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Abstract: The Mun River Basin is one of Thailand’s major grain-producing areas, but the production
is insufficient, and most of the cultivated lands are rain-fed and always unused in the dry season. All
this makes it necessary to determine the status of soil nutrients and soil quality in the dry season
to improve soil conditions, which will be useful for cultivation in the farming period. The aim of
this study was to construct a soil-quality assessment based on soil samples, and in the process the
minimum data set theory was introduced to screen the assessment indicators. The geographically
weighted regression method was used to complete the spatial interpolation process of indicators, and
the fuzzy logic model was constructed to evaluate the soil quality. The results showed that the spatial
distributions of soil quality and indicators were similar. The soil quality was the best in the upstream
while poor in the downstream, and the dry fields in the west and the forests in the east of the basin
were better than other areas nearby. However; the soil qualities of paddy fields in the middle and
east of the basin were poor due to the lack of soil nutrient supply when the fields were unused

Keywords: Mun River; soil quality; GWR; fuzzy logic model; dry season

1. Introduction

Soil is an indispensable resource and the basis of most natural ecological and social
environments [1]. Soil quality has a great influence on the vegetation that grows in it,
especially for crops, which make it important to maintain soil attributions for food security
and sustainable development [2]. There is no definition of soil quality that is universally
accepted so far, but most scholars believe that soil productivity accounts for a great portion
of soil quality [3,4].

There has been much research on soil quality, whose objects include forests [5], grass-
lands, farmland, and other types [6–8]. The research methods have also developed from
qualitative expressions in the past to statistics and model construction based on quantita-
tive data [9]; for example, commonly used methods include principal component analysis,
analytic hierarchy process, regression analysis, fuzzy analysis, and artificial neural net-
works [10–14]. Comparing the processes, methods, and results of previous research, it is
found that there are still some problems and defects: first, there is a lot of redundancy
among the indicators selected in the evaluation process, and there is a lack of a screening
mechanism [15]. Second, most of the research is based on the data of sampling points,
and the research results on the point scale are used to replace the entire area; some of
the methods used in the spatial expansion of the research are mostly geostatistical meth-
ods [16,17], which are very dependent on the number of sampling points, otherwise the
accuracy of the result is difficult to guarantee. Additionally, the determination of index
thresholds and the division of the quantitative classification range of research results in
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most evaluation processes being unreasonable. Most of the indicators are standardized
and graded directly according to some rules [18], and these grades are directly used for
evaluation [19,20]. This strict classification method is very questionable, and it is necessary
to make some improvements.

The Mun River Basin is in the northeast Thailand and occupies a large part of the
Nakhon Ratchasima Plateau. It is one of Thailand’s major grain-producing areas, but the
average yield is low. This area is divided into dry season and rainy season because of
the tropical monsoon climate [21], and rice is grown on most farmland during the rainy
season, but the farmland is unused in dry season [22]. The soil-quality research in tropical
regions is significantly less than in other climate regions, let alone the area with obvious
tropical monsoon climate such as the Mun River Basin, and there has been no research on
soil quality in the dry season in the Mun River Basin until now. Thus, it is necessary to
carry out relevant research in this area, which will not only provide scientific reference for
identifying tropical soil characteristics, but also provide practical basis for regional land
improvement and agricultural development.

Based on the above description of the evaluation method and process, this study
aims to evaluate the soil quality in the dry season in the Mun River Basin, and introduces
the minimum data theory [23–25], geographic weighted regression model [26] and fuzzy
logic model [27] to process and analyze the process of the indicator selection, indicator
spatialization, and comprehensive evaluation respectively. The results of the study can
provide basic information for soil improvement in the rainy season and will hopefully be
helpful in improving the soil in the study area, especially for the rainy season when the
crops are growing.

2. Data and Materials
2.1. Study Area

The Mun River Basin is in northeast Thailand and includes 10 provinces. The Mun
River is a tributary of the Mekong River, and the basin is approximately in the range of
14◦07′–16◦23′ N and 101◦16′–105◦38′ E with an area of 70,435.94 km2. The terrain generally
shows a trend of higher west and lower east with the elevation in the range of 17–1300 m,
and the mountains are mainly distributed on the southern boundary of the basin (Figure 1).
It has a tropical monsoon climate, and the dry season is from mid-October to the end of
April of the next year with a lower precipitation than rainy season. The soil texture types of
the basin mainly include light clay, loam, sandy clay loam, and sandy loam, the proportions
are about 18.70%, 17.97%, 10.90% and 52.44% respectively, and sandy loam is the main
soil. Approximately 78% of the study area is farmland, and 75% of which are paddy fields,
and approximately 90% of the paddy fields are rain-fed, which makes many arable lands
unused during the dry season.

2.2. Soil Sampling

The surface soil was used for the quality assessment, and the samples were collected
from 19 February 2017, to 1 March 2017. Considering that there are few land-use types and
soil types in the Mun River Basin, and the spatial distribution of each land-use type also
has a certain pattern, most of which are farmland, and forests are mainly distributed in the
southern region, moreover, combine the terrain conditions of the basin, road distribution,
and other factors, the research laid out a 10 km × 10 km grid throughout the study area for
sampling. However, some sample points were moved to adjacent positions because of the
accessibility or operability limitations, and some locations are not even allowed to enter,
which resulted in the spatial inhomogeneity of final samples. The soil layer of 0–20 cm
under the surface was collected, and each soil sample was placed in a sealed bag. The
surrounding characteristics of each sampling point were recorded, including latitude and
longitude, and a total of 67 samples were collected. Some samples outside the study area
were collected because of the accessibility limitations (Figure 1). All samples were dried
naturally or in a dryer, ground, and sieved before analyses in the laboratory.
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According to household surveys, data inquiries and consultations with native experts
about the soil properties, 8 indicators in advance were chosen for the soil-quality assess-
ment, which included soil pH, total nitrogen (TN), available phosphorus (AP), soil particle
composition (clay, silt and sand), soil organic matter (SOM) and soil electronic conductivity
(EC). The soil particle composition was detected using a laser particle analyzer, and the
SOM and TN were measured by Walkley-Black method and Kjeldahl digestion method
respectively [28,29], while AP was obtained through extracting samples with a 0.5 mol/L
sodium bicarbonate solution and detecting with a spectrophotometer [30]. Soil pH was
measured using the electrometric method on a soil/water suspension, and EC was detected
by a conductivity meter in the field.

2.3. Auxiliary Data

The auxiliary data is mainly used in the processes of evaluation indicators screening,
indicator interpolation, and comprehensive evaluation, which mainly included elevation,
topography, distance from river, land-use type, soil type, normalized differential vegetation
index (NDVI), environmental vegetation index (EVI), modified soil adjusted vegetation
index (MSAVI) and meteorological data. The land-use status of 2017 was generated by
interpreting remote sensing images based on the land-use type of 2016, which was obtained
from the Land Development Department of Thailand, and from which the distance from
river was extracted through distance model of ArcGIS software. The spatial analyst
tools were used to obtain the elevation and topography indexes based on the digital
elevation model (DEM), which was downloaded from the Geospatial Data Cloud (http:
//www.gscloud.cn/). The NDVI, EVI, and MSAVI were generated from the remote sensing
images, or could be downloaded from the United States Geological Survey (USGS)/Earth
Resources Observation and Science (EROS) Center. The soil type, meteorological data,
and other data were obtained from different government departments of Thailand. The
projection systems of all spatial datasets were converted to the WGS84-based Transverse
Mercator orthographic projection coordinate system, and the spatial resolution was set to
250 m × 250 m. Moreover, the questionnaire surveys about crop fertilization and yield
were conducted aimed to analyze the soil conditions properly.

http://www.gscloud.cn/
http://www.gscloud.cn/
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3. Methods
3.1. Geographically Weighted Regression

Geographically Weighted Regression (GWR) was selected for the spatial interpolation,
and it is similar to the traditional multiple linear regression, but the difference is that the
sample locations are considered in the model [31].

y = β0 +
m

∑
j=1

β jxj

where y is the dependent variable, xj represents independent variable values, β0 is an inter-
cept, β j indicates regression coefficients of different independent variables. The coefficient
is unique in in each location, which can be obtained by weighted least squares approach:

ˆ
β =

[
XTWX

]−1
XTWY

where Y is a (n× 1) dependent data vector, n is the number of observation data for the
location to be calculated, X is a [n× (m× 1)] independent variable matrix, one column of
which is intercepts, while W is a spatially weighted diagonal matrix:

Wij = e−0.5(dij/r)2

where Wij is the weight of the observed data at location j for determining the dependent
variable at location i and r is a bandwidth. The equation indicates that the weight of
the observed data is a continuous distance attenuation function, and a modified Akaike
information criterion (AICc) is introduced to obtain a reasonable r, which can reduce
the complexity of the model and instances of under-smoothing [32]. All soil samples
were divided for training (50 samples) and verification (17 samples), and the elevation,
topography, distance from river, NDVI, EVI, MSAVI and meteorological data were used as
auxiliary data in the interpolation process [26].

3.2. Fuzzy Logic Model

The fuzzy membership of an indicator refers to the possibility that the indicator be-
longs to a certain grade, and a fuzzy function is introduced to obtain the fuzzy membership
of the indicator and then which specific grade the indicator belongs to is determined
according to some principles [20,33]. The common fuzzy membership function is a bell-
shaped function:

MFxi =
[
1/
(

1 + ((xi − b)/d)2
)]

where 0 < MFxi ≤ 1, represents the fuzzy membership of indicator i; xi is the specific
value of i and d is the transition width of i, while the d is always set to be the difference
of indicator values when the membership is 0.5 and 1 [14,33], and b is the indicator value
when the membership is 1 (Figure 2).

According to the description above, it is an important process to set a suitable range
for each indicator, which can be used to gain the membership value through functions
while the indicator value belongs to the range, otherwise, it will be set to be 0 or 1. The
suitable ranges of the indicators are summarized through consulting previous studies,
documentations, standards, and specifications. The integrated weighting method is used
to get the final evaluation:

MF =
n

∑
i=1

MFxi wi

where wi is the weight of different indicator, which can be obtained by the analytic hierarchy
process. Additionally, some indicators cannot be used for the soil-quality evaluation
because of the redundancy among the primary indicators, and the indicator screening
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process is necessary. The minimum dataset (MDS) theory was selected in the study, in which
a principal component analysis (PCA) is the main method used for the MDS establishing,
and the indicators with high factor loadings in the components with eigenvalues ≥ 1 were
selected to reflect the soil quality, and the land-use types and soil types were used as the
auxiliary data in the screening process [12].
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Figure 2. The fuzzy logic models. (A) and (B) represent the positive and negative indicators, respectively.

4. Results
4.1. Descriptive Statistics

First, outlier tests were conducted on the indicators, and the values that exceeded the
threshold range (u− 3s, u + 3s) (where u and s are the mean and standard deviation of the
indicator value respectively) would be regarded as outliers, which would be set to the maxi-
mum or minimum of the remaining values. Table 1 was the descriptive statistics of the data
after removing the outliers and Table 2 showed the correlation among different indicators.

Table 1. Basic statistics of the indicators.

Minimum Maximum Mean SD Skewness Kurtosis K-S Test CV

pH 4.60 8.00 6.02 0.71 0.81 0.06 0.04 11.84
EC (us/cm) 21.67 732.00 182.73 167.67 1.72 2.48 0.01 91.76

Clay (%) 2.88 46.46 14.49 9.86 1.11 0.46 0.01 68.07
Sand (%) 47.10 96.54 78.47 12.33 −0.60 −0.54 0.16 15.71
Silt (%) 0.00 15.95 7.04 4.71 0.26 −1.19 0.22 66.88

SOM (%) 0.10 3.56 1.26 0.81 1.21 1.18 0.09 64.02
AP (mg/kg) 24.93 284.70 64.93 64.82 2.65 6.35 0.00 99.84

TN (%) 0.01 0.15 0.06 0.03 1.30 1.55 0.13 54.69

SD: Standard deviation; CV: Coefficient of variation.

Table 1 indicated that all indicators showed moderate variation, as all the CV values
were less than 100, but the AP was so high that it would be strong variation. Table 2
showed that the correlation coefficients between most indicators were significant at 0.01
and 0.05 levels. There was a high correlation between SOM and TN, and the physical
properties of soil had a serious impact on SOM and TN as the correlation coefficients
between them were highly significant at 0.01 level.
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Table 2. Correlation coefficients between indicators.

SOM AP TN Clay Sand Silt pH EC

SOM 1
AP 0.23 1
TN 0.89 ** 0.25 * 1

Clay 0.62 ** −0.01 0.57 ** 1
Sand −0.60 ** 0.05 −0.55 ** −0.93 ** 1
Silt 0.25 * −0.09 0.25 * 0.35 ** −0.66 ** 1
pH 0.12 0.21 0.14 0.16 −0.07 −0.16 1
EC 0.36 ** 0.21 0.44 ** 0.22 −0.20 0.05 0.27 * 1

**, *: Correlation is significant at the 0.01 level and 0.05 level, respectively.

4.2. Interpolation of Soil Indicators

According to the MDS model process, this research had screened out four indicators
for soil-quality assessment, including TN, AP, SOM, and soil pH, while the seven auxiliary
indicators including elevation, terrain curvature, topographic index, distance to rivers,
NDVI, EVI, and MSAVI that were preselected for GWR construction were not all used as
the multicollinearity among other variables exceeded the tolerance of the model. Moreover,
there were no auxiliary indicators selected for the interpolation of pH, and the kriging
method was used to obtain the spatial distribution of pH.

Figure 3 showed that all indicators had certain spatial distribution characteristics
and their prediction accuracies were reasonable, with mean error of each indicator was
close to 0 and root mean square error of each indicator did not exceed 0.5. The SOM
had an obvious ladder-like distribution in space, with its content gradually declined from
upstream to downstream of the river, and the mountainous area in the south edge had a
higher content than the internal flat area of the basin. The areas near the Mun River and
its tributaries displayed different spatial characteristics of SOM content in upstream and
downstream areas; it was lower along the rivers than the other regions upstream, while
it was higher along the rivers than other regions downstream. The content of TN was
very low throughout the basin, and its spatial distribution was similar to that of SOM,
which declined from west to east gradually, and the highest content was concentrated in
the mountains of the southwest, but it was lower in the south edge of the basin. Compared
to SOM, the contents along the rivers were not very different from other areas near the
rivers. The AP, of which the content was higher over the basin than the other indicators,
displayed high values in upstream and downstream areas and low values in the middle
of the stream; it was at the lowest level in the southwest especially. The content of AP
along the rivers in downstream areas was higher than in the surrounding areas. The soil
was mainly acidic over the basin according to the spatial distribution of pH, whose value
declined from the periphery to the inside of the basin, and the lowest value was about 5.3,
which was strongly acidic soil.

Furtherly, the land use (Figure 4) was used for analysis, overlaid with the spatial
distribution of assessment indicators, and the mean of the indicators in different land-use
type are shown in Table 3:
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Table 3. The statistics of the indicators in different land-use type.

Land-Use Type Area Proportion
(%) SOM (%) TN (%) AP (mg/kg) pH

Farmland 72.125 1.181 0.060 72.503 6.058
Forest 13.076 1.475 0.069 70.202 6.572

Grassland 3.422 1.236 0.062 77.452 6.236
Wetland 4.059 1.147 0.059 71.954 5.983

Garden plot 0.825 1.477 0.073 88.948 6.473
Others 0.430 1.115 0.057 66.917 6.274

Residence 6.062 1.204 0.061 72.478 6.074

Figure 4 and Table 3 show that the main land-use types are farmland, followed by
the forest, and their total area proportion exceeded 85%. From the figure, we could also
find that the forest was mainly distributed in the southern part of the basin, where there
were many mountains and the terrain is too steep to be used as farmland. The contents of
SOM and TN were plenty in the forest, and its soil did not show strong acidity or alkalinity,
most of which are neutral according to the measurement of soil pH. However, the content
of AP in the forest was lowest than that in other land-use types. the soil condition of the
farmland was not very good because the content of SOM and TN was very low, and the
soil was strongly acidic. In addition, the soil condition value of all indicators in paddy and
dry fields had large differences. The mean values of SOM, TN, AP, and pH in the dry fields
were 1.433, 0.074, 83.491 and 6.424, and they were 1.115, 0.057, 68.296 and 5.957 in paddy
field, respectively.

4.3. Result of Soil-Quality Assessment

The suitable ranges of all indicators selected for the assessment were determined
through summarizing the research results, expert opinions, standards, and literature [34,35].
The parameter b and d were obtained for the fuzzy logic function (Table 4), and then the
membership of the four indicators were generated. The pH had a double trend, and it was
positive when its value was less than 7, on the contrary it was negative.

Table 4. The parameters of the fuzzy logic function.

Indicator Range b d Tendency

TN 0.01–0.075 0.075 0.025 Positive
AP 20–120 120 50 Positive
pH 5.5–7 7 1 Positive
pH 7–8.5 7 1 Negative

SOM 0.6–1.5 1.5 0.5 Positive

The indicator weight was obtained based on the communality of each indicator
generated in the MDS construction process, and the soil-quality assessment result was
generated through integrated weighting method (Table 4). The result was divided into six
grades (I–VI) according to the natural breakpoint method, where the ranges were ≤0.49,
0.49–0.56, 0.56–0.65, 0.65–0.76, 0.76–0.88 and ≥0.88, and grade VI represented the best soil
quality. The result is shown in Figure 5.

Figure 5 showed that the best soil quality was distributed in the upstream area
of the basin and the soil quality were bad in most of the downstream, but it showed
a different situation in the southeast edge and some areas along the rivers, where it
was mainly in grade II in the middle of the basin. The statistics showed that grades II,
III, and IV were the most widely distributed, with areas of 19,571.13 km2, 14,413.06 km2

and 10,478.63 km2, respectively, and grades I, and VI were the smallest, with areas of
8863.25 km2 and 7974.19 km2, which were distributed in the east and west of the basin,
respectively. Grade V was mainly distributed in the upstream, and its area was about
9135.69 km2, especially in the southeast mountains of the study area (Table 5). The soil
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quality of farmland and forest is better with their mean values of soil quality of 0.63 and
0.72, which belonged to grades III and IV, respectively.
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farmland was in bad condition and some optimization policies should be carried out to 
improve the land, fortunately, about 35% of farmland distributed in high grades, which 
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Figure 5. Assessment result of soil quality in the dry season.

Table 5. The area of different land-use type in different soil-quality grade.

Land-Use Type

Grade
I II III IV V VI Total

Farmland 7019.88 15,631.63 10,095.18 7216.27 5361.92 5477.20 50,802.08

Forest 457.05 1186.60 1939.27 1680.03 2783.37 1164.23 9210.55

Grassland 269.63 598.27 591.99 359.79 204.06 386.92 2410.66

Wetland 574.97 675.62 691.34 439.14 222.46 255.75 2859.27

Garden plot 21.42 78.39 98.72 102.26 79.24 200.84 580.87

Others 66.31 71.41 70.95 51.87 24.20 18.27 303.01

Residence 453.99 1329.19 925.61 629.27 460.45 470.98 4269.49

Total 8863.25 19,571.13 14,413.06 10,478.63 9135.69 7974.19 70,435.94

Table 5 showed the areas of different land-use type in different grade, and we could
find that most farmland was in grade II and III, which indicated that the soil quality of
farmland was in bad condition and some optimization policies should be carried out to
improve the land, fortunately, about 35% of farmland distributed in high grades, which
were mainly distributed in the western areas of the basin according to Figure 5. The dry
fields were in higher grades than paddy fields, and approximately 77% of dry fields were
in grade IV, V, and VI, while approximately 76% of paddy fields were in grades I, II, and
III. The forest had better soil quality than farmland, as most forests were in high grades,
which were also mainly distributed in the upstream areas. Additionally, the elevation was
divided into five levels (<170 m, 170–240 m, 240–370 m, 370–580 m and >580 m) according
to the natural breakpoint method and used to calculate the mean value of soil-quality
membership. The result showed that the higher the elevation, the better the soil quality.
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5. Discussion

The verification of the study results was not constructed because of the lack of related
studies, but we could get a general judgment according to the spatial similarity between
the indicators and soil quality based on that the spatial accuracy of all indicators had been
confirmed. The heavy weights of SOM and TN in the assessment process resulted in the
spatial distribution of soil quality being more similar to that of SOM and TN. Additionally,
the AP mainly influenced the southwest of the basin, but the low-grade soil quality in
the middle of the basin was mainly caused by soil pH. From the above, we thought the
assessment result was credible and reasonable.

The soil quality of the basin showed some obvious regularity in space and different
land-use type. First, most forests were undisturbed, which made the soil nutrients accu-
mulate through the decomposition of dead branches and leaves year by year, and which
furtherly led to rich SOM and TN. The abundance of SOM limited the conversion of AP,
which, coupled with the impact of rain, made AP less abundant in the forest. Secondly, the
soil quality in farmland was poor because most farmland in the dry season was unused.
The soil was dry, and there was not a soil nutrient supply, as the crop residues could not be
decomposed. However, there were some dry fields in the upstream where the terrain was
very undulating that were not suitable for paddy fields, so artificial fertilization activities
would increase soil quality, and the assessment result also showed that the soil-quality
value of the dry field was obviously higher than that of paddy fields. Thirdly, the western
part of the basin had a complex topography and was the main forest distribution area,
which led to the better soil quality than other areas, while the terrain was gentle in the
central and eastern part of the basin, and the main land-use type was paddy field there,
but it was unused in dry season, and all above made the soil quality poor. However, the
areas near the rivers were still available for cultivation because of fertilization played an
important role in improving the soil quality.

The assessment result was reasonable as the spatial regularity was consistent with
questionnaire surveys, but there still were some insufficiencies. First, the number of
sample points was insufficient, and the samples were not distributed evenly in the study
area, which would make the assessment process imprecise and lead to the absence of
spatial details, especially the number of samples were very small in the east of the basin.
Secondly, the number of assessment indicators in this study were fewer than other studies
on soil-quality assessment, mover over, there were no biological indicators because of the
restrictions of experimental conditions. We will continue our studies in the Mun River
Basin, and we will do our best to solve these problems in the near future.

6. Conclusions

The soil nutrient indicators of the Mun River Basin were regularly distributed in
space. The contents of SOM and TN were very low in the basin, but they had similar
spatial distributions rules, with higher values in the west of the basin than other areas,
and their contents were high in mountainous forests and dry fields but low in the paddy
fields of the flat terrain area. The content of AP was very high in the basin, but it was
very different between forests and farmland, with the lowest values distributed in forest
areas. The pH showed that the land was very acidic in the middle of the basin. The
assessment results of soil quality also had a decreasing trend from the west to east area,
and the dry fields in the west and the forests in the east of the basin were better than other
surrounding areas; however, the soil quality of paddy fields in the middle and east of the
basin was poor due to the lack of soil nutrient supply when the fields were unused, so the
assessment result was useful for soil-quality improvement in the rainy season according to
the spatial distributions of soil nutrient indicators. In addition, the limited soil samples
and incomplete indicator system would cause the imprecise assessment result, and these
shortcomings are what we should solve in future studies.
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