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Abstract: Medium- and long-term runoff forecasting is essential for hydropower generation and
water resources coordinated regulation in the Yellow River headwaters region. Climate change has
a great impact on runoff within basins, and incorporating different climate information into runoff
forecasting can assist in creating longer lead-times in planning periods. In this paper, a multimodel
approach was developed to further improve the accuracy and reliability of runoff forecasting fully
considering of large-scale and local-scale climatic factors. First, with four large-scale atmospheric
oscillations, sea surface temperature, precipitation, and temperature as the predictors, multiple linear
regression (MLR), radial basis function neural network (RBFNN), and support vector regression
(SVR) models were built. Next, a Bayesian model averaging (BMA)-based multimodel was developed
using weighted MLR, RBFNN, and SVR models, and the performance of the BMA-based multimodel
was compared to those of the MLR, RBFNN, and SVR models. Finally, the high-runoff performance
of these four models was further analyzed to prove the effectiveness of each model. The BMA-based
multimodel performed better than those of the other models, as well as high-runoff forecasting.
The results also revealed that the performance of the forecasting models with multiple climatic factors
were generally superior to that without climatic factors. The BMA-based multimodel with climatic
factors not only provides a promising, reliable method for medium- and long-term runoff forecasting,
but also facilitates uncertainty estimation under different confidence intervals.

Keywords: runoff forecasting; support vector regression; multiple climatic factors; Bayesian model
averaging; multimodel; Yellow River headwaters

1. Introduction

The headwaters of China’s Yellow River comprise an important source of freshwater resources,
contributing nearly 40% of the total amount available in the Yellow River basin [1,2]. Reliable and
accurate medium- and long-term runoff forecasting plays an important role in hydropower generation
and in the coordinated regulation of water resources so that decision-makers know the quantity of
water available in the basin over long periods of time, and can facilitate efficient management of
water resources for a multitude of competitive applications in the region [3,4]. According to different
forecast periods, runoff forecasting can be divided into short-term forecasting (e.g., hourly or daily),
medium- and long-term forecasting (e.g., weekly, monthly, and seasonal), and long-term forecasting
(e.g., annual), so medium- and long-term forecasting refers to runoff forecasting at the monthly scale
in this paper. The Yellow River headwaters region is located in the northeast of the Tibetan Plateau,
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which is very sensitive to climate change and rarely influenced by human activities. Climate change
has a great impact on runoff within basins, especially in climate-sensitive areas [5]. There is a complex
non-linear relationship between different climatic factors and runoff, and it is difficult to understand
such complex relationships and build an accurate runoff forecasting model at medium- and long-term
time scales [6,7].

Multiple climatic factors as the input variables are different for runoff forecasting in different
regions. Abudu et al. [8] used a stochastic hybrid modeling approach for forecasting monthly
streamflow in the Rio Grande headwaters basin, and the input variables were antecedent runoff,
precipitation and snow water equivalent. Evsukoff et al. [9] presented the development of a recurrent
fuzzy system model for the Iguaçu River basin in southern Brazil, and the input variable was
only rainfall. Talei et al. [10] applied a Takagi-Sugeno neuro-fuzzy model with online learning
for runoff forecasting for three different catchments, and the input variable was the antecedent
rainfall. Elsanabary and Gan [11] developed artificial neural networks with a genetic algorithm for
forecasting weekly streamflow of the Upper Blue Nile basin, and the input variables were monthly
precipitation and sea surface temperature. Djibo et al. [12] used a probabilistic approach statistical
seasonal streamflow forecasting over West African Sahel; the input variables were sea level pressure,
relative humidity, and air temperature. Biondi and De Luca [13,14] considered a simple lumped and
conceptual rainfall-runoff model for design flood estimation in gauged and ungauged catchments
in southern Italy, by considering as input 500-years of 20-min synthetic rainfall data, derived from
a daily rainfall generator and a specific downscaling procedure for Southern Italy. Previous studies
primarily focused on precipitation and antecedent runoff as the inputs for runoff forecasting, however,
less attention was paid to fully incorporate large-scale climate variables and other local-scale climate
variables as the inputs.

Runoff forecasting has always been a tremendous challenge for water resource management
engineers and decision-makers, and a wide variety of models have been applied to runoff forecasting.
Runoff forecasting approaches can be divided into two categories: one is based on physical processes,
which require an accurate description of runoff processes and, thus, its applicability is limited by
large variations in space and time. The other is the data-driven approach, which attempts to use
historical climate factors and runoff data features to forecast runoff in the future. Although data-driven
approaches may lack the ability to provide physical interpretation, they are becoming increasingly
popular for providing relatively the accurate flow forecasts with their rapid development and less
information requirements than hydrological models need. Different data-driven models have the
ability to capture the randomicity, periodicity, and volatility of runoff processes, and multimodel
techniques can obtain accurate and comprehensive information on different characteristic and
improve forecasting accuracy by linearly combining two or more models according to different
weighting strategies. A number of multimodel methods have been developed for runoff forecasting.
Block et al. [15] presented the coupling of global climate models (GCMs), multiple regional climate
models, and numerous water balance models to improve stream flow forecasting compared to any
individual model. Zhang et al. [16] proposed singular spectrum analysis and the autoregressive
integrated moving average (ARIMA) hybrid model for annual runoff forecasting. It was shown
that the hybrid model exhibited the best predictive performance compared to ARIMA and singular
spectrum analysis-linear recurrent formulae (SSA-LRF) models. Wang et al. [17] presented an artificial
neural network (ANN) model coupled with ensemble empirical mode decomposition (EEMD) for
forecasting medium- and long-term runoff time series, and the proposed EEMD-ANN model attained
a significant improvement over the ANN approach alone in medium- and long-term runoff time series
forecasting. Recently, the Bayesian model averaging (BMA)-based multimodel has gained popularity
as a multimodel because it can provide a more realistic forecast that considers both between-model
variances and in-model variances.

As the main water source for Yellow River, the variations in Yellow River headwater runoff
greatly affect downstream discharge and available water supply and, therefore, it has attracted more



Water 2017, 9, 608 3 of 16

and more attention from researchers. Zheng et al. [18] have investigated changes in the stream flow
regime in the headwater catchments of the Yellow River basin since the 1950s. The results showed
no significant trend for the period 1956–2000, but reported that a significant change in annual stream
flow occurred around 1990. Lan et al. [19] analyzed the response of the runoff in the headwater region
to climate change and reasonableness of the response based on the data measured during the period
1959–2008. Recently, sporadic explorations have been conducted of medium- and long-term runoff
forecasting in the Yellow River headwaters region. Wang et al. [20] developed three forms of hybrid
artificial neural networks (ANNs) to forecast stream flows for the upper Yellow River. Zhang et al. [21]
combined wavelet analysis (WA) and an ANN for runoff time series prediction in the headwaters
area. However, few studies have adopted the BMA-based multimodel forecasting model for runoff
forecasting, especially with a number of large-scale climatic indices, so it is an attempt to improve the
accuracy of runoff forecasting in Yellow River headwaters region.

In this paper, the monthly runoff data from Tangnaihai station in the Yellow River headwaters
region was analyzed as the case study. Four atmospheric oscillations, sea surface temperature in
different areas, precipitation and temperature were fully considered as the inputs for runoff forecasting.
First, multiple linear regression (MLR), radial basis function neural network (RBFNN), and support
vector regression (SVR) models were built based on multiple climatic factors, and an investigation
of how the main parameters influenced the performance of the SVR model was undertaken, and the
best parameters were selected for medium- and long-term runoff forecasting. Then a BMA-based
multimodel was developed using weighted models (MLR, RBFNN, and SVR) to further improve
medium- and long-term runoff forecasting, and provide uncertainty estimation under different
confidence intervals. The performance of the four models for high runoff was further analyzed
to prove the effectiveness of each model. Finally, the multimodel, with and without climatic factors,
were also built for comparison.

2. Materials and Methods

In this paper, the data-driven models, including multiple linear regression, radial basis function
neural network, support vector regression, and a Bayesian model averaging-based multimodel were
developed, and data-driven models are actually black box models, which extract the input-output
relationship from the historical record of climate data and runoff to provide simplified representations
of the complex nonstationary hydrological systems. Thus, the length and quality of the observed
climate factors and runoff time series will determine the accuracy of the model, but once the length
and quality of the observed runoff series are fixed, the parameters of models are dominant on the
accuracy of the model.

2.1. Multiple Linear Regression

The multiple linear regression (MLR) model as a popular statistical time series model, is often
used to predict values in the future; and it is built as follows:

y = β1x1 + β2x2 + . . . + βkxk + β0 (1)

where k is the number of the predictors, βi are regression coefficients calculated by the least-squares
method, and x is the climatic factor [22].

2.2. Radial Basis Function Neural Network

The radial basis function neural network (RBFNN) is a typical feed-forward neural network
often used for strict interpolation in multidimensional space. The RBFNN consists of one input
layer, one hidden layer with a nonlinear RBF activation function, and one output layer with entirely
different roles [23–25].



Water 2017, 9, 608 4 of 16

From the input layer to the hidden layer, a Gaussian transfer function is used for the hidden
neurons, so the transformation is nonlinear; it can be expressed as follows:

ϕi(x) = exp

(
−‖x− xi‖2

2σi
2

)
i = 1, 2, . . . , N (2)

where ϕi(x) is the center of the basis function, σi is the spread of the radial basis function in the ith
hidden node, N is the number of hidden nodes, and ‖x− xi‖ is the radial distance between x and
the RBF function center. The nonlinear nodes of the hidden layer are centered so that each of them is
specialized on a particular zone of the input space [26,27].

However, the transformation from the hidden layer to the output layer is linear, and it is denoted
as the weighted summation of the outputs of all hidden nodes connected to the output nodes:

f (x) =
N

∑
i=1

ωi ϕi(x) (3)

where ωi are the weights of the linear output nodes [28]. The aim of an RBF network is to determine
centers, widths, and the linear output weights linking the RBFs to the output nodes layer.

2.3. Support Vector Regression

Support vector regression (SVR), developed from support vector machines (SVMs), is a promising
technique for dealing with forecasting problems based on Vapnik-Chervonenkis dimension theory and the
structure risk minimization principle. Compared to conventional artificial neural networks, it has better
generalization ability with structural risk minimization instead of training error minimization [29,30].

The linear regression estimating function can be written as follows:

f (x) = ωφ(x) + b (4)

where φ(x) is a nonlinear mapping from the input space to a high-dimensional feature space, b is
a threshold value, and ω is a weight vector, which can be estimated by minimizing the following
regularized risk function:

R(C) =

(
C

N

∑
i=1

Lε(di, yi)

)
+

1
2
‖ω‖2 (5)

The function Lε(d, y), called the ε-insensitive loss function, is given by the formula:

Lε(d, y) =

{
0 |d− y| ≤ ε

|d− y| − ε |d− y| > ε
(6)

C determines the tradeoff between flatness and the empirical risk; ε is considered to measure
empirical error with Vapnik’s linear loss function.

Two slack variables ξ and ξ ′ can be incorporated into the regularized risk function to yield the
following formulation:

R
(
ω, ξ, ξ ′, ε

)
=

1
2
‖ω‖2 + C

N

∑
i=1

(
ξ + ξ ′

)
(7)

subject to: 
(
ωTφ(xi) + b

)
− yi ≤ ε + ξ

yi −
(
ωTφ(xi) + b

)
≤ ε + ξ ′

ξ, ξ ′ ≥ 0
(8)
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This constrained optimization problem can be written as a Lagrangian function:

ν(αi, α∗i ) = −
1
2

N

∑
i=1

N

∑
j=1

(αi − α∗i )(αj − α∗j )k
(
xi, xj

)
+

N

∑
i=1

(αi − α∗i )di (9)

subject to:
N
∑

i=1

(
αi − α∗i

)
= 0

N
∑

i=1

(
αi − α∗i

)
≤ C

αi ≥ 0 α∗i ≥ 0 i = 1, 2, . . . , N
(10)

and an optimal weight vector of the regression model is:

ω =
N

∑
i=1

(αi − α∗i )φ(x) (11)

and so the linear regression in. Equation (11) becomes:

f (x) =
N

∑
i=1

(αi − α∗i )k(xi, x) + b (12)

where k
(

xi, xj
)

denotes the inner product of two vectors in the feature space φ(xi) and φ
(
xj
)
, and the

Gaussian kernel function is the most commonly used kernel function.
When the length and quality of the training samples are fixed, three parameters are dominated the

accuracy of the SVR model: C, which controls the empirical risk degree of the SVR, ε, which controls
the width of the tube in the loss function; and σ, which controls the Gaussian function width of the
kernel function [31–33].

2.4. Bayesian Model Averaging-Based Multimodel

The Bayesian model averaging (BMA)-based multimodel is the average of the considered models
weighted by the likelihood that a considered model is correct given the observations, it has been used
in various fields, such as statistics, geology, and hydrologic applications. The BMA model provides
a more reliable description of the total predictive uncertainty, including the between-model-variance
and the within-model-variance, than the original multimodels [34,35].

Consider that f = [ f1, f2, · · · , fK] is an ensemble of K considered models and M = [y1, y2, · · · , yT ]

are observational datasets with data length T, the BMA predictive probability density functions (PDFs)
are then:

p(y|M) =
K

∑
k=1

p( fk|M) ∗ pk(y| fk, M) (13)

where p( fk|M) is the posterior probability of model prediction fk; that is, the likelihood of the model
prediction being correct given the observational data M. If we denote wk = p( fk|M), we should obtain

K
∑

k=1
wk = 1. The posterior mean and variance of the BMA prediction can be expressed as:

E(y|M) =
K

∑
k=1

p( fk|M)wk

(
fk −

K

∑
i=1

wi fi

)2

+
K

∑
k=1

wkσ2
k (14)

var(y|M) =
K

∑
k=1

wk

(
fk −

K

∑
i=1

wi fi

)2

+
K

∑
k=1

wkσ2
k (15)

where σ2
k is the variance associated with model prediction.
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An expectation-maximization (EM) algorithm was used to estimate wk and σ2
k .

If θ =
(
wk, σ2

k , · · · , k = 1, 2, · · · , K
)
, the log-likelihood function can be approximated as:

l(θ) = log

(
K

∑
k=1

wk ∗ pk(y| fk, M)

)
(16)

For this study, a latent variable zk,t is introduced:

zk,t =

{
1
0

the kth model ensemble is the best prediction at time t
otherwise

(17)

At any time t, there is only one zk,t equal to 1, and the rest are equal to 0. The EM algorithm starts
with an initial value for the parameter θ. In the expectation (E) step, zk,t is estimated given the current
guess of θ. In the maximization (M) step, θ is estimated given the current values of zk,t. The EM steps
are repeated until certain convergence criteria are satisfied.

2.5. Model Performance Evaluation

Four standard statistical measures, root-mean-square error (RMSE), mean relative error (MAE),
Nash-Sutcliffe (NS) efficiency coefficient, and determination coefficient (R2), are employed to evaluate
the performance of all the forecasting models.

(1) RMSE:

RMSE =

√√√√√ n
∑

i=1
(qi −Qi)

2

N
(18)

where qi and Qi are the observed and predicted data at the ith time period, respectively, and N is the
number of considered data.

RMSE is frequently used to measure the residual between observed and predicted runoff.
(2) MAE:

MAE =
1
N

n

∑
i=1
|Qi − qi| (19)

MAE indicates the mean deviation between observed and predicted runoff.
(3) NS efficiency coefficient:

NS = 1−

n
∑

i=1
(qi −Qi)

2

n
∑

i=1
(qi − qi)

2
(20)

where qi is the mean observed runoff. The NS efficiency coefficient is used to measure the capability of
the model to forecast runoff away from the mean, which is sensitive to extreme values.

(4) R2:

R2 =


n
∑

i=1
(qi − qi)

(
Qi −Qi

)
√

n
∑

i=1
(qi − qi)

2 n
∑

i=1

(
Qi −Qi

)2


2

(21)

where Qi is the mean predicted runoff.
R2 evaluates the linear correlation by summarizing the discrepancy between the observed and

predicted runoff. The values of NS and R2 range between 0 and 1.0. Essentially, the smaller the RMSE
and MAE is, the more accurate the runoff expectation is; and the closer NS and R2 is to 1, the more
accurate the runoff expectation is.
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3. Study Area

The Tangnaihai hydrological station is the control station for the largest reservoir in the upstream
part of the Yellow River, which also serves as the control outlet of the basin; and it is sensitive to climate
changes. There are no large hydraulic engineering mechanisms in place, so runoff is only slightly
influenced by human activities. Therefore, runoff forecasting has important significance for predicting
ecological water demand, flood control operation, water allocation, and hydropower scheduling for
the Yellow River.

The study area is located in the eastern part of Qinghai Province between latitudes 32◦5′ N–36◦30′ N
and longitudes 95◦30′ E–103◦30′ E, including Maduo, Maqin, Jiuzhi, Dari, Hongyuan, Ruoergai, Xinghai,
Tongde, Zeku, and Henan counties, among others, and covers an area approximately 12.20 × 104 km2

in size above Tangnaihai station (Figure 1). The average elevation is approximately 4217 m and
ranges from 2568 to 6264 m. It has a typical plateau continental monsoon region climate; the annual
temperature difference is small, but the daily temperature difference is significant. The annual average
temperature in the study area ranges from −5.38 ◦C to 4.14 ◦C, the annual average evaporation ranges
between 730 and 1700 mm, the annual average rainfall ranges between 262.2 and 772.8 mm, and the
average annual runoff of the Yellow River at Tangnaihai station is 1.39 × 1010 m3.

Here, four climatic indices, sea surface temperatures in different areas (SST), precipitation, and
temperature were used. The climatic indices included the strength of the East Asian trough (EAT),
West Pacific Subtropical High (WPSH), Northern Hemisphere polar vortex (NH), Tibetan Plateau Index B
(TPI-B). Monthly EAT, WPSH, NH, and the TPI-B data used were retrieved from the Climate Prediction
Center of the US National Oceanic and Atmospheric Administration. Monthly temperature (T) and
precipitation (P) from 1956 to 2014 were obtained from the China Meteorological Administration.
Sea surface temperature data during 1956–2014 were obtained from Met Office Hadley Centre
observation datasets. Three zones of monthly SST were used: zone 1 (90◦ E–105◦ E, 30◦ S–35◦ S),
zone 2 (122.5◦ E–177.5◦ E, 17.5◦ N–27.5◦ N), and zone 3 (160◦ E–170◦ E, 25◦ S–35◦ S).

In this study, the monthly runoff data from Tangnaihai station were selected for model calibration
and validation. The dataset for the period January 1956–December 2010 was used for model calibration
and the dataset for January 2011–December 2014 for model validation.Water 2017, 9, 608  8 of 16 
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4. Results and Discussion

4.1. BMA-Based Multi Model Modeling Process

The BMA-based multi model was developed based on the MLR, RBFNN, and SVR models; hence,
the SVR model, RBFNN model, and MLR model were first employed for forecasting medium- and
long-term runoff. Then, an SVR model was selected as an example to illustrate the modeling process,
and a detailed analysis of how the main parameters influenced the performance of the SVR model
was performed.

The SVR model was built for monthly runoff forecasting, and the model-calibration process was
carried out to obtain the optimal parameters and so that, finally, runoff forecasting could be conducted
according to the training parameters. In the application, nine input variables including monthly EAT,
WPSH, NH, TPI-B, three zones of monthly SST (SST1, SST2, SST3), evaporation, temperature, and
precipitation, and the corresponding monthly runoff were used as the output, details of validation
samples are presented in Table 1.

Table 1. Input-output pairs for model-validation process.

Sample
Input Output

WPSH EAT NH TPI-B SST1 SST2 SST3 P T Runoff

1 1 64 271 470 20 17 23 76 −12 179
2 0 113 360 492 21 16 24 8 −7 158
3 3 103 304 516 21 16 24 139 −6 216
4 12 190 220 548 19 17 23 234 1 384
5 36 226 143 574 18 18 22 693 5 460
6 62 226 115 578 17 19 20 1071 8 1170

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

42 29 274 116 580 17 18 20 1152 9 969
43 47 274 99 596 16 21 19 591 11 958
44 47 274 125 595 16 22 19 1788 10 1043
45 43 305 195 595 15 22 19 733 7 1454
46 18 236 253 576 16 21 19 223 1 1016
47 37 176 279 543 18 20 21 33 −4 455
48 20 89 301 521 19 18 22 83 −11 273

The important part in building a SVR model is training the parameters, including the
regularization parameter, spread and tube width, which significantly influence forecasting accuracy.
Hence, the parameters should be selected carefully.

The optimal parameters were determined by trial and error, and are as follows: the spread σ

ranges from 0.1 to 10, the regularization parameter C from 0.1 to 10, and the tube width ε from 0.0001 to
0.1. The optimal values of the three parameters were selected when R2 reached its maximum value as
the values of the three parameters changed. Figure 2 shows the changing accuracy of the test datasets
when the spread σ = 0.6, the tube width ε = 0.001 and the regularization parameter C values were 0.5,
1.5, 2.5, and 3.5.

As shown in Figure 2, in the model-validation process, when C = 0.5, R2 was approximately
0.807, and when C = 2.5, R2 was approximately 0.890, when C = 3.5, R2 was approximately 0.853.
The results show that the best value for regularization parameter C was 1.5 with R2 approximately
0.905. Hence, the SVR model using a regularization parameter C value of 1.5 was selected for monthly
runoff forecasting in this study. In addition, regularization parameter C = 1.5, spread σ = 0.6, and
regression tube width ε = 0.001 were selected as the other optimal parameters for runoff forecasting at
Tangnaihai station.
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RBFNN and MLR models were also applied for forecasting monthly runoff, and based on the MLR,
RBFNN, and SVR models, a multimodel approach was developed to further improve the accuracy and
reliability of medium- and long-term runoff forecasting. A BMA-based multimodel was developed
for more reliable probabilistic runoff forecasting, which inferred consensus predictions by weighing
individual predictions. The weights for the three models, MLR, RBF, and SVR were 0.005, 0.140, and
0.875, respectively. The results indicated the better an individual model performed, the higher the
weight of that individual model is.

4.2. Comparative Analysis of MLR, RBFNN, SVR, and BMA-Based Multimodels

The results from the BMA-based multimodel were compared to those of the MLR, RBFNN, and
SVR models, and the results of the comparison are shown in Figure 3. It can be seen that the SVR
and RBFNN models performed better than the MLR model during the model-calibration process, and
that the MLR model generally underestimated the monthly runoff compared to the observed values.
During model calibration, the RMSEs for the SVR, RBFNN, and MLR models were 260, 280, and 304,
respectively; the MAEs for the same three models were 0.174, 0.329, and 0.383, respectively; their R2

values were 0.899, 0.834, and 0.799, respectively; and their NS values were 0.735, 0.696, and 0.638,
respectively (Table 2). However, the BMA-based multimodel performed better than the SVR model
during model calibration, giving the best RMSE, MAE, R2, and NS statistics of 180, 0.126, 0.945, and
0.879, respectively.
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Table 2. RMSE, MAE, R2, and NS values for the forecasting models.

RMSE MAE R2 NS

Calibration

MLR 304 0.383 0.799 0.638
RBFNN 280 0.329 0.834 0.696
SVR 260 0.174 0.899 0.735
BMA 180 0.126 0.945 0.879

Validation

MLR 296 0.287 0.777 0.697
RBFNN 327 0.307 0.798 0.725
SVR 274 0.250 0.905 0.740
BMA 261 0.196 0.937 0.785

Figure 4 displays the comparison between predicted and observed runoff during model validation
using MLR, RBFNN, SVR, and the BMA-based multimodel for Tangnaihai station. It can be seen
that the SVR model obviously outperformed the MLR and RBFNN models during model validation
in terms of the standard statistical measures (Table 2), and both the SVR and RBFNN models were
able to forecast runoff. Specifically, the RMSEs for the SVR and RBFNN models were 274 and 327;
the MAEs for the same two models were 0.250 and 0.307, respectively; their R2 values were 0.905
and 0.798, respectively; and their NS values were 0.740 and 0.725, respectively. However, all of
the other models performed better than the MLR model, which had the worst RMSE, MAE, R2,
and NS statistics, 296, 0.287, 0.777, and 0.697, respectively. Compared with all of the other models
during model validation, the BMA-based multimodel obtained the best RMSE, MAE, R2, and NS
statistics, of 261, 0.196, 0.937, and 0.785, respectively. The classic MLR model is relatively easy to
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construct with the simplest type of parameters, and it can capture the global trend over an entire input
space. Its accuracy, however, is not satisfactory, which may not meet the requirements of medium-
and long-term runoff forecasting. The RBFNN model is capable of identifying complex nonlinear
relationships between input and output data, and its accuracy is satisfactory for runoff forecasting, but
there is a risk of over-fitting. The SVR model is also appropriate for reproducing the nonlinear problem,
which can provide a suitable mapping between input and output data in a higher-dimensionality
feature space to improve the forecasting accuracy. Its parameters need to be determined carefully due
to the fact that they significantly influence the accuracy of the SVR model. Considering the overall
characteristics of the above-mentioned models, the BMA-based multimodel significantly improves
predictive performance.
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4.3. High-Runoff Forecasting Analysis

Figure 5 displays the results of BMA-based multimodel forecasting along with the 90%, 95%, and
99% confidence intervals. The performance of BMA confidence interval is evaluated by coverage ratio
and interval width. As the confidence level gets higher, the corresponding confidence interval will
be wider. Coverage ratio is the ratio of the number of points, which ranges between the confidence
interval, to the number of total points. The larger the coverage ratio and the smaller the interval
width are, the better the BMA model performs. Figure 5 shows that most of the observed values are
within a 90% confidence interval. The coverage ratio can reach 80%, and the interval width is narrow
in general, but most of the high-runoff observations are outside of the confidence interval, and the
interval width is wider, which indicates the uncertainty of forecasting at high values is great.
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to observations.

A runoff of over 1700 m3/s was selected to study the forecasting ability of high runoff for different
models. The results are shown in Figure 6. The number of points used was 35, and the absolute
differences between observed values and predicted values of all the points for different models
were calculated. The minimal absolute differences for the BMA-based multimodel extended to 21 of
35 points, and the minimal absolute differences for the SVR, RBFNN, and MLR models extended to 5, 7,
and 1 of 35 points, respectively. The BMA model has the best ability to forecast high runoff compared
to all other models, the forecasting ability of the MLR model is the poorest, and the forecasting ability
of the RBFNN and SVR models was better than that of the MLR model.

Generally, the BMA-based multimodel predicted values that are lower than the observed values
when predicting high runoff. Since accurate prediction of extreme events would provide the most
economic, environmental, and societal benefits, further improvements in high-runoff prediction
are required.

There are significant differences between the observed values and the values predicted using all
models for September 1981, and all of the models failed to capture extreme runoff events (3500 m3/s).
The runoff in September 1981 was nearly two times greater than that for the same month in other
years. Continuous rainfall occurred in the watershed above Tangnaihai station from August to
September 1981, which resulted in serious flooding. As the major source of runoff, rainfall usually has
the most significant impact on runoff, in addition, runoff also has a close relationship with evaporation,
temperature, and other factors; although only the limited historical runoff time series available was
applied in the paper, more runoff data needs to be considered for medium- and long-term runoff
forecasting in the future.
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BMA-based multimodel.

Then another BMA-based multimodel was built for comparison based on only runoff time series.
In the application, the first nine months of monthly runoff was used as the input, and the 10th monthly
runoff as the output, details of validation samples were presented in Table 3.

Table 3. Input-output pairs of runoff (m3/s) for model-validation process (without climatic factors).

Sample Input (Runoff) Output (Runoff)

1 317 373 1010 2120 945 689 617 422 203 179
2 373 1010 2120 945 689 617 422 203 179 158
3 1010 2120 945 689 617 422 203 179 158 216
4 2120 945 689 617 422 203 179 158 216 384
5 945 689 617 422 203 179 158 216 384 460
6 689 617 422 203 179 158 216 384 460 1170

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
42 29 274 116 580 17 18 20 1152 9 969
43 47 274 99 596 16 21 19 591 11 958
44 47 274 125 595 16 22 19 1788 10 1043
45 43 305 195 595 15 22 19 733 7 1454
46 18 236 253 576 16 21 19 223 1 1016
47 37 176 279 543 18 20 21 33 −4 455
48 20 89 301 521 19 18 22 83 −11 273

This displays the comparison between predicted and observed runoff using the BMA-based
multimodel with and without climatic factors in Figure 7. Specifically, the R2 for BMA-based
multimodel, with climatic factors and without climatic factors, models were 0.945 and 0.884 during
model calibration, and 0.937 and 0.846 during model validation, respectively. It can be seen that the
BMA-based multimodel with climatic factors was generally superior to that without climatic factors
during model calibration and validation. Large-scale oceanic–atmospheric conditions and local-scale
climate indices have a direct or indirect influence on runoff variability in the source region of Yellow
River, and it certainly improves medium- and long-term runoff forecasting with the linkage to different
climatic factors.
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5. Conclusions

The Yellow River headwater region is a headstream of other major rivers in China, and water
resources are important for the surrounding area, so accurate runoff forecasting is of great significance
for rational development and utilization of water resources. The monthly runoff data from Tangnaihai
station in the Yellow River headwater region of China were analyzed as the case study. In this
paper, under the full consideration of climatic factors, MLR, RBFNN, and SVR models were built
for medium- and long-term runoff forecasting. The performance of the SVR model has changed
significantly with different parameters. Hence, the main parameters of the models should be selected
carefully. To further improve medium- and long-term runoff forecasting, a BMA-based multimodel
was developed by the weighted sum of these aforementioned three models, and the forecasting
results obtained using the BMA-based multimodel were compared to those obtained using the
MLR, RBFNN, and SVR models during model calibration and validation. The results showed that
the BMA-based multimodel obviously outperformed the RBFNN and MLR models during model
calibration and validation. The BMA-based multimodel improved forecasting accuracy in terms of the
standard statistical measures, and it also performed better for high-runoff forecasting than the other
models, and gave forecasting results under the 90%, 95%, and 99% confidence intervals, respectively.
In addition, the multimodel, with and without climatic factors, were built for comparison. However,
the values predicted by the BMA-based multimodel are generally lower than the observed values
when forecasting high runoff, and all of the models failed to capture extreme runoff events (3500 m3/s).
Since accurate prediction of extreme events would provide the most economic, environmental, and
societal benefit, further improvements in high-runoff prediction are required. Future research aimed at
improving the forecasting model will take into consideration about some new approaches, such as
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deep learning model to build the complex nonlinear relationship between runoff and precipitation,
temperature, and large-scale climate information.
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