simulating low runoff events and even events characterized by
a mild rainfall hiatus. Furthermore, the authors contributed this phenomenon to the absence of soil
moisture re-distribution during flood events and to a constant value during the whole duration of the
flood event.

For the calibrated parameters in SWAT, Tunxi had a higher CN2; thus, more streamflow was
generated than in Hanjiaying, which is perhaps due to more abundant rainfall of Tunxi. The GWQMN
is considerably higher in the Tunxi watershed than in Hanjiaying, indicating that Tunxi has more
groundwater storage. The higher ALPHA_BF in Tunxi suggests a more rapid response to recharge
entering the aquifers than in Hanjiaying, which was further confirmed by the higher value of recession
coefficient in Tunxi of GWLF. The higher CH_K2 in Hanjiaying implies that its channel was easier
to loose water via transmission when there is no groundwater contribution. As for GWLF, CN2 is
also higher in Tunxi than Hanjiaying, which is consistent with SWAT. The parameter, unsaturated
available water, is mainly related to soil property. Red soil and brown soil are the main soil types of
Tunxi and Hanjiaying respectively. Brown soil is usually formed through eluviation and clayization
processes and has thus poor water permeability and good water holding capacity [57]. Hanjiaying
has a higher value of unsaturated available water than Tunxi, partially indicating that more water can
be sorted in brown soil than in red soil. As a whole, the variances among these parameters of both
models consistently reflect differences in hydrological processes under different catchments to some
extent. However, these differences still need to be experimentally verified.

3.2. Sediment

Figure 4 shows a graphical representation of the predicted and measured sediment yield on a
monthly basis. Furthermore, the numerical criteria of model performance in simulating sediment load
are summarized in Table 6.

In the Tunxi watershed, both models adequately simulated the trend of monthly sediment yield,
but tended to underestimate extremely high values. Furthermore, the GWLF performed worse than
SWAT in tracking peak timing (Figure 4a). In summary, both models showed very good correlations
and sufficient agreement between monthly measured and predicted sediment values according to
statistical criteria, except for PBIAS. During the calibration time, the GWLF model performed slightly
better than the SWAT model, based on the same R2, higher NSE, lower RSR, and lower PBIAS. During
the validation process, SWAT responded noticeably better than during the calibration period, while the
performance of the GWLF did not show an apparent improvement. In addition, the PBIAS degrees for
both models did not agree with other criteria and the values of SWAT were always higher than those
of GWLF throughout entire periods, indicating a higher bias to predict sediment. In the Hanjiaying
watershed, the performance of both models decreased compared to the results for Tunxi. The trend
shape of the monthly sediment was roughly represented and there were large fluctuations for the
simulation of peak and low flows compared to the measured data (Figure 4b). In general, both models
equally predicted monthly sediment loads with reasonable accuracy during the entire simulation time
based on the approximately identical values of R2, NSE, and RSR. In addition, the performance of
both models during the validation period increased compared to the calibration period. Furthermore,
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SWAT performed marginally better than GWLF to some extent; however, this difference was so small
that it was negligible. Furthermore, the average monthly sediment yield simulated by SWAT was
much higher and closer to the observed values than for GWLF. According to the analysis above, both
models were capable to predict the monthly sediment yield with adequate accuracy after sufficient
calibration and SWAT was more reliable during the validation period.

The similarity of the results of both models suggests that the difference between MUSLE and
USLE is not apparent in simulating monthly sediment loads, which has previously been suggested [54].
The good representation and increased performance the SWAT model during calibration and validation
periods may be attributed to the distributed property assessing spatial variations of the study sites.
In Tunxi catchment, the consistent performance of GWLF was partially achieved due to its capability
allowing sediment delivery ratio to be calibrated during different months. It simulated the peak
values of sediment between April and July during calibration period reasonably, whereas it did not
capture the peak values in February 2009 and March 2010 during validation periods. This indicates
that the GWLF lacks adequate flexibility in case when evident difference exists between calibration
and validation observed data, mainly due to its simple sediment parameters. Furthermore, errors of
manual measurement and adaption of empirical calculating equation could also affect the performance
of sediment in both models.
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Table 6. Statistics values of model performance.

Statistics

Tunxi Watershed Hanjiaying Watershed

Flow Sediment TN Flow Sediment TN

SWAT GWLF SWAT GWLF SWAT GWLF SWAT GWLF SWAT GWLF SWAT GWLF

Calibration Period

Mean Observed 78.8 24394.8 248689.4 3.6 1340.3 80542.8

Mean Simulated 86.4 82.0 43,403.3 29,324.6 137,255.9 24,1884.4 3.4 3.4 1140.1 929.8 65,820.1 85,912.1
R2 0.95 0.96 0.75 0.75 0.89 0.88 0.78 0.80 0.57 0.59 0.81 0.79

NSE 0.94 0.95 0.68 0.74 0.65 0.87 0.78 0.77 0.57 0.54 0.77 0.77
RSR 0.24 0.21 0.56 0.51 0.58 0.35 0.47 0.48 0.65 0.67 0.48 0.47

PBIAS −9.69 −4.03 −77.92 −20.21 39.85 −9.32 5.31 4.97 14.93 30.63 18.28 −6.67

Validation Period

Mean Observed 100.5 46960.5 319899.5 3.9 1417.1 84859.2

Mean Simulated 99.3 97.5 63,640.2 38,824.1 179,762.7 283,900.1 3.6 3.9 1107.2 953.8 76,385.6 76,626.8
R2 0.96 0.96 0.84 0.74 0.85 0.88 0.87 0.82 0.79 0.76 0.70 0.35

NSE 0.96 0.96 0.80 0.67 0.60 0.86 0.77 0.78 0.68 0.61 0.72 0.57
RSR 0.21 0.21 0.44 0.56 0.63 0.36 0.47 0.46 0.56 0.61 0.52 0.65

PBIAS 1.17 2.97 −35.51 17.32 43.81 11.25 8.98 −0.50 21.86 32.69 9.99 9.70
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3.3. Total Nitrogen

Time series plots and numerical criteria of simulated and measured total nitrogen loads are
summarized in Figure 5 and Table 6, respectively.

For the Tunxi watershed, both the SWAT and GWLF models produced acceptable fluctuations
in comparison to the observed data, while the peak values tended to be underestimated by SWAT
in particular (Figure 5a). Although the R2 value of SWAT was similar to that of GWLF, the GWLF
model outperformed SWAT remarkably during both calibration and validation periods based on NSE,
RSR, and PBIAS. The GWLF constantly predicted the monthly TN loadings with very good accuracy:
R2 and NSE were above 0.8, RSR was above 0.5, and PBIAS stayed within 20. Compared to GWLF,
SWAT improved the results from fair to good. Furthermore, the average monthly total nitrogen yield
of GWLF was closer to the observed values than SWAT. The performance of both models during
the validation period did not have obvious change contrasted to that during the calibration period.
In the Hanjiaying watershed, the results of both models were not as satisfactory as those for Tunxi.
The SWAT model roughly represented the trend shape of the monthly TN loadings and had criteria
values ranging from good to very good during both calibration and validation periods. However,
the GWLF did not provide acceptable simulation results for all years, although its statistics analysis
during the calibration period was very good. Especially during the validation period, the time series
of the GWLF was too gentle to capture each fluctuation of the observed data (Figure 5b). In contrast
to SWAT, the average monthly TN predicted via GWLF was generally nearer to the measured values
during both the calibration and verification periods.
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Based on the comparison above, the SWAT model was capable of providing a reasonable and
reliable prediction of monthly TN loadings especially in the Hanjiaying watershed where measured
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data were scarce. Several published studies verified the robustness of SWAT in representing nitrogen
loadings. Stewart et al. [19] used SWAT to predict water quality changes in Texas, reporting a very
good correlation (R2 = 0.89, 0.87) and good agreement (NS = 0.71, 0.73) of monthly organic nitrogen in
calibration and validation periods. Jha et al. [58] reported that SWAT performed very well on annual
and monthly nutrient predictions in the Raccoon River watershed during the simulation periods
with R2 and NSE exceeding 0.7 in most cases. Gassman et al. [10] summarized more than twenty
peer-reviewed articles and the values for R2 and NSE mostly exceeded 0.5, indicating that the SWAT
model is able to replicate a wide range of observed in-stream pollutant levels. This is due to SWAT
considering five different chemical forms of nitrogen as well as the mutual transformation between
them in the nitrogen cycle. However, GWLF only considers two different physical forms of nitrogen
and does not take the conversion between them into account. Furthermore, the nitrogen concentrations
remain constant during the whole model operating time. Thus, the accuracy achieved by GWLF is
heavily dependent on the efficacy of calibration, which perhaps results in its poor performance in
the Hanjiaying watershed where the measured data were limited. Furthermore, the value of CMD
was higher in the Tunxi watershed than in Hanjiaying, indicating that microbial activity tended to
be higher in this humid and warm area. In addition, the higher SHALLST_N of SWAT and nitrogen
concentrations in sediment and groundwater of GWLF indicate that Hanjiaying suffers more human
intervention than Tunxi. Actually, Hanjiaying has more agricultural land than Tunxi. This perhaps
contributed to the relatively degraded performance of both models for the Hanjiaying watershed.

4. Conclusions

In this study, we conducted a comparison between two watershed models with different
complexities and construction in two discrete sites that represent the semi-arid north and the humid
south of China. According to the quantitative statistics and graphical techniques, both the SWAT and
the GWLF model were capable of simulating monthly flow, sediment, and total nitrogen with adequate
accuracy. They performed similarly well in terms of streamflow and sediment. Furthermore, GWLF
outperformed SWAT in the Tunxi watershed, while it had opposite performance in Hanjiaying for
nitrogen simulation. The main conclusions of our study are listed below.

- The performances of both models in arid areas were not as good as the performances in humid
areas, indicating that climatic conditions could greatly affect the applicability of a given model.

- Due to the same adopted surface runoff calculation method (SCS CN), results of both models
in monthly streamflow were quite similar, even though the complexity of the model structures was
quite different.

- In contrast to GWLF, SWAT performed more dependable and robust in sediment and total
nitrogen and could reproduce the fluctuations of the observed data more accurately due to its spatial
property and more detailed description of reality.

- GWLF could provide similar or even better results and much closer average values to measured
data than SWAT in some cases.

- Due to its simpler structure, GWLF requires fewer data to set up, less time to run, and is easier
to be used than SWAT. However, it is not suitable for application in large catchments and cannot reflect
spatial variations due to the absence of channel route and spatial topological relationship of land uses.
Furthermore, GWLF is more dependent on the calibration process than SWAT.

Overall, the user friendly GWLF is more suitable for a basic analysis to support environmental
management in data-deficient areas such as China, where the basic data required by SWAT are not
always available or credible. Furthermore, SWAT has an advantage in areas where measured data are
scarce and is more suitable for projects that require high accuracy.
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