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Abstract: In order to achieve growth in fiscal revenue and the regional economy under the Chinese
decentralization system, the land resources misallocation (LRM) among different industries was
promoted through the differentiated land supply strategy, which has a vital role in carbon emissions.
This study theoretically analyzes the overall effect and the effect of the intermediate LRM mechanism
on carbon emissions and empirically tests the impact of LRM on carbon emissions based on panel
data collected from 30 provinces in China from 2005 to 2017 using the environmental Kuznets curve
theory. The results show that (1) the local governments have monopolized the primary land market
across the nation, leading to resource misallocation among industrial, commercial, and residential
land. This inefficient and unsustainable allocation aggravated the release of carbon emissions. (2) The
impact of LRM on carbon emissions has varied among different regions. LRM in the eastern and
central regions significantly exacerbated carbon emissions. A greater impact on carbon emissions
occurred in the eastern region, while the impact was insignificant in the western region. (3) There are
two mechanisms through which LRM affects carbon emissions. One is the restraint of upgrading
industrial structure, and the other is the restriction of technological innovations. In conclusion,
speeding up the reform of the tax sharing system is suggested to reduce the excessive dependence
of local governments on land resources. Meanwhile, in order to reduce carbon emissions, the
land acquisition and transfer system should be reformed to gradually achieve the market-oriented
allocation of land resources, and the benefits coordination mechanism of different land transfer
modes should be established. Finally, we propose different carbon emission reduction policies for the
heterogeneity of regional economic development.

Keywords: land resource allocation; carbon emission; fiscal decentralization; environmental
Kuznets curve

1. Introduction

High consumption of fossil fuels in producing energy has brought about disastrous
and irreversible environmental impacts associated with global climate change, posing
a huge threat to the world’s sustainable development and preservation of natural re-
sources [1–3]. In order to cope with the challenge of global warming, the reduction in
carbon emissions has become a hot topic of global development and has raised wide
concern among the international community [4–6]. China has embraced rapid economic
development since the reform and market opening-up, which inevitably induced the rapid
growth of fossil fuel combustion and the release of carbon emissions [7,8]. Although China
has adjusted the economic and industrial structures to release fewer carbon emissions
since the supply side reform started in 2015, the ideal level of carbon emissions may take
some time to reach due to the extensive development mode and unreasonable industrial
structure [9]. The increasing carbon emissions in China not only impede the sustainable
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development of the social economy but also induce global climate change [10]. As a re-
sponsible power, China has undertaken a series of emission reduction measures with
obvious effects, including setting emission reduction targets [11,12], signing the “Kyoto
Protocol” in 1998 and approved in 2002, and reducing the energy consumption inten-
sity of provinces [13]. According to the “China-US Joint Announcement on Climate
Change” in 2014, carbon emissions should peak and begin to decline in 2030 [14,15]. These
initiatives show the determination and pathway of the Chinese government to pursue
“low-carbon” development.

Most of the existing literature discusses the determinants of carbon emissions in terms
of the energy consumption structure and intensity, economic growth, industrial structure,
urbanization, technological innovation, foreign direct investment, and local government
behavior. Given that land is a scarce resource and an essential production factor associated
with economic development, reasonable land allocation is crucial for economic develop-
ment and the carbon emission intensity [15]. It has been found that carbon emissions
caused by a change in land use account for a high proportion of total carbon emissions,
as much as one-third in 1850–1998 [16]. The existing literature has focused on different
aspects related to the impact of land use change on carbon emissions. Some studies have
focused on the impacts of land use changes on ecosystem carbon storage or soil carbon
flux [17–19], finding that the conversion of cultivated land to construction use will reduce
ecological carbon storage [20]. Second, some papers have studied the effects of land use
changes related to carbon emissions, including land use carbon budget accounting [21–23],
the carbon emission effect assessment of land use planning schemes [24,25], and the driving
factors and factor decomposition related to land use carbon emissions [26–28]. The third
research aspect is the evaluation of the carbon effect of land use engineering projects and
low-carbon optimization [29,30]. Finally, some studies have explored the carbon emission
efficiency and carbon emission reduction potential of land use [31–34].

These studies have mainly explored the carbon emissions brought about by changes
in the allocation of land resources from the perspective of natural changes, while political
and economic institutional arrangements behind the allocation of land resources by local
governments have been ignored. Under the decentralized Chinese system, the impacts of
land allocation and utilization on carbon emissions are mainly attributable to the strong
land supply motivation of local governments in the pursuit of fiscal revenue and GDP
growth. A top priority for land use has been given to the manufacturing industry, which
can bring more revenue and GDP to the local government [35–38]. In order to attract
investment, industrial land is transferred at a “low price”, “zero price”, or even “negative
price”, while the “hungry land policy” is adopted by the government to increase the sales
prices of commercial and residential land [35–40]. The extensively used industrial land
and barren and idle industrial parks are in sharp contrast to commercial land areas with
small supply scales and high prices [41]. Thus, investigating the mechanisms by which
LRM impacts carbon emissions is significant.

Using the framework of Chinese decentralization, this article focuses on the following
three problems: (1) the impact of LRM on carbon emissions; (2) the specific mechanism
associated with the carbon emissions effect of LRM; (3) the differences in the influence of
LRM in regions with different levels of economic development. In contrast with existing
research, this paper addresses two main issues. First, it innovatively considers the mecha-
nism affecting carbon emissions from the perspective of resource allocation and provides
a new perspective for the government to optimize the allocation of land resources and
reduce carbon emissions. Second, the introduction of industrial structure upgrades and
technological innovations as intermediary variables of LRM that affect carbon emissions
is used to theoretically explain its mechanism and expand the research on the impacts of
local government behaviors on carbon emissions.
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2. Background and Theoretical Hypothesis
2.1. Institutional Background

Chinese decentralization, characterized by economic decentralization and political
centralization, has an important impact on the allocation of land resources by local gov-
ernments [42,43]. Regarding the influence of economic decentralization, the reform of
the tax sharing system in 1994, as the proxy of economic decentralization, changed the
financial revenue and expenditure structure of the central and local governments, shaping
a pattern of fiscal decentralization with a “strong trunk and weak branches” [44,45]. The
ever-widening fiscal gap has forced local governments to seek extra-budgetary revenue. As
a core revenue resource for local governments, land granting has become an important tool
used by local governments to relieve financial pressure. As part of the monopolization of
the land acquisition market and the primary land market, local governments have adopted
high-price and limiting-supply strategies for commercial and residential land to obtain
more land granting revenue. Meanwhile, in order to pursue value-added tax and expand
the tax base, the best strategy for local governments is to sell large amounts of industrial
land at low prices to attract investment [35–40]. Therefore, “Growing money with the land”
is considered to be an important result of fiscal decentralization.

Political centralization is mainly manifested by the fact that the central government
(senior government) has the primary power to appoint, remove, and promote officials
from the local government (junior government) through a performance evaluation index
system [35–37,46]. In China, the performance evaluation system based on economic devel-
opment indicators results in a “promotion tournament”, “GDP tournament”, and other
unique phenomena [36,46]. As economic growth relies on investment and the price of in-
dustrial land affects the cost of factors related to enterprise, local governments prioritize the
low-price transfer of industrial land to attract investment and use non-mobile urban land
elements to attract mobile capital and labor to drive the economic development of the juris-
diction. At the same time, the manufacturing industry promotes housing prices through
spillover effects, which helps the local government to obtain fiscal revenue [35–40,47]. The
resulting financial guarantee benefits regional infrastructure construction and lays the
foundation for attracting investment; that is, “attracting capital from the land” is closely
related to political centralization.

In the context of China’s unique decentralization system, the local government’s
differentiated supply strategy for different uses of land was formed. The best strategy
for local governments is to sell large amounts of industrial land at low prices and, at the
same time, to sell commercial and residential land at high prices, thus jointly promoting
the development of China’s urbanization and industrialization [35–40,47,48]. However,
this strategy has caused scale mismatch and price distortion between industrial land and
commercial and residential land, reducing the efficiency of land use and causing distor-
tions in the allocation of land resources, [35–40,49]. The misallocation of land resources
hinders the improvement of enterprise land use efficiency, inhibits the enterprise inno-
vation, and reduces the living environment quality. It also leads to the formation of the
industry structure dominated by low-end manufacturing industries. These impacts further
cause problems such as repeated industrial construction and the suppression of industrial
structure upgrading, which, in turn, makes the environmental pollution problem more
serious [35–40,48–52]. Therefore, the essence of the effect of LRM is the distortion of the
factor market, which has affected the industrial structure and technological innovation and,
thus, has affected carbon emissions.

2.2. Land Resource Misallocation, Industrial Structural Upgrade, and Carbon Emissions

The main mechanisms associated with LRM to restrain the upgrading of industrial
structures are as follows: on the one hand, in order to stand out in the “promotional cham-
pionship”, local governments have adopted a “competitive” strategy, that is, a low-price
and large-scale transfer of industrial land, lower industrial entry barriers, and a bottom-
line focus on investment quality to attract enterprises to invest. As local governments
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tend to attach importance to the scale rather than the quality of investment promotion, a
large number of low-end manufacturing industries have entered the market, resulting in a
low-level, repetitive, and homogenous industrial structure [53,54]. The excessive distortion
of profit rate inhibits the upgrade of industrial structure and strengthens the structural
rigidity of middle- and low-end manufacturing industries with high levels of carbon emis-
sions [55]. On the other hand, to make up for the loss of low-cost industrial land transfer,
local governments tend to limit the supply scale of commercial land and increase its price,
which has caused a crowding-out effect for the services industry [35,36,56]. Thus, the
large-scale agglomeration of low-end manufacturing has hindered the transformation of
the industrial structure from labor and capital-intensive to knowledge- and technology-
intensive industries, which is not conducive to the transformation and upgrading of the
industrial structure.

As it is closely related to the variety and quantity of resources consumed in the
production process, the industrial structure determines the utilization efficiency of re-
sources [35,57], thus affecting regional carbon emissions. Manufacturing, especially heavy
industries, is an energy-intensive industry and the main body responsible for energy
consumption and carbon emissions. In contrast, the tertiary industry is dominated by
knowledge-intensive and technology-intensive industries, which consume less energy
and emit fewer carbon emissions [58]. Therefore, our first hypothesis is that LRM is not
conducive to the development of a low-carbon economy as it restrains the upgrading of
the industrial structure.

2.3. Land Resource Misallocation, Technological Innovation, and Carbon Emissions

LRM hinders technological innovation in the following three ways. First, the misallo-
cation of land resources has increased the profits of real-estate-related industries, leading a
large number of credit funds and corporate funds to be invested in the real estate industry,
thereby squeezing out innovative R&D investment funds. Meanwhile, compared with
the real economy, such as manufacturing and agriculture, the technological innovation
capabilities of real estate are lower [59], which reduces the innovation capability of the
entire industrial economy. Second, the misallocation of land resources is associated with
high housing prices, increasing the cost of living for residents and reducing the utility
levels of producers and consumers [60,61], which is not conducive to the inflow of labor.
Additionally, cities with higher housing prices often hinder the regional agglomeration
effect and the improvement of innovation performance [38,62]. In addition, with limited
family resources and traditional concepts, high housing prices will inhibit higher-risk
innovative and entrepreneurial activities [63]. Third, the misallocation of land resources
can easily lead to rent-seeking, which restricts the improvement of enterprises’ innovation
capabilities. In the context of land monopoly supply and a lack of regulatory mechanisms,
local governments can autonomously control the scale and price of land supply, which can
easily breed corruption and land violations [35,37,64]. If companies focus on government
rent-seeking instead of using their talents in management and innovation, the market
regulations will be undermined, and the development of corporate innovation activities
will be hindered. The non-marketization of the economic system will result in rent-seeking
self-reinforcement, which will not only crowd out the innovation funds of enterprises but
also result in insufficient motivation for innovation across the entire society [40,65].

Technological innovation is of great significance for the reduction in regional carbon
emissions. Numerous studies have shown that the difference in technological innovation
between regions is the key factor associated with differences in energy use efficiency
and is an important means for reducing carbon emissions [66,67]. General technological
innovation can improve land resource utilization efficiency, energy utilization efficiency,
labor productivity, and reduce carbon emissions per unit GDP. Environmentally friendly
technological innovations allow for the replacement of high-energy-consumption and
highly polluting technological equipment with low-energy-consumption and low polluting
equipment [34], reducing regional carbon emissions to a certain extent.
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In summary, our second hypothesis is that LRM is not conducive to the reduction in
carbon emissions as it restrains technological innovation by enterprises.

3. Model and Data
3.1. Model Settings

Based on the environmental Kuznets curve (EKC) model proposed by Grossman
and Kruger [68], we constructed a basic model to introduce land resource misallocation,
as follows:

LCEit = β0 + β1LRMit + β2LEit + β3LE2
it + γit ∑n

j=1 Xjit + εit (1)

where subscripts i and t refer to the region and year, respectively. The dependent variable
LCEit represents the total carbon emissions, LRMit refers to the land resource misallocation,
LEit represents the economic growth level, and LEit

2 is used to verify whether there is a
non-linear relationship between economic growth and environmental pollution. ∑n

j=1 Xjit
is a set of control variables, where j represents the number of control variables, and εit is
the error term.

3.2. Specification of Variables

We selected total carbon emissions as the explained variable and calculated its value
based on reference methods recommended by the Intergovernmental Panel on Climate
Change (IPCC, 2006) in the “Guidelines for National Greenhouse Gas Inventories” [1].
The following eight main energy varieties were measured: coal, coke, crude oil, gasoline,
kerosene, diesel, fuel oil, and natural gas. The emission coefficient values of the energy
varieties are shown in Table 1. The calculation method used was as follows:

LCE = ∑8
k=1 LCEk = ∑8

k=1 Ek × SCk × CFk (2)

where LCE is the total carbon emissions, K is the energy type, E is energy consumption, SC
refers to the standard coal conversion coefficient, and CF is the carbon emissions coefficient.

Table 1. The calculation coefficient for various energy varieties.

Variety of Energy Coal Coke Crude Oil Gasoline Kerosene Diesel Fuel

Conversion standard coal coefficient 0.7143 0.9714 1.4286 1.4714 1.4714 1.4571 1.4286 1.3300
Carbon emissions coefficient 0.7559 0.855 0.5857 0.5538 0.5714 0.5921 0.6185 0.4226

Note: units used for the standard coal coefficient: kg/m3 for natural gas, tce/t for the rest.

Regarding the core explanatory variable, the following four main dimensions can be
used to identify the misallocation of land resources: agricultural land and construction
land, land indicators among different cities, the urban construction land reserve in different
industries, and the land resources of industrial enterprises in cities [69,70]. Considering that
carbon emissions are related to industries, this study mainly measured the misallocation
degree of land resources in different industries and for different purposes, that is, the urban
construction land area in different industries. As local governments have a monopoly in
the primary land market, they can affect the supply scale and price of different uses of land.
Low prices and the excessive transfer of industrial land will seriously underestimate the
price of industrial land, resulting in a serious waste of scarce land resources. While the
land-hungry strategy to raise the price of residential and commercial land and “horizontally
subsidize” the loss of industrial land at a low price will lead to high housing prices, increase
the living cost of urban residents, and reduce the land use efficiency, the nature of extensive
and inefficient use of land resources is resource misallocation [71,72]. Due to the lack of
corresponding micro-statistical data, land resource misallocation cannot be quantitatively
measured according to the marginal output of construction land for different purposes.
Therefore, scholars select representative indicators and adopt indirect methods to measure
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land resource misallocation [73]. Most previous studies regarded “negotiated transfer” as a
synonym of “industrial land” and “low-price transfer” [74], where the larger the proportion
of negotiated transfer is in a region, or the larger the scale of industrial land transfer is
in this region, and the greater the misallocation degree of land resources is. That is, the
ratio of the agreed and total leased areas is used to quantify land resource misallocation.
At the end of 2006, the State Council promulgated and implemented the “Circular of the
State Council on Intensifying the Land Control”, stipulating that industrial land must be
transferred through bidding, auction, and listing. This policy led to a rapid decline in the
proportion of negotiated transfers of industrial land after 2008. Referring to the research of
some scholars, we used the proportion of negotiated transfer area to the transfer area of
state-owned construction land to measure the degree of land misallocation from 2003 to
2008. We used the proportion of the industrial and mining storage land supply area to the
transfer area of state-owned construction land to measure the degree of land misallocation
from 2009 to 2017 [35–40,69].

For the control variables, based on existing research [6–9,11–34], the impacts of seven
indicators—economic growth, population, urbanization, industrial structure, science and
technology level, fixed-asset investment, and foreign direct investment (FDI)—on the
direction and extent of regional carbon emissions were explored. We also added the
quadratic term economic growth to verify the Kuznets curve hypothesis. In order to
eliminate the effect of heteroscedasticity, all the variables used are presented as logarithms.
All the variables are shown in Table 2.

Table 2. Connotations of the variables.

Variable Type Variable Name Calculation Methods (All Natural Logarithm)

Explained variable Carbon emissions (LCE) Total carbon emissions
Carbon emissions intensity (LCI) Total carbon emissions/GDP

Core explanatory variable Land resource misallocation (LRM)

Negotiated transfer area/total construction land transfer
area (2005–2008)

Industrial and mining storage transfer area/total
construction land transfer area (2009–2017)

Control variables

Economic growth (LE) GDP per capita
Economic growth squared (LE2) GDP per capita squared

Population size (LP) Total population
Urbanization (LURB) Urban population/total population

Industrial structure (LIND) Added value of the secondary industry/GDP

Scientific and technological level (LT) The number of inventions in the authorized number of
three domestic patent applications

Fixed-asset investment (LPFI) Total investment in fixed assets/total population
Foreign direct investment (LPFDI) Actual use of foreign investment/total population

3.3. Data Collection

Due to a lack of data on carbon emissions in prefecture-level cities, panel data from
30 provinces (excluding Tibet, Hong Kong, Macao, and Taiwan) in China collected from
2005 to 2017 were used. Data on LRM were collated from the “China Land and Resources
Statistical Yearbook (2006–2018)”. Data on carbon emissions were obtained from the “China
Energy Statistical Yearbook (2006–2018)”. Data on foreign direct investment were acquired
from the “China City Statistical Yearbook (2006–2018)”, and data on the remaining variables
were obtained from the “China Statistical Yearbook (2006–2018)”. The descriptive statistics
for the analyzed data are illustrated in Table 3.
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Table 3. Descriptive statistics of each variable.

Variable Name Unit Mean Std. Dev. Min. Max.

LCE Ten thousand tons 10,137.43 7175.44 446.92 40,184.93
LCI Tons/ten thousand yuan 8799.85 5957.42 1226.59 37,745.19

LRM % 35.13 18.89 0.63 91.47
LE Yuan 36,820.61 22,790.81 5052 118,198
LE2 Yuan 1.87 × 109 2.41 × 109 2.55 × 109 1.4 × 1010

LP Ten thousand people 4438.36 2663.31 543 10,999
LURB % 52.38 14.03 26.86 89.61
LIND % 46.85 7.90 19.26 59.05

LT Item 3699.03 6451.28 23 40,952
LPFI Ten thousand yuan/person 2.44 1.55 0.27 8.18

LPFDI Ten thousand yuan/person 0.11 0.14 0 1.37

4. Results and Discussion
4.1. Basic Estimation Results

To avoid spurious regressions, it is usually necessary to test the stationarity of the
panel data. Given that short-term panel data were used in this paper, the Hausman test
(HT) was adopted. The results of the HT show that all the variables passed the significance
test; that is, the variables were deemed to be stationary. Based on the results of the HT, the
fixed effect model was determined to be better than the random effect model. The results
of the fixed effect model and the random effect model are shown in Table 4.

Table 4. The impacts of LRM on carbon emissions at the national level.

Model 1 (FE) Model 1 (RE) Model 2 (FE) Model 2 (RE)

LRM 0.0336 ***
(3.01)

0.0340 ***
(3.04)

0.0330 ***
(3.08)

0.0355 ***
(3.26)

LE 1.2621 ***
(4.16)

1.2782 ***
(4.21)

1.47528 ***
(4.13)

1.7685 ***
(4.44)

LE2 −0.0418 ***
(−2.81)

−0.0426 ***
(−2.86)

−0.0680 ***
(−3.4)

−0.0683 **
(−3.72)

LP 0.4749 **
(2.23)

0.7142 ***
(7.89)

LURB −0.5384 ***
(−2.88)

−0.3288 *
(−1.92)

LIND 0.2349 ***
(3.03)

0.2885 ***
(3.78)

LT 0.0200
(0.73)

0.0020
(0.07)

LPFI 0.1142 ***
(2.75)

0.0921 **
(2.29)

LPFDI −0.0602 ***
(−5.03)

−0.0588 ***
(−4.87)

R2 0.7376 0.7376 0.7763 0.7749
F/Wald 334.55 *** 1001.30 *** 135.37 *** 1244.61 ***

Hausman test 3.77 *** 27.47 ***
N 390 390 390 390

Note: the data in the table excluding parentheses are coefficients; t values are presented in parentheses; *, **, and
*** represent significance at the 10, 5, and 1% levels, respectively; FE(RE) stands for fixed(random) effects model.

According to the estimation results for Model one, the LRM passed the significance
level test at the 1% level, indicating a positive correlation between LRM and total carbon
emission production. The results show that each unit of LRM increases the total carbon
emissions by 0.0336 units. Model two was obtained by adding control variables. The
coefficient of LRM was 0.0330 and was significant at the 1% level, indicating that LRM
significantly aggravates carbon emissions.
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Both LE and LE2 passed the significance test, and the coefficient of LE was found to
be positive, while the coefficient of LE2 was found to be negative, indicating that the GDP
per capita and the carbon emissions production have an inverted U-shaped relationship.
As the results for Model two are consistent with those obtained with Model one, we argue
that these findings verify the EKC hypothesis.

Both the population size (LP) and urbanization level (LURB) passed the significance
test at the 1% level, with coefficients of 0.4749 and −0.5384, respectively. This indicates that
although an increase in the total population will increase carbon emissions, the scale effect
and agglomeration effect of urbanization can improve urban infrastructure and services,
promoting the reduction in energy consumption. The coefficient of the industrial structure
(LIND) was found to be 0.2349, and this was significant at the 1% level, indicating that the
higher the proportion of the output value of the secondary industry is in terms of the GDP,
the more industries there will be with a high energy consumption, high levels of emissions,
and low efficiency, and the stronger the dependence on energy and the higher the level of
carbon emissions will be. The result is consistent with the findings of Zhang, and it verifies
the industrial structure as being one of the driving factors for China’s carbon emission
growth [75]. The coefficient of the science and technology level (LT) was found to be
0.0200, but no significance was shown. We expect that the level of science and technology
will reduce carbon emissions by improving the efficiency of energy utilization. However,
the results show that the level of science and technology in China has not significantly
improved the efficiency of resource use. The coefficient of fixed-asset investment (LPFI) was
found to be positive and significant at the 1% level, indicating that the extensive economic
development mode driven by investment will promote an increase in carbon emissions.
The coefficient of LPFDI was found to be −0.0602, which passed the significance test at the
1% level, indicating that foreign investment has reduced carbon emissions. Theoretically,
foreign investment has “pollution heaven” and “pollution halo” effects on carbon emissions.
On the one hand, foreign investment transfers heavily polluting industries to developing
countries to avoid environmental regulations, thus increasing the local carbon emission
level. On the other hand, foreign investment has a higher technological level than local
enterprises, which will reduce carbon emissions [76]. The results show that foreign direct
investment has a “pollution halo” effect on carbon emissions.

4.2. Regional Differences

According to the general division of the National Statistical Bureau and the most
related research [77,78], this paper divided 30 provinces into three major regions. The
eastern region included 11 provinces (Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu,
Zhejiang, Fujian, Shandong, Guangdong, and Hainan). The central region included eight
provinces (Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, and Hunan), and
the western region included 11 provinces (Inner Mongolia, Guangxi, Sichuan, Chongqing,
Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang). We further explored
the impact of LRM on carbon emissions by region. The regional regression results are
shown in Table 5.

The HT results presented in Table 5 show that the fixed effect model worked better
for our data. Thus, we mainly report the results of the fixed effect model, as shown in
columns one, three, and five. The impact coefficients of LRM were found to be positive
in all three regions. Specifically, the coefficient of the impact of LRM on carbon emissions
in the Eastern and Central regions was 0.0230 and 0.0225, respectively, with both values
being significant, while the impact of LRM on carbon emissions in the Western region
was not significant. This difference may be related to the differences in the degree of
land development and stage of development between regions. Local governments in the
eastern and central regions pay more attention to the scale rather than the quality of the
investment attracted, as this promotes political performance. This leads to the “bottom line
for attracting investment” effect being more prominent than in western China; that is, the
impact of LRM on carbon emissions is more pronounced in the eastern and central regions.
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Table 5. The impact of LRM on carbon emissions by region.

Eastern
Regions
(FE)/(1)

Eastern
Regions
(RE)/(2)

Central
Regions
(FE)/(3)

Central
Regions
(RE)/(4)

Western
Regions
(FE)/(5)

Western
Regions
(RE)/(6)

LRM 0.0230 *
(1.82)

0.0280 ***
(3.04)

0.0225 **
(2.55)

0.0602
(1.21)

0.0284
(1.24)

0.0218
(0.83)

LE 5.1111 ***
(7.31)

3.7806 ***
(2.90)

4.9367 ***
(8.25)

7.9190 ***
(2.65)

0.1650
(0.22)

−1.0626
(−1.39)

LE2 −0.2159 ***
(−6.62)

−0.1398 **
(−2.39)

−0.2223 ***
(−7.88)

−0.3423 **
(−2.35)

0.0084
(0.24)

0.0716 **
(2.03)

LP 0.6137 **
(2.39)

1.3941 ***
(14.65)

0.4727
(1.13)

0.0307
(0.12)

2.0113 ***
(3.47)

0.5490 ***
(3.96)

LURB 0.1485
(0.48)

0.5981 **
(2.08)

−0.4649***
(−3.14)

−1.7198 ***
(−2.79)

−2.2334 ***
(−5.08)

−1.9086 ***
(−4.41)

LIND 0.4080 ***
(2.63)

0.6428 ***
(5.01)

−0.0563
(−0.97)

−0.1441
(−0.54)

0.3735 **
(2.10)

0.2940
(1.62)

LT −0.0326
(−0.81)

−0.3587 ***
(−6.46)

0.0751 ***
(3.03)

0.0672
(0.63)

0.0679
(1.36)

0.0048
(0.09)

LPFI −0.0204
(−0.37)

0.1221
(1.60)

−0.1306 ***
(−3.14)

0.2147
(1.2)

0.3386 ***
(3.34)

0.0921 **
(2.29)

LPFDI −0.0477 *
(−1.93)

−0.0378
(−0.89)

0.0001
(0.01)

−0.6403 ***
(−7.95)

−0.0061
(−0.39)

0.3766 ***
(3.48)

R2 0.8500 0.7499 0.9214 0.8484 0.8574 0.8448

F/Wald 77.46 *** 1409.39 *** 113.32 155.71 82.17 *** 570.07 ***

Hausman test 66.33 *** 103.54 *** 951.41 ***

N 143 143 104 104 143 143

Note: the data in the table excluding parentheses are coefficients; t values are presented in parentheses, *, **, and *** represent significance
at 10, 5, and 1% levels, respectively; FE(RE) stands for fixed(random) effects model.

The first and second terms of GDP per capita (LE and LE2) passed the significance test
in the eastern and central regions, and the negative coefficient of the quadratic term showed
a significant inverted U-shaped relationship between the GDP per capita and the carbon
emissions produced. In contrast, in the western region, the coefficient was not significant.
Regarding the different impacts of control variables, in the eastern region, the population
size (LP) and industrial structure (LIND) were shown to promote an increase in carbon
emissions significantly, and foreign direct investment (LPFDI) was associated with reduced
carbon emissions. In the central region, the sci-tech level (LT) was shown to stimulate
carbon emissions, while urbanization (LURB) and the level of investment in fixed assets
(LPFI) were associated with decreases in the level of carbon emissions. In the western
region, the population size (LP), industrial structure (LIND), and investment in fixed
assets (LPFI) were found to have significant positive relationships with carbon emissions,
while the rate of urbanization (LURB) was found to be conducive to the reduction in
carbon emissions.

4.3. Intermediate Mechanism

Based on the theoretical analysis, two variables were selected to explore the internal
mechanisms of the impact of LRM on carbon emissions. One was the intermediate mecha-
nism related to industrial structure upgrading, and the other was technological innovation.

Regarding the upgrading of industrial structure, this study constructed a hierarchical
index of an industrial structure to represent the advanced level of the industrial structure.
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This was achieved by referring to the practices of Li and Luo [27]. The specific calculation
formula used was as follows:

IS = ∑3
i=1 Ii × i = I1 × 1 + I2 × 2 + I3 × 3 (3)

where Ii represents the proportion of the output value of industry i to the GDP. A larger
value indicates a more advanced regional industrial structure. In order to eliminate the
influence of heteroscedasticity, the natural logarithm was adopted (LIS).

For the measurement of technological innovation, the index of government expendi-
ture on science and technology (LSTE) was selected. Then, the mediation effect model was
applied, and the regression results are shown in Table 6.

Table 6. Results for the intermediate model.

Variables LIS LSTE LCE LCE

LRM −0.0123 **
(−2.54)

−0.6447 ***
(−9.20)

0.0349 ***
(3.13)

0.0447 ***
(4.36)

LE 1.0744 ***
(3.38)

1.0634 ***
(2.73)

LE2 −0.0312 ***
(−1.97)

−0.0329 *
(−1.72)

LIS −0.8110 *
(−1.90)

LSTE −0.0266 ***
(−3.12)

R2 0.1148 0.2110 0.7403 0.6580

N 360 360 360 360
Note: the data in the table excluding parentheses are coefficients; t values are presented in parentheses; *, **, and
*** represent significance at the 10, 5, and 1% levels, respectively.

As shown in Table 6, LRM was found to have a significant negative effect on industrial
structure upgrading (LIS) and technological innovation (LSTE), with coefficients of −0.0123
and −0.6447 at the 1% level, respectively. Meanwhile, the impact coefficients of both indus-
trial structure upgrading (LIS) and technological innovation (LSTE) on carbon emissions
were negative, −0.8110 and −0.0266, and significant at the 10 and 1% levels, respectively,
which is consistent with hypotheses one and two. These results verify that the mechanism
through which land allocation impacts carbon emissions involves the hindering of industry
structure upgrading and technological innovation.

4.4. Robustness Test

We demonstrated that our results were robust by analyzing the relationship between
LRM and total carbon emissions. To further verify the robustness of the results on the
impact of land resources on carbon emissions, the carbon emission intensity (LCI) was
used as a substitute explanation variable. The regression results are shown in Table 7.

The estimated results for the fixed effect model were generally consistent with the
above analysis. For the national model, the coefficient of LRM was 0.0330 and this was
significant at the 1% level; that is, LRM by local governments also significantly increases
the carbon emission intensity. In the sub-region model, the regression coefficients of LRM
in the Eastern and Central regions were 0.0236 and 0.0215, respectively, and both of these
results passed the significance test. The coefficient of LRM in the Western region (0.0272)
was not significant. These results indicate that the local governments of the eastern and
central regions have a more prominent “bottom line for attracting investment” effect.
Moreover, the results for the significance and signs of the estimated coefficients of most
control variables are basically consistent with the basic estimation results, verifying that
the conclusions are reliable and stable.
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Table 7. Results for the impact of LRM on the carbon emission intensity.

Nationwide
(FE)

Eastern Regions
(FE)

Central Regions
(FE)

Western
Regions (FE)

LRM 0.0330 ***
(3.06)

0.0236 *
(1.83)

0.0215 **
(2.51)

0.0272
(1.20)

LE 1.0145 **
(2.38)

4.1577 ***
(5.84)

4.1624 ***
(7.17)

−0.4755
(−0.65)

LE2 −0.0794 ***
(−3.95)

−0.2180 ***
(−6.56)

−0.2328 ***
(−8.51)

−0.0043
(−0.12)

LP −0.4824 **
(−2.26)

−0.2879
(−1.1)

−0.4346
(−1.07)

0.9142
(1.59)

LURB −0.5430 ***
(−2.89)

0.1980
(0.63)

−0.4826 ***
(−3.37)

−2.4168 ***
(−5.54)

LIND 0.2380 ***
(3.06)

0.4653 ***
(2.94)

−0.0619
(−1.09)

0.2979 *
(1.69)

LNT 0.0111
(0.41)

−0.0430
(−1.04)

0.0742 ***
(3.09)

0.0646
(1.30)

LPFI 0.1072**
(2.57)

−0.0150
(−0.27)

−0.1313 ***
(−3.26)

0.3086 ***
(3.06)

LPFDI −0.0574 ***
(−4.78)

−0.0529 **
(−2.11)

−0.0052
(−0.25)

−0.0018
(−0.12)

R2 0.8854 0.9299 0.9818 0.8906
F 301.44 *** 181.23 *** 521.82 *** 111.23 ***
N 390 143 104 143

Note: the data in the table excluding parentheses are coefficients; t values are presented in parentheses; *, **, and
*** represent significance at the 10, 5, and 1% levels, respectively; FE(RE) stands for fixed(random) effects model.

5. Conclusions

Total carbon emissions control is considered as a national strategy in China, and
land resource allocation is the critical factor in the study of carbon emissions. Based on a
theoretical analysis, this paper empirically tested the impact of LRM on carbon emissions
using panel data from 30 provinces in China from the perspective of Chinese decentral-
ization from 2005 to 2017. The results show the following: (1) The local governments’
monopolization of the primary land market across the nation has resulted in LRM among
industries and services. The inefficient and unsustainable allocation has aggravated the
level and intensity of carbon emissions. (2) The impacts of LRM on carbon emissions have
varied to some extent among different regions. LRM in the eastern and central regions has
significantly exacerbated carbon emissions. More specifically, it has had a greater impact
on carbon emissions in the eastern region, while it was shown to not obviously affect
carbon emissions in the western region. (3) Based on the intermediary effect model, the
intermediary mechanism through which LRM affects carbon emissions was found to be
the restraint of industrial structure upgrading and technological innovation. Therefore, in
summary, the serious misallocation of land resources among industries and services has
strengthened the structural rigidity of medium- and low-end industries with high carbon
emissions and hindered the enthusiasm of enterprises to undergo technological innovation
under the Chinese decentralization system.

Based on this study, the following policy recommendations were concluded: (1) it is
recommended that the fiscal and taxation system should be reformed to reduce the local
governments’ excessive dependence on land and to avoid excessive distortion of land
resource allocation for economic growth. On the one hand, a fiscal and taxation system that
matches the fiscal revenue power and responsibility of public affairs between the central
government and local government should be developed; on the other hand, sustainable tax
sources, such as real estate taxes, should be identified to fundamentally eliminate the exces-
sive pursuit of land finance by local governments. (2) The performance appraisal system
for local officials used in China should be improved. As Xia et al. pointed out, it should
moderately reduce the weight of fiscal revenue and GDP assessment in areas with a fragile
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ecological environment, increase incentives for ecological environment protection, and
put the development of the low-carbon economy into practice [78]. (3) The system of land
expropriation and transfer should be reformed to gradually achieve a market-oriented land
resource allocation model and improve the efficiency of land allocation and utilization. (4)
Different carbon emission reduction policies should be formulated for the eastern, central,
and western regions based on the heterogeneity of the regional economic development,
industrial scale, technological level, and trade structure to promote regional low-carbon
green development. The eastern region should optimize its land supply structure, change
its economic growth mode, promote the transformation and upgrading of industrial struc-
ture, eliminate industries with high levels of energy consumption and pollution and low
efficiency, and encourage technological innovation. The central and western regions should
encourage urban agglomeration through increasing the urbanization rate, pay more at-
tention to optimizing and adjusting the energy consumption structure, and vigorously
promote the use of clean energy.
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