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Abstract: This study focuses on the return period evaluation for design hyetographs, which is
usually estimated by adopting a univariate statistical approach. Joint Return Period (JRP) and
copula-based multivariate analysis are used in this work to better define T-year synthetic rainfall
patterns which can be used as input for design flood peak estimation by means of hydrological
simulation involving rainfall-runoff (RR) models. Specifically, a T-year Design Hyetograph (DH)
is assumed to be characterized by its peak H, at the chosen time resolution ∆t, and by the total
rainfall height W, cumulated on its critical duration dCrit, which has been a priori fixed. As stated
in technical literature, the choice of the expression for JRP depends on which event is deemed as
critical for the investigated system; the most important cases are: (i) all the variables must exceed a
certain magnitude to achieve critical conditions; or (ii) at least one variable must be greater than a
threshold; or (iii) critical conditions are induced by all the events with a joint Cumulative Density
Function (CDF) overcoming an assigned probability threshold. Once the expression for JRP was
chosen, the relationship among multivariate T-year design hyetographs and T-year design flood peak
was investigated for a basin located in Calabria region (southern Italy). Specifically, for the selected
case study, a summary diagram was obtained as final result, which allows the main characteristics
of T-year DHs to be estimated, considering both the univariate and the copula based multivariate
analysis, and the associated T-year design flood peaks obtained through the simulation with a
RR model.

Keywords: design hyetograph estimation; multivariate return period; copula function

1. Introduction

Many hydrological issues require the use of design rainfall models in order to evaluate the effects
of intense precipitation events over a basin or urban area. With this aim, the most adopted practice
is to generate Design Hyetographs (DHs), which are consistent with the rainfall time series of the
study area.

In general, a T-year DH is characterized by several variables: (i) the rainfall peak H, cumulated
on a time resolution ∆t; (ii) the critical duration dCrit; (iii) the total rainfall height W, cumulated on
dCrit; (iv) the hyetograph shape and in particular the peak position in the temporal pattern.

A common approach, often adopted by technicians, is represented by the univariate analysis:
H and W are evaluated from a T-year Amount-Duration-Frequency (ADF) curve, in which the dCrit to
be adopted can be estimated by analyzing historical flood events, or it can be assumed equal to the time
of concentration of the watershed [1,2] or, as a further alternative, it is set to the duration that leads to
maximum peak discharge after the application of a rainfall-runoff model. In general, most hydrological
analyses that are aimed at determining peak discharge for hazard or risk assessments, especially in
ungauged catchments, often require the estimation of catchment response time parameters as primary
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input, and large errors can be ascribed to errors in the estimation of these crucial characteristics [3].
One of the time parameters most frequently used to express catchment response time is the already
mentioned time of concentration. In acknowledging this, it is worthy to note that a universally accepted
working definition of this parameter is currently lacking and several definitions can be found in the
technical literature along with related estimation procedures [4–7]. In this paper, in accordance with
the following theoretical definitions often used in the technical literature [8], we intend the time of
concentration as the time from the end of rainfall excess to the time of the end of direct runoff.

However, all of the above listed quantities related to a DH are characterized by an intrinsic
variability, and as such a multivariate approach should be more suitable. For this reason, in this
paper the authors carried out a multivariate analysis by using copula functions [9], with the aim of
assessing the impact of different DHs in the estimation of design flood peak. Applications of copulas
in geosciences, and in particular for hydrological studies, are receiving increasing attention in scientific
and technical literature (see for example [10] and references herein). The main and well-known
advantage of using copula functions is constituted by the opportunity to split the analyses of marginal
distributions (which can be different from one variable to another) and of the dependence structure
among variables.

In this work a bivariate analysis is discussed: the critical duration dCrit is fixed equal to the time
of concentration of the chosen watershed, and the random variables in the bivariate analysis are the
rainfall peak H(cumulated on ∆t = 20 min) and the net volume Wn = W − H. The latter variable is
chosen to eliminate the apparent correlation between H and W [10]. The basin of Corace at Grascio
(located in Calabria region, southern Italy) was selected as case study. In this analysis, all the DHs are
assumed to have the rainfall peak H in correspondence of dCrit/2, while Wn is uniformly distributed
on all the remaining time intervals with a resolution ∆t = 20 min.

Another point that is crucial for the estimation of DHs is the definition of the Joint Return
Period (JRP) involving the considered random variables. In fact, different expressions can be obtained
depending on which event is deemed as critical for the investigated system [11,12]; the most important
cases are: (i) all the variables must exceed a certain magnitude to achieve critical conditions; or (ii) at
least one variable must be greater than a threshold; or (iii) critical conditions are induced by all the
events with a joint Cumulative Density Function (CDF) overcoming an assigned probability threshold.
Once the specific expression for JRP was chosen for the selected case study, the authors provided as a
final result a summary diagram, which allows for: (1) the identification of the main characteristics of
T-year DHs; and (2) the analysis of the relationship among T-year DHs and T-year design flood peaks,
obtained through a simple lumped Rainfall-Runoff (RR) model.

The paper is organized as follows: Section 2 provides a brief overview of copula functions suitable
for a multivariate analysis; Section 3 regards the definition of a bivariate return period, while the
selected study area is described in Section 4. Section 5 presents the main results and conclusions are
drawn in Section 6.

2. Overview of Copula Functions

Copula functions constitute an efficient tool for multivariate analysis: their use allows for the
analysis of global dependence among the variables, with marginal distributions studied separately
(i.e., each distribution can assume a different mathematical expression). In this paper, a brief overview
of 2D copula theory is provided. For further details, in particular about the extension to multivariate
cases, see Nelsen [9].

Let FH(h) and FWn(wn) be the marginal Cumulative Density Functions (CDFs) for H and Wn;
on the basis on Sklar’s theorem [13] the joint CDF can be written as:

FH, Wn(h, wn) = C[FH(h), FWn(wn)] = C(uH , uWn) (1)
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where UH = FH(h)and UWn = FWn(wn) are standard uniform random variables, and C is a 2D copula
function, characterized by the following properties:

• C is a mapping [0, 1] × [0, 1] → [0, 1]
• ∀ uH , uWn ∈ [0, 1], C(uH , 0) = C(0, uWn) = 0, C(uH , 1) = uH and C(1, uWn) = uWn

• ∀ u(1)
H , u(2)

H , u(1)
Wn

, u(2)
Wn
∈ [0, 1] such that u(1)

H ≤ u(2)
H and u(1)

Wn
≤ u(2)

Wn
: C

(
u(2)

H , u(2)
Wn

)
−

C
(

u(1)
H , u(2)

Wn

)
− C

(
u(2)

H , u(1)
Wn

)
+ C

(
u(1)

H , u(1)
Wn

)
≥ 0

For hydrological applications, Archimedean copula functions are mainly used, which are
defined as:

C(uH , uWn) = ϕ(−1)[ϕ(uH) + ϕ(uWn)] (2)

where ϕ(.) is the generator, a continuous function strictly decreasing and convex from I = [0, 1] to
[0, ϕ(0)]. In this work, two particular kinds of Archimedean copulas were considered:

Gumbel-Hougaard

C(uH , uWn) = e−[(− ln uH)ϑ+(− ln uWn )
ϑ ] 1/ϑ

(3)

with ϕ(t) = (− ln t)ϑ and ϑ ≥ 1, and
Frank Copula

C(uH , uWn) =
1

ln ϑ
· ln
[

1 +
(ϑuH − 1) · (ϑuWn − 1)

ϑ− 1

]
(4)

with ϕ(t) = − ln
[
(ϑt−1)

ϑ−1

]
and ϑ > 0.

In both expressions, the parameter ϑ is an indicator of the dependence between the variables.
In particular, in Equation (3) UH , UWn are independent for ϑ = 1 and positively correlated for

ϑ > 1, while in Equation (4) UH , UWn are independent for ϑ = 1, positively correlated for 0 < ϑ < 1,
and negatively correlated for ϑ > 1.

Evaluation of ϑ can be carried out by using the Canonical Maximum Likelihood (CML)
method [14–17]. After parameter estimation, the choice of the copula function that best fits the
sample can be made by considering the following C-measure, named as Kendall function [16,18,19]:

KC(t) = t− ϕ(t)
ϕ′(t) (5)

which represents the CDF of C(uH , uWn), i.e., KC(t) = P[C(uH , uWn) ≤ t].
Probability plots (comparing empirical and theoretical CDFs of a copula function) and Q-Q plots

(in which KC(t) is plotted against standard uniform quantiles U(0, 1)) can then be used to assess the
performance of the adopted copula.

3. Bivariate Return Period Definition

Under the hypothesis of stationary process herein considered, in technical literature the return
period T (expressed in years) is commonly calculated as:

T =
µ

P
(6)

where P represents the probability of observing realizations exceeding reference threshold values,
and µ (expressed in year) is the average inter-arrival time between two consecutive realizations.
When annual maxima are considered, µ is equal to 1 year. If a univariate analysis is carried out,
by considering, for example, the variable H, then Equation (6) becomes:

T =
1

P[H > h]
=

1
1− FH(h)

(7)
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and it is clear that the critical event [H > h] uniquely defines the denominator 1− FH(h).
Conversely, when a bivariate analysis is considered, the attention is focused on both variables,

in this case H and Wn, and the critical event can be defined in several ways [11,20–23]:

• [H > h ∪Wn > wn ], indicated as an OR event, for which the corresponding return period
TOR(h, wn) is:

TOR(h, wn) =
1

P[H > h ∪Wn > wn ]
=

1

1− FH, Wn(h, wn)
=

1

1− C(uH , uWn)
(8)

• [H > h ∩Wn > wn ], indicated as an AND event, for which the corresponding return period
TAND(h, wn) is:

TAND(h, wn) = 1
P[H>h ∩Wn>wn ]

= 1
1−FH(h)−FWn (wn)+FH, Wn (h, wn)

=

= 1
1−uH−uWn+C(uH , uWn)

(9)

• [H > h |Wn > wn ], indicated as a COND event, for which the corresponding return period
TCOND(h|wn) is:

TCOND(h|wn) =
1

P[H > h |Wn > wn]
=

1

(1− uH)[1− uH − uWn + C(uH , uWn)]
(10)

• [FH, Wn(h, wn) > p], indicated as a KEN event because the probability of this event can be
computed by using the Kendall function. The associated Kendall return period TKEN(h, wn) is:

TKEN(h, wn) =
1

P[FH, Wn(h, wn) > p]
=

1

1− P[FH, Wn(h, wn) ≤ p]
=

1

1− KC(p)
(11)

from which:

p = K−1
C

(
1− 1

TKEN(h, wn)

)
(12)

It can be demonstrated [2,18] for an assigned pair (h, wn) that:

TOR(h, wn) ≤ TKEN(h, wn) ≤ TAND(h, wn) ≤ TCOND(h|wn) (13)

As stated in Shiau [11] and Serinaldi [12], the choice for the expression of T depends on which
event is critical for the investigated system. If both variables must exceed specific values to achieve
critical conditions, then TAND(.) should be adopted. On the contrary, if it is enough that only one
variable is greater than a threshold, then TOR(.) is more suitable. If the exceedance of a variable is
conditioned on the exceedance of the other one, then TCOND(.) should be preferred. TKEN(.) should
be used when critical conditions are induced by all the events (h, wn) with a joint CDF greater than
an assigned threshold (see Figure 1 in Serinaldi [12] and Figure 2 in Gräler et al. [22] for further
graphical details).

Moreover, for a fixed expression written for the bivariate return period (Equations (8)–(11)),
it is clear that an infinite set of points (h, wn) belonging to a contour line on the OHWn coordinate
system is associated to a particular value of T. Although all the events on a contour line have the same
return period, some combinations (h, wn) can greatly differ in terms of their magnitudes; concerning
TOR(.) (adopted for the selected study area), at the edge of a contour line one variable tends to its
marginal value, while the other indefinitely increases, and the pairs (h, wn) differ also in terms of joint
probability density function (PDF) evaluated along the contour line [24]. In this context, users can
consider the most-likely design realization that maximizes the joint PDF [25], or an ensemble of design
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events along a portion of the contour line representing an assigned confidence band, in order to reflect
the variability within the set [24].
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Rain gauge Catanzaro 334 99 (daily rainfall); 25 (20-min rainfall) 

Stream gauge Grascio 84 35 (annual maximum) 

The catchment response has been modelled using a lumped and event-based RR model [26,32] 
composed by the Soil Conservation Service Curve Number (SCS-CN) method [33] for rainfall excess 
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means for estimating storm runoff from a given rainfall event, i.e., as an alternative to empirical or 
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its usage at the sub-daily time scale is controversial [35]. The major conflict is that the classic SCS-CN 
procedure allows for the estimation of cumulative rainfall excess (and thus cumulative losses) with 
rainstorms, but does not take time dimension into account in its equations. Several attempts have 
been made in order to overcome the conceptual limitations and inconsistencies of the original 
approach, for example, making explicit the concept of soil moisture accounting in a such a manner 
that is more suited for continuous simulations of rainfall-runoff processes [36,37] or proposing a 
mixed approach like the CN4GA, which aims to include the event scale correct information from the 
SCS-CN into the Green-Ampt infiltration equation [38]. Nevertheless, the SCS-CN method is 
currently indicated by the River Basin Authority of Calabria region as a part of the procedure for 
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Figure 2. EV1 probability plot of 20-min annual maxima H at basin scale: comparison between observed
(estimated by using the technique of Voronoi polygons) and generated series for Corace at Grascio.
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4. Data and Materials

The case study is the basin of the Corace River at Grascio, located in Calabria region (southern Italy,
Figure 1). The watershed area is 177.34 km2, its mean elevation is 822 m above sea level, the length of
the longest drainage path is 43.84 km, and the mean annual precipitation is 1173.46 mm. The gauging
network (Table 1) comprises five rain gauges (Tiriolo, Albi, Taverna-Ciricilla, Parenti, and Catanzaro)
and one stream gauge (Grascio). The authors considered the time series of daily and 20-min rainfall
height, annual maximum peak discharges, which are available for the periods 1916–2016, 1990–2016,
and 1925–1970, respectively. The time series of rainfall data were also used to reconstruct the sample
sequences of the volume W associated to each 20-min rainfall annual maximum. All the sample
sizes are indicated in Table 1. The time series of the average daily and 20-min rainfall data over the
basin, which are of interest for application, were obtained by using the technique of Voronoi polygons.
Then, the two-stage rainfall generator described in Biondi and De Luca [26] was used in order to obtain
a 500-year time series of 20-min rainfall height. In detail, as the size of 20-min data is usually shorter
than the size of daily data, firstly a daily rainfall generator, whose parameters are estimated on the
longer daily sequence, is used and then a downscaling scheme, developed for southern Italy [27] and
calibrated on shorter fine-scale records, is applied in order to disaggregate the generated daily data
into 20-min rainfall values. From each generated year of data, the corresponding annual maxima for H
and W were computed: W was estimated as the maximum aggregated rainfall (comprising H) along
the moving window of duration dCrit, which was set equal to the time of concentration of the basin,
7.33 hours. This value was taken from the VAPI (VAlutazione delle PIene, Italian acronym of Flood
Estimation) report for the Calabria region [28], in which the times of concentration for some basins,
including the Corace river, were derived from available rainfall-runoff events data set. Then Wn was
derived as Wn = W − H.

Table 1. Station network referred to Corace at Grascio.

Station Name Altitude
(m above Sea Level) Sample Size (Years)

Rain gauge Tiriolo 690 74 (daily rainfall); 25 (20-min rainfall)
Rain gauge Albi 710 95 (daily rainfall); 14 (20-min rainfall)
Rain gauge Taverna-Ciricilla 1270 14 (daily rainfall); 14 (20-min rainfall)
Rain gauge Parenti 830 90 (daily rainfall); 13 (20-min rainfall)
Rain gauge Catanzaro 334 99 (daily rainfall); 25 (20-min rainfall)

Stream gauge Grascio 84 35 (annual maximum)

Many papers have highlighted the importance of rainfall scenarios with a high peak
(and consequently have used H) in order to obtain the maximum discharge. As an example,
Alfieri et al. [29] focused on the application of five different design hyetographs: with an assigned
Instantaneous Unit Hydrograph (IUH), the maximum discharge was obtained with the well-known
Chicago hyetograph [2]. Moreover, by considering the so-called rational method [30], which is a
worldwide procedure for flood design, a Rectangular Design Hyetograph (RDH) is usually adopted:
the scenario with a duration d1 and a rainfall intensity I1 derived from an Intensity-Duration-Frequency
(IDF) curve provides a discharge greater than that which is estimated by using a RDH with a duration
d2 (with d2 > d1) and I2 derived from an IDF curve (with I2 < I1), and it is well-known that the total
rainfall volume W1 is less than W2 [29,31]. Consequently, the choice of focusing attention on annual
maxima H and then selecting W comprising H appears more suitable in order to obtain the maximum
discharge, with respect to considering annual maxima of W and then evaluating the associated peaks
(which could not be equal to H).

The catchment response has been modelled using a lumped and event-based RR model [26,32]
composed by the Soil Conservation Service Curve Number (SCS-CN) method [33] for rainfall excess
estimation, and by Nash’s model [34] for runoff estimation at basin outlet. Although the SCS-CN
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method is a popular (due its relative simplicity and its reliance on a limited number of parameters,
resulting in a robust tool for those catchments that are partially or poorly gauged) and ubiquitous
means for estimating storm runoff from a given rainfall event, i.e., as an alternative to empirical or
physically-based infiltration models like Green-Ampt or Horton’s equations, it should be noted that its
usage at the sub-daily time scale is controversial [35]. The major conflict is that the classic SCS-CN
procedure allows for the estimation of cumulative rainfall excess (and thus cumulative losses) with
rainstorms, but does not take time dimension into account in its equations. Several attempts have been
made in order to overcome the conceptual limitations and inconsistencies of the original approach,
for example, making explicit the concept of soil moisture accounting in a such a manner that is more
suited for continuous simulations of rainfall-runoff processes [36,37] or proposing a mixed approach
like the CN4GA, which aims to include the event scale correct information from the SCS-CN into the
Green-Ampt infiltration equation [38]. Nevertheless, the SCS-CN method is currently indicated by the
River Basin Authority of Calabria region as a part of the procedure for design flood estimation within
the study region and thus was used in the following sections of the paper.

5. Results and Discussion

Figure 2 shows the good comparison (on EV1 probabilistic plot) between the frequency
distributions of observed samples and a generated series of spatially averaged values of 20-min
annual maxima H. Figure 3 illustrates empirical ADF values and theoretical ADF curves, both obtained
from the generated 500 years of synthetic data, for return periods T equal to 50, 100, and 200 years.
In Figure 3, Rd,T is the rainfall height relative to a duration d and a return period T. As regards the
theoretical expression of ADF curves, a power formula was used [26], which is commonly adopted
in Italy.
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Focusing on the marginal CDFs FH(h) and FWn(wn), the TCEV (Two Component Extreme
Value, [39]) and the Lognormal distributions were tested. The fitting of the empirical CDFs, resulting
from 500-year synthetic data, is reported in Figures 4 and 5 on EV1 and Lognormal probabilistic plot,
respectively. It is clear the TCEV reproduces better than Lognormal distribution the empirical CDF for
both H and Wn, and thus it was chosen for bothFH(h) and FWn(wn).
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Figure 5. Lognormal probabilistic plot: comparison between empirical CDF and Lognormal
distribution for both H (left) and Wn (right).

Concerning the choice of copula function, Gumbel expression (Equation (3)) provided the best
results. From application of the CML method, ϑ = 1.643 was obtained; Figure 6 highlights the good
performance of Gumbel copula, in terms of Kendall function KC(-), on probabilistic and Q-Q plots.
Moreover, Figures 7 and 8 show the scatter plots of empirical pairs (derived from 500-year synthetic
data) with 10,000 pairs generated with the Monte Carlo method by the assumed bivariate distribution,
in terms of marginal CDFs and random variables, respectively.
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Figure 7. Comparison among pairs of CDF (FWn (wn), FH(h)) derived from 500-year synthetic data,
and 10,000 pairs of CDF generated with the Monte Carlo method by the assumed bivariate distribution.

For the investigated basin, a statistical analysis of the sample annual maximum peak discharges
provided the following quantiles for the return periods T = 50, 100, and 200 years: Q50 = 523 m3/s,
Q100 = 629 m3/s, and Q200 = 735 m3/s.

As a final step of this study, the RR model, introduced in Section 4, was calibrated with
the available time series of rainfall and discharge data according to a procedure placed in the
context of Bayesian inference described in Biondi and De Luca [32]. Specifically, the assessment
of posterior distributions of model parameters were derived on the basis of the closeness of simulated
hydrological signatures obtained with different parameter sets to those derived from actual at-site
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observations. The hydrological signatures considered to restrict hydrological model parameters are
the first three L-moments of annual streamflow maxima; the best fitting set of parameters is considered
in the following.Water 2017, 9, 673 10 of 13 
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Figure 8. Comparison among pairs of (wn, h) derived from 500-year synthetic data, and 10,000 pairs
of (wn, h) generated with the Monte Carlo method by the assumed bivariate distribution.

Through the RR model, it was possible to determine all the pairs (wn, h) which provide the flood
quantiles Q50, Q100, and Q200. For each QT, an envelope curve was obtained and compared with the
contour lines associated to the bivariate return periods TOR = 50, 100, and 200 years, and with the pairs
(wn, h) related to the classical univariate approach (Figure 9).

Water 2017, 9, 673 10 of 13 

 

 
Figure 8. Comparison among pairs of  hwn ,  derived from 500-year synthetic data, and 10,000 pairs 
of  hwn ,  generated with the Monte Carlo method by the assumed bivariate distribution. 

Through the RR model, it was possible to determine all the pairs  hwn ,  which provide the 
flood quantiles Q50, Q100, and Q200. For each QT, an envelope curve was obtained and compared with 
the contour lines associated to the bivariate return periods ORT  = 50, 100, and 200 years, and with the 
pairs  hwn , related to the classical univariate approach (Figure 9). 

 
Figure 9. Comparison between univariate (square boxes) and bivariate analysis (solid lines) for the 
definition of the design hyetograph. The dotted lines correspond to all the pairs  hwn ,  providing 

quantiles Q50, Q100, and Q200 of discharge when fed into the adopted rainfall-runoff (RR) model. 

From the analysis of the obtained results, it is evident that with the hypothesis of Critd  equal to 
the time of concentration of the basin and with the adopted shape for the hyetograph: 

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300

H 
(m

m
)

Wn (mm)

simulated from copula

from 500 years

30

40

50

60

70

100 150 200 250

H 
(m

m
)

Wn (mm)

simulated from copula

from 500 years

T_OR = 50 years

T_OR = 100 years

T_OR = 200 years

univariate T = 50 years

univariate T = 100 years

univariate T = 200 years

Q50

Q100

Q200

Figure 9. Comparison between univariate (square boxes) and bivariate analysis (solid lines) for the
definition of the design hyetograph. The dotted lines correspond to all the pairs (wn, h) providing
quantiles Q50, Q100, and Q200 of discharge when fed into the adopted rainfall-runoff (RR) model.
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From the analysis of the obtained results, it is evident that with the hypothesis of dCrit equal to
the time of concentration of the basin and with the adopted shape for the hyetograph:

• the design hyetograph from the univariate analysis (based on the ADF curves represented in
Figure 3) should correspond to a return period greater than 200 years in order to get, by using the
chosen RR model, a peak discharge equal to Q50;

• the bivariate analysis allows for obtaining Q50, Q100, and Q200 with design hyetographs whose
pairs (wn, h) can be associated to return periods TOR equal to the T of the peak discharges and,
in any case, considerably less than those obtained from the univariate analysis;

• on the basis of Equation (13), the adoption of other forms for JRP (TAND, TKEN, TCOND) would
imply T values for the DH greater than those obtained with TOR.

The diagram in Figure 9 clearly constitutes a powerful tool that is aimed at determining the
relationship between T-year DHs and the associated T-year design flood peaks for an assigned basin.
Other shapes for the hyetograph (preserving the peak at dCrit/2) were also tested, but for the selected
case study the obtained results were not dissimilar to the one represented in Figure 9.

6. Conclusions

The paper highlighted the importance of deriving DHs using multivariate analysis, which is in
general more informative for design purposes than a univariate one when hydrological events involve
correlated random variables.

In this topic, copula functions constitute an efficient tool, because they allow for marginal
distributions to be studied separately (i.e., each distribution can assume a different mathematical
expression) and then for their global dependence to be analyzed.

However, the choice of the most appropriate JRP depends on which event is critical for the
investigated system (all the variables must exceed a certain magnitude, at least one variable must
be greater than a threshold, and so on). Once the expression for JRP is fixed (TOR in this study),
an ensemble of infinite critical combinations is related to a particular T value. For the selected basin,
a very useful diagram was obtained as a result, which allows the relationship between the T-year DHs
and the associated T-year design flood peaks to be evaluated for the adopted RR model.

The main outcomes of the study can be summarized as follows:

- as expected, the common univariate approach, based on the ADF curves, implies very high
T-values for the DHs, compared with the return period of the peak discharges, thus confirming
the poor consistency of the classical iso-frequency assumption between rainfall and peak flow;

- the bivariate analysis conducted on the pairs of random variables (rainfall peak, net volume),
while the critical duration is kept constant, allows for the desired T-year flood quantile to be
obtained with at least one pair of the design hyetograph characteristics associated to the same
return period, and, in any case, significantly less than those obtained from the univariate analysis.
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