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Abstract: Ecosystem services are benefits that the natural environment provides to support human
well-being. A thorough understanding and assessment of these services are critical to maintain
ecosystem services flow through sustainable land management to optimize bundles of ecosystem
services provision. Maximizing one particular ecosystem service may lead to reduction in another.
Therefore, identifying ecosystem services tradeoffs and synergies is key in addressing this challenge.
However, the identification of multiple ecosystem services tradeoffs and synergies is still limited.
A previous study failed to effectively capture the spatial interaction among ecosystem services as
it was limited by “space-to-time” substitution method used because of temporal data scarcity. The
study was also limited by using land use types in creating ecosystem services, which could lead to
some deviations. The broad objective of this study is therefore to examine the bundles and hotspots
of multiple ecosystem services and their tradeoffs in Kentucky, U.S. The study combined geographic
data and spatially-explicit models to identify multiple ecosystem services bundles and hotspots, and
determined the spatial locations of ecosystem services hotspots. Results showed that the spatial
interactions among ecosystem services were very high: of the 21 possible pairs of ecosystem services,
17 pairs were significantly correlated. The seven ecosystem services examined can be bundled into
three groups, geographically clustered on the landscape. These results support the hypothesis that
some groups of ecosystem services provision can present similar spatial patterns at a large mesoscale.
Understanding the spatial interactions and bundles of the ecosystem services provides essential
information for evidence-based sustainable land management.

Keywords: ecosystem services; bundles; interactions; overlap; hotspots; Kentucky

1. Introduction

Ecosystem services are broadly defined as the benefits obtained directly or indirectly
by humans from ecosystems that improve human well-being and provide fundamental
life-support for human civilization [1–3]. Assessments of ecosystem services are seen by
many as a promising and effective communication tool for bridging the knowledge gap
between science and policy-making, and supporting land management decisions, because
they seek to highlight the multiple contributions of ecosystems to society and associated
tradeoffs between different land use options [4–6].

In a context of the increasing demand of human society for ecosystem services, there
is often an ambition to maximize ecosystem services supply and to reduce its shortfalls
through prudent land management [6]. However, the key challenge of land management
is determining how to manage multiple ecosystem services effectively to avoid unwanted
tradeoffs [6,7]. According to the results of Millennium Ecosystem Assessment and many
others, increasing the supply of some ecosystem services, especially provisioning services
such as food and timber, can cause a decline in other ecosystem services such as carbon
sequestration, and unsustainable management may undermine the future provision of
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these services as well [1,3,8,9]. Therefore, identifying ecosystem services tradeoffs and
synergies is urgently needed in order to address this challenge [7,10].

Tradeoffs and synergies are typical relationships between multiple ecosystem ser-
vices [3]. Tradeoffs describe a conflicting situation wherein the supply of one ecosystem
service increases while another decreases. Synergies occur when the provision of two or
more than two ecosystem services increase simultaneously [7]. These relationships are
driven by two non-exclusive mechanisms: (1) through common drivers (e.g., land use,
climate change) that affect multiple ecosystem services at the same time, and (2) direct
interactions among multiple ecosystem services (e.g., reliance on the same ecosystem
processes and functions) [11,12]. The purpose of tradeoffs and synergies analysis is to
increase synergies and reduce or avoid unwanted tradeoffs, which is essential for net-gain
decision-making [8,13,14]. By confronting the increasing demand of the public and changes
in the global environment, identifying the tradeoffs and synergies among ecosystem ser-
vices is among the most pressing concerns in sustainable land management today [2,15,16].
However, the identification of multiple ecosystem services tradeoffs and synergies is still
limited [3,17].

The results of tradeoffs and synergies analyses can be further used to inform ecosys-
tem services bundles. A bundle is formed by a mix of synergistic ecosystem services, which
repeatedly appear together across space or time [7,18,19]. The analyses of multiple ecosys-
tem services bundles would deepen the knowledge of ecosystem services tradeoffs and
synergies and are useful tools for identifying the hotspots of multiple ecosystem services
for optimizing management of multifunctional landscapes [7,20,21].

A study by [22] analyzed spatial interactions of ecosystem services in a global hotspot
in the three parallel river regions in southern China. The study reveals complex relation-
ships, spatial patterns, and distribution among ecosystem services in the mountainous
areas. However, this study was limited by the “space-to-time” substitution method used
due to temporal data scarcity. The study was also limited by the use of land use types
to create ecosystem services, which could lead to some deviations. Hence, the authors
recommend that a comprehensive database may be needed in future studies to effectively
capture the spatial interaction among ecosystem services.

In another study on ecosystem services tradeoff, synergies, and drivers, [23] focused
on ecosystem services provided by slash pine (Pinus elliotii) forests. The study examined
interaction between carbon sequestration, timber production, and water yield, and how
forest management practices affect these ecosystem services in northern Florida, U.S.
Results showed tradeoffs between ecosystem services. One limitation of this study is the
use of natural break algorithm to classify the dataset, as it does not reveal all the trends in
continuous data. The study used 377 plots across the study area, which was relatively small.
The authors, therefore, recommend that future studies using identical datasets should use
them in their continuous form and a larger sample size will be ideal for such analysis.

Over the last 10 years, the Intergovernmental Science-Policy Platform on Biodiversity
and Ecosystem Services (IPBES) has conducted a number of studies and analyses on
ecosystem services. These studies covered various topics with some specific ones that are
relevant to our study. A study by [24] assessed ecosystem services bundles based on socio-
cultural preferences of individuals in Spain. The authors observed substantial differences in
the social perception about the relative importance of different ecosystem service categories
across three ecosystem service bundles. Broadly, results showed ecosystem service bundles
can be identified from people’s systemic representations of interrelationships between
ecosystem services, and tradeoffs can be identified from socio-cultural preferences as
people’s willingness to tradeoff conservation of one ecosystem service against another.

Assessments of ecosystems and biodiversity have transitioned to include a wider
range of values, valuation methods, and worldviews. The Natures Contribution to People
(NCP) introduced by the IPBES initiative focuses on accounting for these wider values
and valuation methods. Another study [25] reviewed evidence from economic and socio-
cultural valuation methods of instrumental and relational values of nature’s contributions



Land 2021, 10, 69 3 of 14

to people (NCP) within the IPBES European and Central Asia region. Results showed that
regulating NCP was more highly valued than material and non-material NCP. The authors
observed substantial evidence of the instrumental values of NCP. The NCP concept was
introduced by the IPBES as an improved concept to ecosystem services to shed more light
on the contributions, both positive and negative, that people obtain from nature or affects
people’s way of life. However, the introduction of NCP has not received total consensus as
some researchers and the practice community believes NCP is not different from ecosystem
services [26].

In 2018, IPBES produced a regional assessment report on biodiversity and ecosystem
services for the Americas [27]. The report represents the state of knowledge on the Americas
region and subregions. The report provides a critical assessment of the full range of issues
facing decision-makers, including the importance, status, trends and threats to biodiversity,
and nature’s contributions to people, as well as policy and management response options.

The assessment concludes that the Americas are endowed with much greater capacity
for nature to contribute to people’s quality of life than the global average, and that the
economic value of the terrestrial contributions of nature to people is estimated to be at least
$24.3 trillion per year, equivalent to the region’s gross domestic product. The assessment
also concludes that the majority of the countries in the Americas are using nature at a rate
that exceeds nature’s ability to renew the contributions it makes to the quality of life. The
assessment also found that biodiversity and ecosystem conditions in the Americas are
declining, resulting in a reduction of the contributions of nature to the quality of life of
people. The dominant direct drivers of this are habitat conversion, fragmentation, and
overexploitation or overharvesting. Climate change is recognized as becoming increasingly
important, amplifying the other direct drivers.

The report concludes that there are options and initiatives, some ongoing, that can
slow down and reverse ecosystem degradation, and enhance the provision of nature’s
contributions to people, including ecological restoration and sustainable land management
outside protected areas. These require implementation of effective governance processes
and evidence-based policy instruments. Kentucky State has a horizontally-distinct distri-
bution of physiography and land use land cover (LULC), which is typical in many parts
of the world, with mountainous landscape in the east, pasture landscape in the central,
and cultivated landscape in the west. Such a distinctive heterogeneity of LULC at regional
scales makes it an ideal system to examine the bundles and hotspots of multiple ecosystem
services. This study combined geographic data and spatially-explicit models to identify
multiple ecosystem services bundles and hotspots for state-level optimized conservation
policy-making in Kentucky, U.S. The objectives of this study are to: (1) map spatial patterns
of multiple ecosystem services at the state scale; (2) identify the interactions between each
paired ecosystem services; (3) assess multiple ecosystem services bundles and their main
characteristics; and (4) determine the hotspots of multiple ecosystem services.

2. Study Area and Methods
2.1. Study Area

Kentucky (36◦30′ N~39◦09′ N, 81◦58′ W~89◦34′ W, Figure 1), covering an area of
104,749 km2, is located in the east south-central region of the United States and is bounded
by the Appalachian Mountains to the east and the Ohio and Mississippi Rivers to the north
and the west, respectively. The highest point in Kentucky is 1259 m and lowest is 78 m,
along the Mississippi River, above sea level. Kentucky has a humid subtropical climate
with an average annual precipitation ranging from 1016 to 1397 mm and monthly average
temperature ranging from −1 to 27 ◦C. Kentucky has an estimated population of 4,468,402
with an annual gross domestic product (GDP) of $213 billion, GDP per capita of $47,757,
2.5 million employment, and $105,031 average household income, as of 2018 [28]. More
than 45% of Kentucky’s land area is forested, of which 88% (11.0 million acres) is under
private family ownership [29], spread across 467,000 owners [30]. Kentucky has some
of the most diverse woodlands in the United States with over one hundred tree species
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naturally occurring in the state [31]. These woodlands support clean water provision,
wildlife habitat, recreation, and also provide the foundation for a large forest industry with
a significant economic contribution of over $13 billion annually.
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2.2. Framework for Quantifying Multiple Ecosystem Services Bundles and Hotspots

An operational framework, which contains five core steps, was developed to quantify
bundles and hotspots of multiple ecosystem services for optimal land management in
Kentucky (Figure 2). First, geographic data and spatially-explicit ecosystem services assess-
ment models were used to map the patterns of multiple ecosystem services in Kentucky.
Secondly, the tradeoffs and synergistic interactions between each paired ecosystem services
were evaluated. Thirdly, multiple ecosystem services bundles and their main characteristics
were assessed. Fourthly, the hotspots and spatial locations of multiple ecosystem services
were determined. In the last step, the policy applications of the results to inform future
policy making and land management options were outlined.

2.2.1. Ecosystem Services Mapping

The Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) (Version.3.3.3)
suite of tools was developed to enable decision makers to assess interactions among
ecosystem services and to compare the consequences of different future change scenarios,
like land use or climate change [32]. The InVEST has suites of models for assessing various
ecosystem services. This study used the Water Yield InVEST model (for water retention and
water provision), the Sediment Delivery Ratio model (for soil retention), and the Nutrient
Delivery Ratio model (for nitrogen and phosphorus export) to evaluate the corresponding
ecosystem services in Kentucky. A detailed version of the ecosystem services modeling
process can be found in Supplementary Information 1. InVEST model parameterization
and validations are described in Supplementary Information 2. Customized models based
on the existing national inventory data and biomass maps were used to evaluate timber
production and carbon sequestration, which are described in Supplementary 3. Data
availability and sources are summarized in Supplementary Information Table S1. Related
input parameters can be found in Supplementary Information Tables S2–S4.
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Timber Production

Production of timber is an important ecosystem service provided by forests, with the
potential to generate significant revenue for those with legal rights to harvest [33]. Due
to lack of accurate harvest intensity and rotation cycle information from natural forests,
this study evaluated the natural forest stand volume and considered this as the potential
timber production. The forest stand volume was calculated as forest biomass multiplied
by biomass-volume conversion coefficient from the Intergovernmental Panel on Climate
Change Report ([34]; also see Supplementary 3.1).

Water Retention and Water Provision

The service of water retention is defined as the ability of ecosystems to intercept
or store water resources from precipitation and is calculated by subtracting runoff and
evapotranspiration from precipitation [35]. Water provision is roughly equal to the runoff
from the landscape that contributes annually to humans needs, such as irrigations and
hydropower production. First, we estimated precipitation minus evapotranspiration by
using the water yield model in InVEST. Then, water retention was calculated by subtracting
runoff from water yield. In InVEST, the annual water yield for each pixel is estimated based
on average annual precipitation and the Budyko curve [32]. This calculation is then used in
conjunction with data of mean annual precipitation, annual reference evapotranspiration,
and correction factors for vegetation type, soil depth, and plant-available water content [32]
(Supplementary Tables S1–S3; Supplementary 1.1). Then, we used an extended model to
evaluate water retention, which was calculated by subtracting runoff from water yield
(Supplementary 1.2).

Carbon Sequestration

There are four carbon pools that can store or sequester carbon over time, namely,
aboveground biomass, belowground biomass, soil, and dead organic matter, which are
vital to influencing carbon dioxide-driven climate change [32]. Net primary productivity
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for carbon sequestration was used in this research, which was downloaded from Numeri-
cal Terradynamic Simulation Group (NTSG, http://files.ntsg.umt.edu) at a 30 m spatial
resolution ([36]; see Supplementary 3.2). In [36], net primary production is defined as the
carbon allocated to plant tissue after accounting for the costs of autotrophic respiration.

Soil Retention

The InVEST Sediment Delivery Ratio model maps overland sediment generation
and delivery to the stream. For each cell, the model first computes the amount of eroded
sediment, then the sediment delivery ratio, which is the proportion of soil loss that reaches
the catchment outlet to the total amount eroded [32]. The amount of annual soil loss in each
pixel is computed using the revised universal soil loss equation (RUSLE). Outputs from the
sediment model include the annual sediment load delivered to the stream, as well as the
amount of sediment eroded in the catchment and retained by vegetation and topographic
features. The input data for the Sediment Delivery Ratio model includes maps of land
cover and land use, digital elevation models (DEM), rainfall, and soil erodibility, along with
biophysical attributes related to sediment retention based on land cover (Supplementary
Tables S1–S3; Supplementary 1.3).

Water Purification

The InVEST Nutrient Delivery Ratio model maps nutrient sources from watersheds
and nutrient transported to the stream [32]. The model uses a mass balance approach,
describing the movement of nutrient mass through space. Sources of nutrients across
the landscape, also called nutrient loads, are determined based on the land use map and
associated loading rates. Nutrient export from each pixel is represented by the product of
the load and the nutrient delivery ratio. Each pixel’s load is modified to account for the local
runoff potential, which can be divided into surface and subsurface runoff [32]. Although
there are multiple potentially significant impairments of water quality, in this study we
focused on nitrogen and phosphorous. The input data for the water purification model
includes maps of land cover and land use, DEMs, and rainfall, along with biophysical
attributes related to the nutrient loading and retention efficiency for each land use and land
cover class (Supplementary Tables S1–S3; Supplementary 1.4).

2.2.2. Ecosystem Services Interaction

The ecosystem services interaction in this study refers to a tradeoff or synergistic
relationships between pairs of ecosystem services. Pearson correlation analysis was used
for each pair of services in SPSS software [7,35]. Samples were extracted at the county level.
There are 120 counties in Kentucky, making the total number of samples of 120.

2.2.3. Ecosystem Services Bundle

Principal components analysis (PCA) was used to identify the bundles of ecosystem
services and the groups of counties with similar sets of ecosystem services [35]. We
considered all 120 counties.

2.2.4. Ecosystem Services Hotspots

Ecosystem services hotspots were defined as an area that provides large components
of a specific ecosystem service in spatial [35]. In this study, the top 10% of grid cells for
each ecosystem service was delineated as a hotspot.

2.2.5. Data Requirement and Preparation

The InVEST model requires multiple gridded data sets combined with specific bio-
physical data as inputs. Specifically, DEM data with a spatial resolution of 10 m was
downloaded from the Kentucky Geoportal (http://kyraster.ky.gov/). Land use layers with
a spatial resolution of 30 m were downloaded from the National Land Cover Database
(NLCD) (see Supplementary Figure S1 and Supplementary Table S5). Climate data contain-

http://files.ntsg.umt.edu
http://kyraster.ky.gov/
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ing the average annual precipitation and temperature from 1981 to 2016 were downloaded
from the Parameter-elevation Regression on Independent Slopes Model (PRISM) [37]. Spa-
tial data for the state of Kentucky and other relevant data collected for this study are
listed in Supplementary Table S1, which includes summaries of each dataset by source, a
short introduction, and the associated models. Also, Supplementary Tables S2 and S3 list
key parameters used in the InVEST models. All spatial layers were resampled to a 30 m
resolution and projected to the Kentucky State Plane FIPS 1600 reference system.

3. Results
3.1. Spatial Mapping of Individual Ecosystem Services

Spatial distributions of seven ecosystem services were distinctly different, but gener-
ally spatially clumped (Figure 3), which can be attributed to the social-economic, ecological,
and geographic factors. The eastern Kentucky region is dominant in timber production,
carbon sequestration, and soil retention, while the central Kentucky region leads in water
retention, nitrogen retention, and phosphorus retention. On the other hand, the western
Kentucky region is important for water provision. At the whole state scale, the biophysical
outcomes of these ecosystem services are 0.78 billion m3 for timber production, 0.04 million
tons for carbon sequestration, 55.71 billion m3 for water provision, 14.66 billion m3 for
water retention, 26.46 million tons for soil retention, 46.85 million kg for nitrogen retention,
and 9.9 million kg for phosphorus retention, respectively (Supplementary Table S6).
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3.2. Interactions Among Ecosystem Services

Spatial interactions among ecosystem services were very high (Table 1): Pearson’s
correlation results indicated very significant correlations. Of the 21 possible pairs of
ecosystem services, 17 pairs were significantly correlated (Pearson coefficient; p < 0.05)
at the county level, and 15 of which were extremely significantly correlated (Pearson
coefficient; p < 0.01). Specifically, the positive correlation between timber production and
carbon sequestration was as high as 0.944. Certain pairs of ecosystem services were not
significantly or weakly correlated. For instance, the correlation between water provision
and soil retention was only −0.226 at the county level.

Table 1. Pair-wise spatial interactions among ecosystem services.

Types Timber
Production

Carbon
Sequestration

Water
Provision

Water
Retention

Soil
Retention

Nitrogen
Retention

Carbon
Sequestration 0.944 **

Water Provision −0.501 ** −0.647 **
Water Retention −0.095 0.061 −0.411 **
Soil Retention 0.891 ** 0.845 ** −0.226 * −0.249 *
Nitrogen
Retention 0.893 ** 0.963 ** −0.761 ** 0.146 0.734 **

Phosphorus
Retention 0.921 ** 0.976 ** −0.708 ** 0.079 0.767 ** 0.989 **

* indicated a significant correlation (p < 0.05); ** indicated an extremely significant correlation (p < 0.01); n = 120.

At the state level, water provision exhibited a tradeoff pattern with the other six
ecosystem services. Water provision was extremely significantly negatively correlated with
timber production, carbon sequestration, water retention, and nutrients retention, which
was also significantly negatively correlated with soil retention. Meanwhile, water retention
presented tradeoff patterns with both timber production and soil retention. On the other
hand, all other paired ecosystem services presented synergistic patterns. Both timber
production and carbon sequestration showed extremely significant positive correlations
with soil retention, nitrogen retention, and phosphorus retention, respectively. Generally,
the highest synergy was between nitrogen retention and phosphorus retention, while the
highest tradeoff was between water provision and nitrogen retention.

3.3. Ecosystem Services Bundles

The principal component analysis (PCA) of the seven ecosystem services in the
120 counties indicated that these services can be bundled into three groups (Figure 4a,b).
The three ecosystem services bundles were geographically clustered on the landscape.
Group 1 was water provision, comprising counties that have extensive agriculture LULC,
which are mainly distributed in the western and northern regions of Kentucky State
(Figure 4c,d; Supplementary Figure S2). Group 2 was water retention, comprising counties
that have extensive pasture and grassland LULC, which are mainly distributed in the
central region of Kentucky State (Figure 4c,e). Group 3 was timber production and the
other four ecosystem services, comprising counties that have extensive forest landscape,
which are mainly distributed in the eastern region of Kentucky State (Figure 4c,f).

3.4. Ecosystem Services Hotspots

Except for water provision, the hotspots of the other six ecosystem services were all
distributed at the forest landscape level, especially for timber production, nitrogen retention,
and phosphorus retention (Supplementary Table S7). For water provision, 45.04% of the
hotspots were located in cultivated landscape and 43.03% were located in developed areas.

The pair-wise overlaps between the seven hotspots indicated that the highest overlap
was between nitrogen retention and phosphorus retention (98.26%), then between timber
production and soil retention (43.01%). Timber production exhibited a relatively high
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overlap with soil retention and carbon sequestration (40.96%), but presented relatively
low overlaps with nitrogen retention (12.65%), phosphorus retention (12.23%), and water
retention (7.09%). The hotspots of water provision exhibited very few overlaps with
timber production (1.50%), soil retention (0.50%), and water retention (0.01%), while it did
not present any overlaps with carbon sequestration, nitrogen retention, and phosphorus
retention (Table 2).
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Table 2. Pair-wise overlaps between ecosystem services hotspots.

Types Timber
Production

Carbon
Sequestration

Water
Provision

Water
Retention

Soil
Retention

Nitrogen
Retention

Carbon Sequestration 40.96%
Water Provision 1.50% 0
Water Retention 7.09% 15.81% 0.01%
Soil Retention 43.01% 38.40% 0.50% 5.95%
Nitrogen Retention 12.65% 13.15% 0 34.72% 1.23%
Phosphorus Retention 12.23% 13.18% 0 35.34% 1.18% 98.26%

The number of concurrences of the seven ecosystem services hotspots varied from 0 to
6 in space (Figure 5). The area of concurrence decreased along with the increasing number
of hotspots, which decreased from 31,447.34 km2 (only 1 hotspot) to 0.11 km2 (6 hotspots
concurrences) (Supplementary Table S8). On the other hand, there were 42.50% of the
Kentucky area that did not have any ecosystem services hotspots. The high concurrence
areas were mainly distributed at the southeastern part of the state, which were most
important for providing multiple ecosystem services.
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4. Discussions

Mapping ecosystem services biophysical values and analyzing their interactions are
considered as important and cost-effective measures for ecosystem management and deci-
sion making [4,20,38]. The interactions in ecosystem services in this study were consistent
with many other studies in that tradeoffs often occur between provisioning and regulating
services, while synergies are more likely to happen within/between regulating and cultural
services [2,3]. In this study, the tradeoffs’ interactions existed between one provisioning
service (i.e., water provision) and a regulating service (i.e., soil retention and carbon se-
questration). The tradeoffs between water provision and nitrogen retention were much
higher, followed by the interactions between water provision and phosphorus retention.
However, another provision service (i.e., timber production) presented tradeoff interactions
with water provision and water retention, and synergy interactions with soil retention
and carbon sequestration. However, most of the paired regulating services presented
synergistic interactions with each other [2,7], except water retention and soil retention,
which showed a tradeoff interaction. These results showed that provisioning services are
not always in tradeoff relationships with regulating services, which is also evidenced in
another case study in which there were synergies between timber production and regu-
lating services [20]. In most cases, increasing some of the regulating services would be
at the expense of losing some provisioning services. In other cases, some provisioning
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and regulating services could be enhanced simultaneously, like timber production and
carbon sequestration.

Beyond tradeoffs and synergies, the analysis of ecosystem services bundles can also
be used to manifest the relationships between ecosystem services [20,39]. The ecosystem
services bundles can help policy makers decide on better management strategies by taking
ecosystem services tradeoffs and synergies into consideration towards sustainable land
management [40]. From the ecosystem services bundles revealed in this study, land
managers can enhance their understanding of the characteristics of each ecosystem service
and their interactions. Such evidence-based information would be vital in making targeted
policy decisions for a more sustainable social and economic development, as well as
maintaining the effective functioning of natural and anthropogenic land systems [2,41].
Forest is the dominant land system in Kentucky, occupying approximately 50% of the
state’s total area. However, forest area decreased more than 5000 sq. km2 from 1992
to 2011, resulting in a significant degradation of water-related ecosystem services at the
state level [42]. Much of the forest loss was attributed to coal mining and the subsequent
reclamation to the grassland in eastern Kentucky [43]. Restoration of abandoned coal
mines to forest in the Appalachian region has been advocated by a coalition of citizens,
government officials, and coal industry representatives for quite some time [44], yet its
adoption is very limited, partly due to the lack of appreciation of ecosystem services
provided by forest by the local residents and stakeholders. Our tradeoff and synergy
study shows that timber production has a strong synergy with carbon sequestration, soil
retention, and nutrients retention, which may help reverse the public opinion and increase
the use of forestry-based restoration on the previously mined lands in Kentucky.

In this study, we found three bundles, which represented the interactions among
ecosystem services in Kentucky. Each bundle clustered the spatial areas with similar major
ecosystem services together, which dominated in one or several ecosystem services. Con-
sistent with other studies [7,45], we found mountainous area bundle had high regulating
ecosystem services, such as soil retention and nitrogen retention, as well as a provisioning
service (i.e., timber production). The agricultural area bundle had high water provision
services. The pasture area bundle had high water retention services. According to the
characteristic of those three bundles, Kentucky can be divided into provisioning areas
and regulating areas. The provisioning areas were mainly composed of cultivated land,
while the regulating areas were mainly composed of forest, pasture and grassland. A
similar composite pattern of ecosystems and services in a bundle, which share common
environmental conditions and challenges, would be suitable for similar management strate-
gies [20]. Additionally, the overlap characteristics of ecosystem services hotspots can
provide identification of prioritization sites for comprehensive, compact, and cost-effective
management [46].

On a final note, there are a few challenges that we encountered in this research that
we leave for further research. One important challenge for ecosystem services interactions
and bundles research is the choice of indicators. Capacity indicators or flow indicators,
middle service indicators or final service indicators, question the results and interpretations
of the ecosystem services interactions and bundles [19]. Another important challenge
is the choice of scale. The scale effect on ecosystem services is worth further exploring.
The interactions and bundles of ecosystem services may vary at different scales. Finally,
understanding the drivers of ecosystem services interactions and bundles is useful and
important to inform decision making and for policy implementation. The drivers, such as
the biophysical variables and human activities factors [2], can result in the complexity and
integrity of spatial patterns of ecosystems.

5. Conclusions

Multiple ecosystem services that are driven by a common factor or directly interact
with each other often exhibit a spatial clustering pattern at a large spatial scale. Understand-
ing the spatial interactions and bundles of multiple ecosystem services under biophysical
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variables and human influences can provide crucial information for prudent and targeted
landscape management by knowing where to protect and invest in the future. Our study
presents a comprehensive application of how to identify potential synergies and tradeoffs
between timber production, carbon sequestration, and several water-related ecosystem
services through the mapping and spatial analyses of those ecosystem services in Kentucky.
The results showed that the spatial interactions among ecosystem services were very high:
of the 21 possible pairs of ecosystem services, 17 pairs were significantly correlated. The
seven ecosystem services in the 120 counties of Kentucky considered in this study can
be bundled into three groups. The three ecosystem services bundles were geographically
clustered on the landscape. Except for water provision, the hotspots of the other six ecosys-
tem services were all distributed at the forest landscape, especially for timber production,
nitrogen retention, and phosphorus retention. Our results support the hypothesis that some
groups of ecosystem services provision can present similar or contrasting spatial patterns
at a mesoscale that are likely driven by the underlying environmental conditions and land
use history. Contrary to the widely accepted belief that the increase of provisioning services
(e.g., food, fiber) often comes at the expense of the regulating services (e.g., soil retention),
our study shows that certain provisioning services (timber production) and regulating
services (carbon sequestration and nutrients retention) can exhibit a synergy. Such findings
highlight the need of the bundle and hotspot analyses of multiple ecosystem services to
improve the targeted land use and management planning at the regional level.
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