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Abstract: Different urban growth patterns have various impact degrees on the urban ecosystem
and environment. Impervious surface, a typical artificial construction can be used to reflect urban
development. Therefore, this study estimated the spatiotemporal dynamics and expansion patterns
of impervious surface area (ISA) in the Guangdong-Hong Kong-Macau (GHM) Bay Area since the
establishment of the “Pearl River Delta economic zone” in 1994. Landsat time-series images were
used to map the distribution of the ISA based on the combinational biophysical composition index
(CBCI) and the bidirectional temporal filtering method (BTFM). The results indicated that the ISA
in the GHM Bay Area drastically expanded from 569.23 km2 in 1994 to 10,200.53 km2 in 2016. In
addition, the aggregation index (AI) value of the high-density area showed a decreasing trend from
1994 to 2004. However, the value of each landscape metric rapidly increased after 2004. Moreover, the
mean ratio of the major axis to the minor axis of standard deviational ellipses from 1994 to 2004 was
higher than that from 2005 to 2016. The results of landscape metrics and standard deviational ellipses
indicated that the ISA growth pattern changed from edge expanding and leapfrogging to infilling
and consolidation, with a turning point in 2004. Moreover, the principal sprawl orientation of the
ISA was northwest to southeast before 2004. After 2004, the expansion direction of the ISA was less
obvious due to the development pattern of infilling and consolidation. The rapid increase of GDP and
population are the driving forces of urban expansion. However, topography and ecological protection
policies as the limiting factors, which caused the infilling of the inner city and redevelopment of old
urban areas.

Keywords: impervious surfaces; urban growth; Guangdong-Hong Kong-Macau (GHM) Bay Area;
CBCI; edge expanding; infilling

1. Introduction

In 2014, 54% of the global population, or 3.9 billion people, lived in urban areas [1].
Urban sprawl can lead to various environmental issues, and one of the most prominent
ecological changes is caused by the expansion of impervious surfaces [2]. Impervious
surfaces are typically associated with anthropogenic urban land uses, and these surfaces
prevent water infiltration into the soil and absorb heat from sunshine during the day before
releasing it slowly at night [3,4]; examples of impervious surfaces include rooftops, parking
lots, roads, driveways, and sidewalks [5]. Previous studies have shown that impervious
surfaces have a significant impact on the structure and function of terrestrial ecosystems,
biogeochemical cycles, and urban environments and can result in high surface runoff [6,7],
air pollution [8–10], the transport of aquatic pollutants [11], water quality degradation [12],
and urban heat island effects [13,14]. Therefore, impervious surfaces can be considered a
key indicator of the urban environment [15].

Land 2021, 10, 1167. https://doi.org/10.3390/land10111167 https://www.mdpi.com/journal/land

https://www.mdpi.com/journal/land
https://www.mdpi.com
https://doi.org/10.3390/land10111167
https://doi.org/10.3390/land10111167
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/land10111167
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land10111167?type=check_update&version=1


Land 2021, 10, 1167 2 of 16

The development of remote sensing technology provides a convenient and low-cost
approach that can be used to analyze the spatiotemporal characteristics of impervious
surfaces over large regions. In the past several years, various methods of remote sensing
have been developed to map the distribution of impervious surfaces; these methods in-
clude machine learning methods (e.g., regression/decision tree methods, artificial neural
networks (ANNs), and regression modeling) [16–18], spectral unmixing techniques (e.g.,
linear spectral mixture analysis (LSMA) methods and normalized spectral mixture analysis
(NSMA) methods) [19,20] and object-based methods [21–23]. However, these methods
have limitations when applied to mapping impervious surfaces across large geographic
areas, mainly because this task is a complicated and computationally intensive process [5].
In addition, spectral indices are advantageous in terms of their effective implementa-
tion, parameter-free characteristics, and convenience in practical applications. Therefore,
spectral indices are widely applied to map specific land cover classes over a large scale [24].

The impervious surface area (ISA) has been widely used to investigate urban sprawl
and reveal urban environmental effects. An urban growth hypothesis was widely accepted
that the urbanization process exhibits diffusion and coalescence phases [25]. Therefore,
three ISA expansion modes (infilling, edge expanding, and leapfrogging) were proposed
according to the hypothesis [26]. The infilling mode produces growth patterns encountered
inside existing developed areas, while edge expanding dominates urban fringe areas. In
contrast, leapfrogging occurs in dispersed spaces away from existing developed areas [27].
Yang et al. [28] compared the urban development patterns in the Three Northeast Provinces
(TNP) and the Yangtze River Delta using built-up area data from 1984 to 2014. Xu et al. [29]
analyzed the spatiotemporal characteristics of urban areas in Guangzhou using time series
ISA datasets from 1988 to 2015. Guo et al. [25] evaluated urbanization in metropolitan
Guangzhou from 1990 to 2020, explored the associated modes of urban growth using
Landsat TM images and simulated landscape maps based on the Conversion of Land Use
and its Effects (CLUE) modeling framework. Henits et al. [30] used impervious surface
fractions to map impervious surfaces and monitor the effects of increasing impervious
surface ratios on the population and environment. Li et al. [31] examined the urban im-
pervious surface distribution and its dynamic changes in the Hangzhou metropolis from
1991 to 2014; additionally, the authors analyzed the influences of topography and urban
development policies on the expansion of impervious surfaces. Zhang et al. [32] extracted
the land use cover datasets from the 1970s to 2013 in Beijing, Tianjin, and Tangshan and
compared the urban expansion patterns in those areas. Hao et al. [33] investigated the
dynamics of urban sprawl in Beijing between 1990 and 2014 using multitemporal ISA
datasets and estimated the effect of impervious surface fractions on the relative average
annual surface temperature. Traditional research has focused only on the sprawl of ISAs at
the scale of individual cities [34]; however, it is necessary to understand the spatiotemporal
characteristics of ISA expansion at the regional scale of urban agglomeration to reveal the
overall ISA expansion modes. Moreover, numerous studies have estimated and mapped
impervious surface dynamics at only decadal time scales [35], but the changes in imper-
vious surfaces at the annual or finer time scales must be estimated to clarify the detailed
dynamics of urban expansion.

The Guangdong-Hong Kong-Macau (GHM) Bay Area has experienced rapid popu-
lation growth and socioeconomic development, which has led to the drastic expansion
of impervious surfaces in the GHM Bay Area [36]. The expansion of the ISA has altered
the environment not only at the local scale but also at the regional scale [37]. Therefore,
this study conducted a comprehensive investigation of the spatiotemporal dynamics and
expansion patterns of the ISA in the GHM Bay Area during the period from 1994 (the “Pearl
River Delta economic zone” was established) to 2016. The first step was to extract time
series data on impervious surfaces using the combinational biophysical composition index
(CBCI) and the bidirectional temporal filtering method (BTFM) from 161 Landsat images.
Moreover, the ISA density was calculated for areas of one square kilometer. Second, the ISA
distribution, dynamics, and density were analyzed during the entire study period. Third,
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the spatiotemporal characteristics of ISA were measured based on the standard deviational
ellipse (SDE). Fourth, the spatial configuration and composition of ISA were determined
using landscape metrics. Finally, the driving forces on ISA dynamics and expansion modes
were discussed.

2. Study Area and Data
2.1. Study Area

In 1994, the government of Guangdong Province established the Pearl River Delta
(PRD) economic zone. By 2014, the urban agglomeration of the GHM Bay Area had become
one of the most densely urbanized regions in China, with an urbanization rate of 84.12%.
This growth was due to unprecedented urbanization over the previous three decades. The
study area is located between 21◦30′–23◦40′ N and 112◦12′–113◦48′ E and has a subtropical
monsoon climate. The mean annual temperature is 21–23 ◦C, and annual precipitation totals
1500–2000 mm. The major cities in the region include Guangzhou, Shenzhen, Dongguan,
the special administrative region of Hong Kong, and Macau. Economically, the GDP of the
GHM Bay Area was 311.8 billion RMB, accounting for 9.83% of China’s GDP, in 2016, with
an annual growth rate of 95.6%. In addition, in 2016, 58.74 million people lived in the GHM
Bay Area, which constituted 4% of the total population of China at that time (Figure 1).
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In this study, 161 images (cloud coverage less than 10%) were collected to cover the 

study area between 1994 and 2016. Note that the impervious surfaces map of 2012 was 
missing due to a faulty sensor on the Landsat 7 satellite. All the images included the 
Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI products. These images were 
downloaded through the United States Geological Survey (USGS) Earth Explorer online 
portal (see Figure 2). Geometric and orthographic corrections were performed on the 

Figure 1. The Guangdong-Hong Kong-Macau (GHM) Bay Area. (There are eleven administrative units: Gz—Guangzhou;
Fs—Foshan; Zs—Zhongshan; Zh—Zhuhai; Ma—Macau; Dg—Dongguan; Sz—Shenzhen; HK—Hong Kong; Hz—Huizhong;
Zq—Zhaoqing, and Jm—Jiangmen.).

2.2. Data and Preprocessing

In this study, 161 images (cloud coverage less than 10%) were collected to cover
the study area between 1994 and 2016. Note that the impervious surfaces map of 2012
was missing due to a faulty sensor on the Landsat 7 satellite. All the images included
the Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI products. These images were
downloaded through the United States Geological Survey (USGS) Earth Explorer online
portal (see Figure 2). Geometric and orthographic corrections were performed on the
acquired images, and the images were rectified to zone 49 of the Universal Transverse
Mercator (UTM) projection. Furthermore, all bands of the remote sensing images used
in this study were clipped to the study area boundary. Moreover, to remove the effects
of scattering and absorption on the used images and to enhance the contrast between
impervious surfaces and the soil, radiometric calibration, and atmospheric correction were
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performed for each image [38,39]. The digital numbers (DNs) of all bands were converted to
reflectance values. The conversion parameters were obtained from the respective metadata
files that were downloaded with the satellite data. In addition, the high-resolution images
incorporated in Google Earth Pro from 2000 to 2016 were obtained to collect ground truth
and examine the extraction accuracy of impervious surface maps.
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3. Method
3.1. Mapping Impervious Surfaces in the GHM Bay Area
3.1.1. Combinational Biophysical Composition Index (CBCI)

The CBCI was proposed by Zhang et al. [40], which can be used to highlight impervi-
ous surfaces, vegetation, water, and bare soil. Moreover, it has better performance than
other spectral indices, especially in the GHM Bay Area. The CBCI is defined as follows:

CBCI = (A + 1)∗MBSI−OSAVI + A (1)

where A is a correction factor, in this study, 0.51 was selected as the optimal value to
enhance the discrimination of impervious surfaces, bare soil, vegetation, and water. The
modified bare soil index (MBSI) can be used to distinguish bare soil from other land cover
types, and it is calculated using the following equation:

MBSI =
(ρRed− ρGreen) ∗ 2
ρRed + ρGreen− 2

(2)

where ρRed and ρGreen are the reflectance values of the red and green bands, respectively,
and 2 is a correction factor that can be used to enhance the distinction of bare soil and
the other three biophysical compositions. The optimized soil adjusted vegetation index
(OSAVI) was developed by Rondeaux in 1996 [41]. After the CBCI was calculated, the
Kirtler Illingworth (KI) method [42] was employed to obtain an optimal threshold and
produce a binary map of impervious surfaces.

3.1.2. Bidirectional Temporal Filtering Method (BTFM)

After the time series of impervious surface images were acquired, a bidirectional
temporal filtering method (BTFM) was applied to correct misclassified pixels and improve
accuracy [43]. This method is based on the hypothesis that impervious surfaces do not
revert back to vegetation or bare soil in a short time period after they are converted from
vegetation or bare soil. The impervious surface image from 2002 was selected as the
starting image because it was extracted by the Landsat 7 TM images and has relatively
high accuracy. Moreover, the year 2002 at the middle part of the study period. The annual
impervious surface maps were reset as {M1, . . . , Mi−1, Mi, Mi+1, . . . , Mt} where t was
the year and Mi was the impervious surface image of 2002. If a pixel was classified as
a pervious surface in Mi and Mi+2 but was an impervious surface in Mi+1, the pixel in
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Mi+1 would first be set as an uncertain pixel. Moreover, if that pixel was classified as a
pervious surface in Mi−2 and if the pixel in Mi−1 was also identified as an uncertain pixel,
then the pixels in Mi+1 and Mi−1 would both be corrected as pervious surfaces, rather than
impervious surfaces. Then, a moving window was applied to the time series beginning
bidirectionally at Mi−1 and Mi+1 and proceeding annually to Mi−2 and Mi+2.

3.1.3. Mapping Accuracy Verification

The high-resolution images incorporated in Google Earth Pro and the Landsat 5 TM
images were used to assess the accuracies of the ISA maps. The “view historical imagery”
tool in Google Earth Pro was used to find the best possible referenced image from 2000
to 2016. Before 2000, the verification samples were acquired by the Landsat 5 TM images.
This study randomly selected 200 verification sample points per year in each city of the
GHM Bay Area (Figure 3). Moreover, a confusion matrix method was used to verify the
accuracy of the ISA extraction results.
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3.2. Calculation of Impervious Surface Density

To analyze the dynamics of the impervious surface density, the ISA images were
resized to 100 × 100 m cells, and the ISA proportion was calculated in areas of 1 km2. The
equation used to calculate the impervious surface density is:

ISD =
∑10

i=1 ai

1000
× 100% (3)

where ISD is impervious surface density in 1 km2, if cell i is impervious surface a = 100,
else a = 0.

3.3. Analysis of the Changes in Landscape Metrics

Landscape metrics provide a quantitative description of the composition and con-
figuration of urban landscapes [44,45]. In this study, these metrics were employed to
compute the degree of expansion of the ISA at different ISA density levels; this analysis
was conducted using FRAGSTATS 4.2 with the eight-neighbor rule. Based on the objectives
of this study and to avoid redundancy, ISA expansion was characterized by six prominent
spatial metrics that are widely used to investigate urban expansion and its effect on the
environment. These spatial metrics included the number of patches (NP), patch density
(PD), largest patch index (LPI), landscape shape index (LSI), mean patch size (AREA_MN),
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and aggregation index (AI) (Table 1). The ISA density changes at different levels were
analyzed using these landscape metrics.

Table 1. Landscape metrics used in this study.

Landscape Metric Calculation and Description

Number of patches (NP) NP = ni
where ni is the number of patches of patch type (class) i in the landscape.

Patch density (PD)
PD = ni

A (10, 000)(100)
where ni is the number of patches of patch type (class) i in the landscape and A is

the total landscape area (m2).

Largest patch index (LPI)
LPI =

n
max
j=1

(
aij

)
A (100)

where aij is the area (m2) of patch ij and A is the total landscape area (m2).

Landscape shape index (LSI)

LSI = 0.25 ∑m
k=1 e∗ik√
A

where e∗ik is the total length (m) of the edge in the landscape between patch types
(classes) i and k; this includes the entire landscape boundary and some or all

background edge segments involving class i.

Mean patch size (AREA_MN)
AREA_MN = 1

10,000/n

n
∑

i=1
xi

where n is the number of patches and xi is the area of patch i.

Aggregation index (AI)

AI =
[

gii
max→gii

]
(100)

where gii is the number of like adjacencies (joins) between pixels of patch type
(class) i based on the single-count method and max→ gii is the maximum

number of like adjacencies (joins) between pixels of patch type (class) i based on
the single-count method.

3.4. Standard Deviational Ellipse (SDE)

In this study, we used the SDE [46] method to further measure the orientation, di-
rection, and spatiotemporal developmental trends of ISA expansion. For each ISA image,
four parameters of the SDE (i.e., ellipse center, long axis, short axis, and azimuth) were
calculated. The ellipse center of the SDE is gravity center. The azimuth of the SDE is
calculated as follows:

tan θ =

(
∑n

i=1 ω2
i x̃2

i −∑n
i=1 ω2

i ỹ2
i
)
+
√(

∑n
i=1 ω2

i x̃2
i −∑n

i=1 ω2
i ỹ2

i
)2 − 4

(
∑n

i=1 ω2
i x̃i ỹi

)2

2 ∑n
i=1 ω2

i x̃i ỹi
, (4)

{
x̃i = xi − x
ỹi = yi − y

, (5)

where θ is the azimuth of the ellipse, indicating the angle measured clockwise from north
to the long axis of the ellipse; xi and yi are the deviations between the ith grid center and
the gravity center in the x and y directions, respectively, and ωi is the weight. In this study,
the weight ωi represents the impervious surface fraction of the ith grid. The standard
deviations σx and σy of the ellipse in the x and y directions, respectively, are calculated
as follows. 

σx =

√
∑n

i=1(ωi x̃i cos θ−ωi ỹi sin θ)2

∑n
i=1 ω2

i

σy =

√
∑n

i=1(ωi x̃i sin θ−ωi ỹi cos θ)2

∑n
i=1 ω2

i

(6)

The long axis, short axis, and azimuth represent the developmental trends of the ISA
and the development direction. The ratio of the long axis to the short axis denotes the
degree of aggregation or dispersion of the ISA. If this ratio is greater than 1, the ISA is
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characterized by obvious orientational effects. However, a ratio equal to 1 indicates no
directional characteristics. In this study, an SDE of one ISA image was determined based
on the SDE parameters, which were used to reveal whether the spatial distribution of the
impervious surface was elongated; additionally, the SDE reflected the particular orientation
of an impervious surface (Figure 4).
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4. Results
4.1. Mapping Accuracy and Impervious Surface Dynamics

The results of the accuracy verification are shown in Figure 5 (right). The average
overall accuracy and Kappa coefficient of the impervious surface maps from 1994 to 2016
were 0.91 and 0.83, respectively. The relatively low accuracies of the results from 1994 to
2008 were due to the effects of cloud cover and low image quality; thus, the average overall
accuracy was 0.89, and the Kappa coefficient was 0.8. In addition, the impervious surface
images from 2009 to 2016 had relatively higher accuracies; the mean overall accuracy was
0.94, and the Kappa coefficient was 0.88 (see Figure 5, right). The dynamic changes in the
ISA from 1994 to 2016 are presented in Figure 5 (left), which shows the different spatial
patterns over the past two decades. Overall, the impervious surfaces of the GHM Bay
Area rapidly expanded from 569.23 km2 in 1994 to 10,200.53 km2 in 2016, with an average
annual growth rate of 51.7%. Moreover, the ISA represented 0.9% of the total area of the
GHM Bay Area in 1994. However, it accounted for 17% of the total area of the GHM Bay
Area in 2016. In 1994, most impervious surfaces were aggregated in Guangzhou, Shenzhen,
and Hong Kong. After 1999, the expansion of impervious surfaces increased rapidly. With
the fast urbanization process, a new urban core appeared in Foshan, which is located in
the southwestern region of Guangzhou. Then, another urban core emerged in Dongguan
in 2006, which is located in the southeastern region of Guangzhou. Furthermore, the
expansion of impervious surfaces in Dongguan and Shenzhen mainly occurred along the
Pearl River and the coastline of the GHM Bay Area.
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Figure 5. (left) Total impervious surface area (ISA) quantity and growth rate in the GHM Bay Area in each year; (right) the
overall accuracy and Kappa coefficient of each impervious surface map from 1994 to 2016.

4.2. Impervious Surface Density Distribution and Dynamics

The ISA density in the GHM Bay Area was grouped into five levels: pervious surface area
(ISA density less than 20%), low-density area (ISA density between 21% and 45%), medium-
density area (ISA density between 46% and 70%), high-density area (ISA density between
71% and 90%) and very high-density area (ISA density higher than 90%). As shown in
Figures 6 and 7, the pervious surface area represented a large portion of the GHM Bay Area.
However, the very high-density and high-density areas were aggregated in the urban core areas
of Guangdong, Foshan, Shenzhen, and Hong Kong in 1994. Moreover, the very high-density
area increased with rapid urban expansion. In 2000, most very high-density and high-density ar-
eas were located in Guangdong and Foshan. Furthermore, the medium-density and low-density
areas were distributed along the Pearl River and the coastline in Dongguan and Shenzhen. From
2001 to 2008, the very high-density area increased rapidly in Guangzhou, Foshan, Dongguan,
and Shenzhen. Between 2009 and 2016., the very high-density area displayed a slow expansion
rate. However, the high-density area grew rapidly in the GHM Bay Area.
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modified bare soil index (MBSI) image; (d) the optimized soil adjusted vegetation index (OSAVI) image, and (e) the dynamic
changes in the ISA in the GHM Bay Area from 1994 to 2016.
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4.3. Landscape Metrics Dynamics for Different ISA Density Groups

The dynamics of six different landscape metrics for five ISA density groups over
the entire study period are depicted in Figure 8. Note that the ISA in 1994 has only four
ISA density groups except very high-density area, due to the small quantity and limited
dispersion of ISAs in 1994. The LSI, NP, and PD displayed similar increasing trends between
1994 and 2016 (see Figure 8a–c). Pervious surfaces exhibited the highest values, followed
by the low-density area, the medium-density area, and the high-density area. Furthermore,
the very high-density area displayed the lowest values from 1994 to 2016. For the landscape
metric AI (see Figure 8d), the very high-density area still exhibited the highest values, with
a minimum observed in 2004. Previous surfaces displayed the second-highest AI values
from 1994 to 2016, followed by those of the high-density area. However, the low-density
area and the medium-density area had approximately the same AI values, especially after
2011. The AREA_MN trend of each ISA density group (see Figure 8e) indicated that the
value of the very high-density area increased rapidly, especially after 2004. Before 2005, the
value of the very high-density area was lower than that of pervious surfaces. Moreover,
the value of the low-density area peaked in 2002 and then began to decrease. The value
of the medium-density area displayed an overall increasing trend and reached a peak in
2009. In addition, the value of the high-density area increased gradually, and this value
was higher than those of the low-density area and the medium-density area after 2003.
Figure 8f reveals the dynamics of the LPI for the five ISA density groups. The LPI value of
pervious surfaces experienced a drastic change from 1994 to 2004. Notably, it fluctuated
between 1994 and 2000 and then decreased sharply from 2003 to 2004. After 2004, the value
began to rapidly increase, especially after 2011. The LPI value of the very high-density area
increased slowly until 2006 but then sharply increased. In addition, the LPI values of the
low-density, medium-density, and high-density areas slightly increased and reached peaks
in 2004, 2007, and 2013, respectively.
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(a) Landscape shape index (LSI); (b) Number of patches (NP); (c) Patch density (PD); (d) Aggregation
index (AI); (e) Mean patch size (AREA_MN); and (f) Largest patch index (LPI).

4.4. Impervious Surface Standard Deviational Ellipse (SDE) Dynamics

The SDE was employed to further present the impervious surface dynamics for
different orientations and distribution. The SDEs of the impervious surfaces over the entire
region from 1994 to 2016 are shown in Figure 9. The detailed parameters of the SDEs are
listed in Table 2. The orientation of the SDE indicates the directional trend of impervious
surface expansion. An obvious orientation of SDEs can be found in Figure 9, and this
orientation changed in different periods. From 1994 to 1999, the orientation changed
from 163.43◦ to 170.36◦, but it then decreased from 170.36◦ in 1999 to 167.43◦ in 2001.
After 2001, the orientation gradually increased from 170.93◦ in 2002 to 179.93◦ in 2016,
representing an average annual angle increase of 0.643◦. Before 2008, the spatial direction
of impervious surface expansion was from the northwest to the southeast; however, after
2008, the orientation of the impervious surface growth was from the west to the east.
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Table 2. The parameters of the standard deviational ellipses from 1994 to 2016.

Year Major Axis (m) Minor Axis (m) Major Axis/Minor Axis Orientation (◦)

1994 15,818.2 11,454.5 1.38 163.43

1995 17,147.8 12,400.5 1.38 164.92

1996 19,498.4 13,844.5 1.40 162.72

1997 20,633.2 14,814.0 1.39 170.24

1998 22,536.7 16,048.6 1.40 170.55

1999 24,348.6 16,906.0 1.44 170.36

2000 27,749.3 19,469.5 1.43 169.88

2001 31,505.7 21,176.3 1.49 167.43

2002 34,497.4 23,897.5 1.44 170.93

2003 34,959.9 26,876.5 1.30 178.29

2004 46,261.3 32,954.1 1.40 176.45

2005 48,758.2 34,730.8 1.40 175.62

2006 50,425.7 36,145.6 1.39 175.57

2007 53,500.5 37,951.0 1.41 173.55

2008 55,030.2 39,530.7 1.39 174.75

2009 55,872.7 40,605.0 1.38 179.28

2010 57,790.2 40,816.9 1.42 178.43

2011 59,473.9 42,338.2 1.40 177.65

2013 61,764.4 44,378.4 1.39 178.51

2014 62,925.6 45,158.9 1.39 178.05

2015 65,329.3 47,529.9 1.37 178.28

2016 66,457.1 48,857.5 1.36 179.93

The major axis, the minor axis, and their ratio indicate the spatial distribution of the
ISA. If the ratio is close to 1, the impervious surfaces have an uncertain principal direction
of expansion. Meanwhile, the ISA is distributed discretely in a region. Table 2 shows
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that the ratio fluctuated between 1.36 and 1.49 from 1994 to 2016. The ratio was increased
from 1996 to 2001 with the highest ratio of 1.49 in 2001. The lowest ratio appeared in 2003
with a value of 1.30. During this period, the ISA was rapidly expanded around the urban
area. Farmlands, water bodies, and open spaces were replaced by impervious surfaces.
Moreover, the ratio showed a decreased trend from 2004 to 2016 with a relatively low
value of 1.36. In this stage, the cities were restricted from expanding to the surrounding
areas. Moreover, old urban landscapes and open spaces were redeveloped. These results
indicated that the expansion of ISA had an explicit orientation from 1994 to 2003. However,
the sprawl direction of ISA was less obvious from 2004 to 2016. In addition, the spatial
distribution of the ISA was changed from aggregation to dispersion due to the rapid
urban development.

5. Discussion
5.1. ISA Expansion Modes in Different Periods

The results presented above illustrated that the ISA experienced rapid expansion in
the GHM Bay Area. However, the growth rates are decreased from 1994 to 2016. The ISA
sprawl results are consistent with other studies [36,43,47]. Moreover, the analysis results
indicate that the ISA in the GHM Bay Area experienced different growth patterns.

From 1994 to 2004, the values of LSI, NP, and PD of ISA showed a slowly increasing
trend. However, the value of AI has a decreased trend in ISA. The high values of NP and PD
and low values of AI suggested a more scattered pattern of ISA in the GHM Bay Area [48].
Notably, the previous surface area and low-density area have relatively high slopes of NP
and PD. It indicated that the ISA was mainly expanded in previous surface and low-density
areas. In addition, the average ratio of SDEs was 1.40 before 2004. Moreover, the highest
value of the ratio was 1.49 in 2001. The changing pattern of landscape metrics and high
ratio of SDEs indicated that the impervious surfaces were sprawled into suburban areas
from the northwest to the southeast due to the expansion mode of edge expanding and
leapfrogging. In this stage, water bodies, open spaces, and farmlands around the urban
area were used to build residential areas, commercial areas, industrial parks, and other
infrastructure. Therefore, a new urban core was developing in Foshan [47]. Furthermore,
the increases in high-density area and low-density area alongside a decrease in paddy fields
in the coastal hinterlands are the most prominent changes in this urban expansion pattern.

From 2005 to 2016, the ISA development pattern in the GHM Bay Area was changed.
Infilling and consolidation replaced edge expanding and leapfrogging as the primary
development pattern. Note that the value of AI was increased rapidly, especially in a very
high-density area. The increased value of AI indicated that the impervious surfaces were
aggregated in the GHM Bay Area because of infilling and consolidation. In addition, the
slops of NP and PD between 2004 and 2016 were lower than that between 1994 and 2003 in
very high-density and high-density areas. The lower slopes indicated that the number of
ISA patches decreased due to infilling and consolidation development patterns. Meantime,
this development pattern caused the less obvious orientation of urban expansion. Thus,
the average ratio of SEDs from 2006 to 2016 was 1.39, which was lower than the average
ratio from 1994 to 2005. During this period, the infilling of open space inside urban areas
and the redevelopment of the old urban landscape were the main urban development
patterns [49]. Although the growth rate of ISA was decreased, the high-density area still
had a rapid sprawl trend (Figure 5). Therefore, the ISA formed a whole area in Guangzhou
and Foshan (Figure 7). Moreover, the widely distributed ISA led to the relatively low ratios
of SDEs from 2004 to 2016.

5.2. Driving Forces of the ISA Expansion Modes

Economic and population growth are the driving forces of urban development [50].
Generally, rapid economic and population growth are accompanied by obvious ISA expan-
sion. Since the Guangdong government established the “PRD economic zone” in 1994, the
GHM Bay Area has experienced rapid socioeconomic development. Furthermore, China
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joined the World Trade Organization (WTO) in 2001, the population and economic growth
was accelerated by globalization, especially in the coastal zone of China [51,52]

Previous research has shown that topography is an important factor that can constrain
urban expansion and affect development patterns [53]. Figure 10 illustrated that the
development space of Guangzhou is limited by the mountains to the northeast and east. The
ISA expansion in Foshan and Zhongshan is restricted by the river and mountainous region
to the west. In addition, the ISA in Shenzhen and Hong Kong is mainly aggregated along
the coastline of the GHM Bay Area. Moreover, the ISA is restricted by the mountainous area
east of Shenzhen and Hong Kong. Therefore, the ISA growth pattern of the GHM Bay Area
changed from edge expanding and leapfrogging to infilling and consolidation after 2005.
This can be explained by the fact that not so much open arable and bare land is available
for development due to the large areas of water bodies and mountainous areas [36].
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Policy is another significant factor that can affect urban development patterns. Guang-
dong province, an “important window” of the reform and opening-up policy in China,
established the PRD economic zone in 1994. The central and local governments have
issued a series of policies to support the economic and urban development of Guangdong
province. Therefore, the ISA of the GHM Bay Area was rapidly sprawled around the urban
areas. From 2000 to 2010, the government has begun implementing the policy of “building
an ecological civilization, basically forming the industrial structure, growth mode, and
consumption mode that save energy and resources and protect the ecological environ-
ment” proposed in the 17th National Congress of the Communist Party of China, and
has maintained a good balance between high-speed urbanization and ecological resource
protection. In 2009, the Ministry of Land and Resources of the People’s Republic of China
implemented an “arable land minimum” policy to protect prime farmland. From 2010
to 2018, the release of the Implementation Plan of the National Ecological Civilization
Construction Demonstration Zone in the GHM Bay Area [49]. During this period, the
farmland and ecological land were protected by those policies, which caused an infilling
and consolidation growth pattern of GHM Bay Area.

5.3. Recommendations for Future Urban Development

Previous studies have demonstrated that the high-density ISA area can cause various
urban environmental problems, especially when the ISA density is higher than 90%. These
problems include things such as runoff increase, water pollution, and urban heat islands
(UHIs) [54–56]. The study area has relatively high precipitation during the rainy season.
Particularly, the storm can cause the disaster of urban waterlogging in the high-density
ISAs. Moreover, the flood takes pollutants from impervious surfaces to streams and
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water bodies, which caused the degradation of water quality. The ISA of the GHM Bay
Area experienced a drastic expansion from 569.23 km2 in 1994 to 10,200.53 km2 in 2016.
Additionally, the infilling and consolidation mode of ISA growth made the high-density ISA
area expand rapidly after 2005. Based on the aims of environmental protection and urban
sustainable development, this study proposes some options for future urban development:
(1) for future urban construction, the low-impact development (LID) approach should
be considered during the process of urbanization; additionally, (2) the old city districts
should be reconstructed to increase the proportion of vegetation and decrease the density
of ISA, (3) the new urban core should be established in a suitable area to further mitigate
the ISA density.

6. Conclusions

Different urban growth patterns have various impact degrees on the urban ecosystem
and environment. Impervious surface, a typical artificial construction can be used to reflect
urban development. Therefore, this study documented the ISA growth pattern of GHM
Bay Area changed from edge expanding to infilling and consolidation with a turning point
in 2004. The time series of impervious surface images revealed that the ISA of the GHM Bay
Area experienced a drastic expansion from 569.23 km2 in 1994 to 10,200.53 km2 in 2016, with
an average annual growth rate of 51.7%. In addition, an analysis of the distribution and
dynamics of the ISA density indicated that the very high-density and high-density areas
rapidly expanded and were mainly located in the urban core areas. The results of landscape
metrics and SDEs indicated that the ISA growth pattern changed from edge expanding
and leapfrogging to infilling and consolidation, with a turning point in 2004. Moreover,
the principal sprawl orientation of the ISA was northwest to southeast before 2004. After
2004, the expansion direction of the ISA was less obvious due to the development pattern
of infilling and consolidation. The rapid increase of GDP and population are the driving
forces of urban expansion. However, topography and ecological protection policies as
the limiting factors, which caused the infilling of the inner city and redevelopment of old
urban areas.

Similarly, the expansion patterns of other urban agglomerations and megacities are
changed with rapid urbanization. Thus, the urban ecosystem and environment of those
regions are also influenced by the different growth patterns. This method can be applied
to other regions by using time-series remote sensing images. The landscape metrics and
SDE can be used to identify the ISA growth pattern as well as recognition of turning points
with time-series images.
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