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Abstract: Intensive land use can support sustainable socioeconomic development, especially in the
context of limited land resources and high population. It is measured by land-use intensity that
reflects the degree of land-use efficiency. In order to support decision-making for efficient land use, we
investigated the mechanism whereby natural and socioeconomic factors influence land-use intensity
from the perspectives of overall, region-, and city-based analysis, respectively. This investigation was
conducted in Chinese cities using the multiple linear stepwise regression method and geographic
information system techniques. The results indicate that: (1) socioeconomic factors have more positive
impact on land-use intensity than natural factors as nine of the top 10 indicators with the highest SRC
values are in the socioeconomic category according to the overall assessment; (2) education input
variously contributes to land-use intensity because of the mobility of a well-educated workforce
between different cities; (3) the increase in transportation land may not promote intensive land use in
remarkably expanding cities due to the defective appraisal system for governmental achievements;
and that (4) in developed cities, economic structure contributes more to land-use intensity than the
total economic volume, whereas the opposite is the case in less-developed cities. This study can
serve as a guide for the government to prepare strategies for efficient land use, hence promoting
sustainable socioeconomic development.

Keywords: land-use intensity; influence mechanism; multiple linear stepwise regression; China

1. Introduction

Population growth and economic development have been increasing the demand for
food, fuel, and many other materials, mostly derived from land [1–3]. However, most
fertile land globally has been already occupied by human beings [4,5]. This means that
more products from land to support social development largely rely on the efficient use
of farms, forests, and built-up land rather than undeveloped land [6]. Land-use intensity
(LUI) is an effective indicator reflecting the degree of land-use efficiency [7]. Intensive land
use is regarded as a sustainable path to reducing the competition for productive land and
reconciling urban development with environmental protection [8].

In order to evaluate LUI and encourage intensive land use, many studies have ex-
plored its definition, evaluation indicator systems, evaluation methods, driving forces, and
applications on various scales. For example, Brookfield defined agricultural intensifica-
tion as the substitution of inputs of capital, labor, and skills for land to achieve higher
production levels from a given area [9]. Erb et al. indicated that the intensification of land
use denotes an increase in socioeconomic inputs to and/or outputs from land, and that it
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is imperative to find ways of sustainable intensification that allows for reaping its land-
sparing benefits while avoiding negative social and ecological effects [1,10]. According to
Lorel et al., LUI can be decomposed into three dimensions, namely inputs, outputs, and
system-level intensity of land-based production [11]. The three dimensions were measured
using five indices and applied to an LUI study of 25,758 French metropolitan municipal-
ities. Teillard et al. focused on the intensity of inputs and produced an input cost/ha
aggregated intensity indicator to map agricultural intensity in France [12]. However, such
inconsistent understanding of LUI has resulted in different evaluations of LUI for cities
and regions [10,13]. It is, therefore, challenging to combine these separate evaluations for a
regional development scheme [13–16].

Regarding the driving forces of LUI, both natural and socioeconomic factors influence
land use [17–20] and land-use intensity [6,7,21]. For example, agricultural LUI is associated
with household class, cropping strategies, environmental constraints, traffic infrastructure,
and policies [22–25]. Labor scarcity resulting from the excessive emigration of rural labors
can negatively impact the LUI of arable land [26]. Some policies such as the prime farmland
preservation in China may increase LUI in the country’s urban areas [27]. The emergence of
high-tech and high-value-added industries is also beneficial to intensive land use because
they can produce more with less built-up land [7]. There are studies concerning the
relationship between LUI and individual factors, e.g., ecological factors and landscape
complexity [28], whereas the systematic exploration of the mechanism where natural and
socioeconomic factors influence LUI is rare. Because the influence of a socioeconomic factor
on LUI may vary with natural resources and environmental restrictions and because the
influences of multiple factors may interact, analysis with few single factors is insufficient
to comprehensively reveal the intrinsic LUI influence mechanism.

As the largest developing country with about 20% of the global population [29],
China has limited natural resources per capita, particularly arable and built-up land, thus
increasing socioeconomic pressure on the eco-environmental system [30]. Efficient land
use seems to be the most feasible solution to the challenge [31,32]. Located in the east of
Asia (73◦3′–135◦3′ E, 3◦31′–53◦33′ N), China has a varied climate—from tropic in the south
to subfrigid in the north—and terrain, mostly mountains, high plateaus, and deserts in the
west and plains, deltas, and hills in the east (https://www.indexmundi.com/china/terrain.
html, accessed on 13 July 2020). The 297 cities in the Chinese mainland, listed in China City
Statistical Yearbook 2019, are scattered throughout the country, though mostly in the east
(Figure 1). This context suggests that both LUI patterns and the impacts of natural and
socioeconomic factors on LUI may spatially vary.

Unlike many previous studies on the impacts on LUI that were conducted for indi-
vidual cities or provinces [33,34], Xu and Chi investigated spatiotemporal variations of
land-use intensity and its driving forces in China on a county scale [35]. They measured
the LUI degree of individual counties in 2000–2010 using the grade assignment method for
each land-use type (built-up land, arable land, forests, grassland, water body, and unused
land). However, this study did not consider the contributions from education and scientific
input, economic structure, and the administrative level of counties. The temporal variation
of such influences on LUI was not mentioned.

Since the implementation of the Reforming and Opening-up Policy (i.e., 1978), the
economy and society of China have distinctly developed. Over the past decades, China’s
economy has evolved from a ‘high-speed’ to a ‘high-quality development’ stage in the
2010s [36]. Deep analysis of the detailed influence on LUI from both economic growth
and economic structure transformation is, therefore, essential to support efficient land use
in China.

https://www.indexmundi.com/china/terrain.html
https://www.indexmundi.com/china/terrain.html
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Figure 1. The annual average temperature, elevation, and cities in China.

The general goal of this study was to investigate the impact of natural and socioeco-
nomic factors on land-use intensity in Chinese cities over the course of 28 years ranging
from 1990 to 2017. In particular, this study has the following specific objectives: (1) to iden-
tify the major factors driving changes in land-use intensity; (2) to explore the mechanism
whereby socioeconomic factors influence LUI socioeconomic; and (3) to characterize the
influences of natural and socioeconomic factors, e.g., the economic growth and structure,
on land-use intensity in Chinese cities.

2. Materials and Methodology
2.1. Materials

Due to data availability, 294 of the 297 cities in the Chinese mainland were selected
in this study. The data of each city for each year were then accordingly obtained, which
created a total of 294 × 28 samples for the assessment. Socioeconomic data of these
cities were mostly obtained from the annually published China City Statistical Yearbook
(https://tongji.oversea.cnki.net/chn/navi/NaviDefault.aspx, accessed on 12 June 2020).
Missing socioeconomic data, accounting for about 2.4% of the total data, were collected
from regional statistical yearbooks or interpolated using appropriate methods. Average
temperature and precipitation data of the weather stations in the Chinese mainland were
freely provided by China Meteorological Data Service Center (http://data.cma.gov.cn,
accessed on 5 June 2020). ASTER GDEM and MODIS NDVI (Normalized Difference
Vegetation Index) products at 1km resolution were acquired from the Computer Network
Information Center of the Chinese Academy of Sciences (www.gscloud.cn, accessed on 5

https://tongji.oversea.cnki.net/chn/navi/NaviDefault.aspx
http://data.cma.gov.cn
www.gscloud.cn
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June 2020). We also collected the location data of Chinese cities and the river data from the
National Geomatics Center of China (https://www.webmap.cn/commres.do?method=
dataDownload, accessed on 5 June 2020).

2.2. The Indicator System for Assessing Influence on Land-Use Intensity

Since the main objective of intensive land use is increasing the output from land
resources to support the development of human societies, particularly in developing
countries, we used the second and tertiary gross regional product per km2 (STGRPP, unit:
CNY 10,000 per km2) as proxy for the output to represent land-use intensity. The STGRPP
is an objective indicator that can be directly calculated from statistical data and allows
for comparison.

Generally, an indicator system with more indicators may help to produce a more
comprehensive evaluation but it also requires more data and complicated data analysis [37].
It is therefore advisable to apply an indicator system that contains indicators characterizing
important factors. In addition, time and cost can be reduced if indicator data can be
directly collected from stakeholders other than generated with extra efforts or by a third
party. On the basis of the above considerations, an indicator system with both natural and
socioeconomic factors was established to assess their socioeconomic influences on intensive
land use (Table 1).

Table 1. Indicator system containing both natural and socioeconomic factors influencing land-use intensity in Chinese cities.

Category Factor Indicator Acronym (Unit) Data Source Description and Indicator Calculation

Natural

Location

Eastern city East (-) See
Table A1

Location influences land-use pattern by
regulating the type and intensity of land
use [38]. It is represented as the regional
division, which is widely accepted and

applied to national development strategies
in China. Distance to primary river was

selected because rivers often play a
significant role in shaping regional

landscapes [39].

Middle city Middle (-)

Distance to primary river DPR (km)

National Geomatics
Center of China

(https://www.webmap.
cn/commres.do?

method=dataDownload,
accessed on 5 June 2020)

Terrain

Elevation Elev (m)
Computer Network

Information Center of
Chinese Academy of

Sciences
(www.gscloud.cn,

accessed on 5 June 2020)

Terrain is one of the key factors for land
use/cover, generally represented by

elevation and slope [19,39]. Elevation and
slope were measured from ASTER GDEM.Slope Slope (◦)

Vegetation Normalized differential
vegetation index NDVI (-)

The total photosynthesis and productivity
of vegetation can be measured by MODIS

NDVI data [19,40].

Climate

Temperature Temp (◦C)
China Meteorological
Data Service Center

(http:
//data.cma.gov.cn,

accessed on 5 June 2020)

Climate, including temperature and
precipitation, determines the availability of

water, nutrients, and organic matter,
thereby influencing land use [19,41].Precipitation Prcp (mm/year)

Socioeconomic

Demography
The population of the city PPC (10,000)

The annual China City
Statistical Yearbook and
the statistical yearbooks
of individual provinces.

Research indicates that socioeconomic
factors including demography,

infrastructure, economy, educational and
scientific investment, and policy play
dominant roles in intensive land use.

According to related research
achievements and data accessibility, we

selected indicators to depict the
corresponding factors [6,21,39,42].

The population proportion of
municipal to city PPMC (%)

Infrastructure Road area on land per km2

(km2) RoadDensity

Economy

Gross regional product of the
city (CNY 10,000 per capital) GRPC

Gross regional product of
municipal district/s (CNY

10,000 per capital)
GRPMD

Proportion of secondary
industry gross regional

product in municipal district
GRPSIMD (%)

Proportion of tertiary industry
gross regional product

downtown
GRPTIMD (%)

Annual average labor income
of downtown

IncomeMD
(Yuan/per capital)

Annual average consumption
per capita of downtown

ConMD (Yuan/per
capital)

https://www.webmap.cn/commres.do?method=dataDownload
https://www.webmap.cn/commres.do?method=dataDownload
https://www.webmap.cn/commres.do?method=dataDownload
https://www.webmap.cn/commres.do?method=dataDownload
https://www.webmap.cn/commres.do?method=dataDownload
www.gscloud.cn
http://data.cma.gov.cn
http://data.cma.gov.cn
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Table 1. Cont.

Category Factor Indicator Acronym (Unit) Data Source Description and Indicator Calculation

Educational
and

scientific
investment

Proportion of education
investment to the fiscal
expenditure in the city

PEI (%)

Proportion of science and
technology investment to the
fiscal expenditure in the city

PSI (%)

Policy
Commercial rank of the city CRC (-)

Administrative rank of the city ARC (-)

Among all the natural and socioeconomic factors, location is a primary factor that
influences land-use patterns by regulating land-use types and land-use intensity [38], and
hence land price [43]. Location is a place or site occupied by a geographic feature, which is
associated with position, layout, distribution, and spatial relationship. In this study, loca-
tion mainly refers to the region to which a city belongs to. Chinese provinces were grouped
into the eastern, middle, and western regions in The 7th Five-year Plan in 1987 roughly on
the basis of their geography (Table A1) and have been widely accepted by subsequent
governmental documents [44]. Policy is another important factor influencing land-use
intensity. Cities in the Chinese mainland are usually classified into five administrative
ranks, from high to low, provincial-, sub-provincial-, prefectural, sub-prefectural-, and
county-level [45]. Hence, we used a city’s administrative rank as a major policy indicator.
The Rising Lab developed a city commercial rank system and evaluated the commercial
charm level of individual cities in 2018 [46]. A city’s commercial charm level generally
reflects its achievements through implementing national and local policies to some extent,
so it was also selected as a policy indicator. All these categorical variables were introduced
as dummy variables in the process of modeling [47].

2.3. Empirical Modeling and Its Major Steps

The multiple linear stepwise regression method was employed to model the rela-
tionship between LUI and natural and socioeconomic factors. Linear regression analysis
is effective in building quantitative relationships between variables and was applied to
various studies [47–50]. Although linear regression does not necessarily imply causation,
it reveals the relationship between the dependent and explanatory variables. Explana-
tory variables with high correlation can be excluded in the resultant model by stepwise
regression [51–53].

Given N independent variables, the model can be expressed as follows:

Y = β0 + ∑N
i=1 βiXi + ε, (1)

where Y represents dependent variable STGRPP, Xi the independent variables listed in
Table 1, β0 the intercept, βi the regression coefficient of the ith independent variable, and ε
a random error term representing unexplained variation in the dependent variable. Note
that the regression coefficients were obtained based on the unstandardized independent
variables in our regional-based, city-based and temporal assessment. Because the units
of the same indicators for individual regions, cities, and years are same, the egression
coefficient values of same indicators for different regions, cities, and years can be used to
show the contribution differences from each other.

Moreover, we used Standardized Regression Coefficients (SRCs) to compare the LUI
contributions from different factors in the overall assessment based on the data of all cities
during 1990–2017 because SRCs represent the estimated number of standard deviations
of a change in the dependent variable for one standard deviation unit change in the
independent variable, while controlling for other independent variables [54]. Each SRC is
in units of standard deviations of Y per standard deviation of Xi.

The modeling consists of three parts.
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• Data processing

Missing socioeconomic data (about 2.4% of the total data) were interpolated using the
trend analysis or time series method. Values of all socioeconomic indicators except for CRC
and ARC were directly obtained from statistical yearbooks. Because CRC and ARC are both
gradational variables with five possible values, we assigned a number (1–5) to them. The
average temperature and precipitation of each city were calculated from the corresponding
thematic maps, which were produced using the temperature and precipitation datasets, and
the inverse distance weighted (IDW) interpolation method [55]. Inverse distance weight is
a commonly used method for spatial interpolation and estimation [56–58]. The indicator
DPR was calculated based on the maps produced using the river data and the Euclidean
distance method. All indicator values were compiled in an attribute table that was later
imported into a geodatabase. Spatial data were processed and analyzed in ArcGIS.

• Correlation analysis

In order to conduct preliminary analysis of the relationship between dependent
(STGRPP) and independent (the natural and socioeconomic variables) variables, Pearson’s
correlation analysis [59], using 294 × 28 samples, for all cities in 1990–2017 was performed
before modeling.

• Assessment-specific modeling

The study consists of four different assessments, each conducted from their respective
perspectives. First, in overall assessment, we estimated overall contributions from indi-
vidual indicators to LUI based on the regression model and the data of all cities during
1990–2017, the number of employed samples being 294 × 28. Second, contributions from
individual indicators to LUI in the eastern (116 × 28 samples), the middle (106 × 28),
and the western (70 × 28) regions were separately calculated to characterize the regional
variability of their LUI influences—which is referred to as the region-based assessment in
Section 3.2. Third, contributions from individual indicators to LUI were similarly calculated
for each of the 294 cities (sample number used in each city assessment was 28), which is
referred to as city-based assessment in Section 3.3. Lastly, overall contributions based on
all cities were calculated for each year to, respectively, reveal the annual variability of their
LUI influences (sample number used in each annual assessment was 294), which is referred
to as temporal assessment in Section 3.4.

3. Results
3.1. Overall Influence Assessment

The results of Pearson’s correlation analysis revealed significant correlations (all
p values were below 0.01) between dependent and individual independent variables
(Table 2); this allows for the selected indicators to be used for modeling STGRPP.

Table 2. Correlation coefficient values between STGRPP and the independent variables for all 294 cities (see Table 1 for
acronyms).

East Middle Elevation Slope DPR NDVI Temp Prcp PPC PPMC GRPC

STGRPP 0.199 −0.133 −0.095 −0.071 −0.06 −0.093 0.169 0.151 0.134 0.253 0.617

GRPMD RoadDensity GRPSIMD GRPTIMD IncomeMD ConMD PEI PSI CRC ARC

STGRPP 0.801 0.305 0.073 0.197 0.668 0.723 −0.041 −0.194 −0.298 −0.182

Note: All the correlations are significant at the 0.01 level (2-tailed).

Following correlation analysis, multiple linear stepwise regression analysis for the
overall assessment for the 294 cities was performed (Table 3). Except for East (location),
Slope, and PSI, most independent variables were included in the model as their regression
coefficients were significant based on their t-statistics with associated p-values. It is obvious
that natural and socioeconomic factors do influence land-use intensity with respective
contributions (Figure 2).
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Table 3. Multiple linear regression model for overall assessment.

Constant/
Indicator

Regression
Coefficients

Standardized
Regression

Coefficients (SRCs)
t-Test p

Values
Constant/
Indicator

Regression
Coefficients

Standardized
Regression

Coefficients (SRCs)
t-Test p

Values

Constant −46630.992 −7.775 0.000 RoadDensity −1365.251 −0.038 −4.793 0.000
GRPMD 0.584 0.594 36.535 0.000 PEI 219.485 0.039 5.494 0.000

Temp 227.164 0.028 1.816 0.069 DPR −0.010 −0.047 −6.173 0.000
IncomeMD 0.407 0.207 18.119 0.000 ConMD −0.192 −0.076 −4.467 0.000

PPMC 21354.960 0.139 16.954 0.000 GRPTIMD 233.535 0.062 4.729 0.000
PPC 7.967 0.056 5.493 0.000 Prcp 5.599 0.066 4.634 0.000

GRPSIMD 390.884 0.120 10.084 0.000 Middle −4288.474 −0.050 −6.498 0.000
GRPC 0.000 0.085 7.411 0.000 Elevation −2.768 −0.033 −3.650 0.000
ARC 6351.697 0.093 9.106 0.000 NDVI −8266.692 −0.017 −2.301 0.021
CRC −2151.133 −0.064 −5.421 0.000

Figure 2. Radar chart showing standardized regression coefficients (SRCs) of individual indicators.

Among the natural indicators, the indicator Prcp had the most positive impact on the
second and tertiary gross regional products per km2 (STGRPP) (standardized regression
coefficient (SRC) was 0.066), while the indicator Middle had the most negative impact (SRC
was −0.050). In addition, terrain (represented by elevation (Elev) and Slope), distance to
the primary river (DPR)), and vegetation (represented by Normalized Difference Vegetation
Index (NDVI)) impacted STGRPP as well.

Socioeconomic factors contributed more positively to LUI than natural factors, accord-
ing to the SRC (Table 3 and Figure 2). Among them, the SRCs of four indicators—PPMC,
GRPMD, IncomeMD, and RoadDensity—were all positive. The indicator GRPMD had the
highest SRC of 0.594.

3.2. Region-based Influence Assessment

The region-based assessment result revealed that the influence of factors on LUI varies
from region to region in China (Table 4). The indicator ‘slope’ contributed to LUI in the
middle region, but not in the eastern and western regions. The indicators DPR, NDVI,
PPMC, and CRC contributed differently to LUI in the three regions. The result implies the
complicated influence mechanics of natural and socioeconomic factors on LUI.
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Table 4. Multiple linear regression models for region-based assessment.

Region Constant Slope DPR NDVI Temp Prcp PPC PPMC GRPC GRPMD

East −95410.74 - - −57408.80 - 6.28 19.31 47638.10 - 0.69
Middle −9975.47 −1869.99 0.005 - 820.53 - - 5897.09 0.001 0.45

West −13195.66 - −0.01 18726.62 952.75 - - −7087.55 0.0003 0.64

Region RoadDensity GRPSIMD GRPTIMD IncomMD ConMD PEI PSI CRC ARC

East −2039.94 800.45 542.32 0.50 −0.37 360.10 32.54 −2283.71 11790.09 -
Middle −1984.16 345.02 156.45 0.58 −0.45 - - 1572.71 −6397.86

West - 157.07 - 0.14 - - - - - -

Note: see Table 1 for acronyms. The numeric values in the table are the regression coefficients of the corresponding indicators in different regions.

3.3. City-Based Influence Assessment

The city-based assessment result shows the spatial variability of the factors’ influences
on LUI. The number of cities in which individual indicators contributed to LUI (Table 5)
was used to measure the degree to which individual factors influence LUI in Chinese cities.
Economic factors had a clear impact because all economic indicators contributed to LUI in
many cities (Table 5). For example, there were 186 and 107 cities for indicators GRPMD
and GRPC contributing to LUI, respectively, and 52 cities for the indicator GRPTIMD. In
addition to economic factors, demographic factors (PPC and PPMC) showed an apparent
impact on LUI.

Table 5. Number of cities in which individual indicators contributed to LUI.

Total Cities PPC PPMC GRPC GRPMD RoadDensity

Count 294 80 92 107 186 64

GRPSIMD GRPTIMD IncomeMD ConMD PEI PSI

Count 62 52 64 70 36 22
Note: see Table 1 for acronyms. A total of 294 city-specific models were established correspondingly using the
multiple linear stepwise regression method. The numeric values in the table are the number of cities with the
corresponding indicators entering the models.

Using the inverse distance weight method, we interpolated the contribution from each
indicator to LUI in ArcGIS and illustrated its spatial variability (Figures A1–A11). The
contribution from city population to LUI, reflected by the PPC regression coefficient, was
highest in the southeastern Chinese cities of Lishui and Ningbo, followed by Xiangyang in
the middle, Dezhou in the east, and Zhangye in the middle-west (Figure A1 in Appendix A).
Low PPC regression coefficient values were mostly found in middle and eastern cities, but
there was almost no PPC contribution in the majority of the western cities. The contribution
from the population proportion of municipal cities to LUI, reflected by the PPMC regression
coefficient, had similar spatial distribution as that of PPC (Figure A2).

Indicators GRPMD and GRPC showed apparent contributions to LUI in comparison
with other indicators. In addition to that, the 186 cities from 294, about 63% of the total cities,
with GRPMD contributions were the largest. These showed that total economic volume
of municipal districts had the largest influence on LUI in individual cities. Figure A3
illustrates that GRPC contribution spatially varied, high in the western cities and low in
the middle and eastern cities. Most cities with high contributions from GRPSIMD and
GRPTIMP depicting the economic structure were in the eastern region, whereas there were
few cities in the western region where GRPSIMD and GRPTIMP impacted on LUI.

According to Figure A8, cities with positive contributions from IncomeMD were much
more than those with negative contributions. However, there were more cities with negative
contributions from ConMD (Figure A9 and Table 3). In addition, cities with either positive
or negative contributions did not show remarkable spatial correlations, meaning that
location has little influence on the contribution from ConMD to LUI. Indicator PEI played
positive roles mainly in southeastern cities, and the number of cities with contribution
including both positive and negative was only 36 (Figure A10), whereas the number of
cities with PSI contributions was 22 (Figure A11). The 64 cities with contributions from
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RoadDensity were mainly in the eastern region, suggesting an inapparent impact in most
Chinese cities mainly located in the middle and western regions.

3.4. The Temporal Influence Assessment

The annual contributions from individual indicators to LUI were examined in the
temporal assessment (Table 6). Graphs were produced to unravel the trends of individual
indicators’ contribution to LUI over the 28 years (Table 6). TEMP, PPMC, PEI, and ARC
showed increasing trends, whereas GRPC, GRPMD, and CRC showed decreasing trends.
Only TEMP showed an increasing trend in its positive LUI contribution in China, whereas
no trends could be observed for other natural factors, as the number of years with regression
coefficients was small. Regarding the population factor, the contribution from the urban
population (indicated by PPMC) showed increasing influence, but there was no obvious
change in the contribution from the entire city population (indicated by PPC).

Table 6. Multiple linear regression models for temporal assessment (see Table 1 for acronyms).

Year Constant East Elevation Slope DPR NDVI Temp Prcp PPC PPMC GRPC

1990 −1499.57 2.49 −756.20 6078.93 239.67 0.0011
1991 428.58 0.00 0.0016
1992 −629.45 1748.03 177.86 0.0010
1993 13138.37 2920.57 −0.01 2679.63
1994 15843.80 −2.89
1995 4169.47 5.82 834.34 0.0015
1996 9708.27 454.72 0.0009
1997 10011.39 542.58 0.0010
1998 2549.56 560.32
1999 −9792.35 515.25 8.78 7592.67
2000 1819.26 724.96 −4.28 0.0007
2001 14411.66 682.23 0.0006
2002 8202.89 618.96 8559.83 0.0005
2003 −14985.87 581.29 10764.81 0.0005
2004 30051.39 5081.44 528.61 11684.86
2005 7008.60 8.39 26102.53
2006 −28522.88 742.11 25538.49 0.0004
2007 −8287.75 806.19 19912.20 0.0005
2008 −8636.55 924.43 30402.20
2009 −63940.39 1184.72 46344.43 0.0004
2010 −91437.88 1138.31 59239.65 0.0005
2011 −108988.57 1247.86 70690.66 0.0004
2012 −107270.93 1110.96 74078.47 0.0004
2013 −79198.01 1060.56 60960.09 0.0004
2014 −100569.46 1277.55 63866.65 0.0004
2015 −73986.49 1506.71 60325.03 0.0003
2016 −84569.33 1621.95 66478.85 0.0003
2017 −23365.94 −10.05 −0.04 1391.64 57676.66

Year GRPMD
Road-

Density GRPSIMD GRPTIMD IncomMD ConMD PEI PSI CRC ARC

1990 0.99 2.59 −1.85 −700.13
1991 −102.77 6.19
1992 0.74 2.61 −2.47 −283.72 291.75 −1055.30
1993 0.57 −3525.92 2.13 −0.57 −2386.38
1994 0.37 −4507.31 2.21 −2809.43
1995 2.54 −3.35 −3.44 197.35 −1431.59
1996 0.93 −2136.60 −0.78 −1623.04
1997 0.82 −1409.81 −0.63 −1769.10
1998 1.49 −2.14 290.96 −2180.41 −4382.60
1999 0.81 −3027.06 111.06 0.35
2000 0.75 −2201.43 0.25
2001 1.15 −1.34 213.99 −4462.59
2002 1.06 −1.22 307.50 −2706.95
2003 0.61 373.88 283.36 0.54 −1.63 310.50 −3717.61
2004 0.65 188.92 −1.29 −6250.29
2005 0.40 448.54 0.74 −0.94 386.41 −7262.72
2006 0.43 −3415.23 433.36 508.64 −7553.40 10426.75
2007 0.64 −2539.67 283.31 −0.99 −6598.45 9102.71
2008 0.46 489.91 724.32 −5210.52
2009 0.46 245.08 698.34 −4484.65 14269.26
2010 0.42 364.37 1295.16 −5866.05 18975.24
2011 0.41 399.74 1550.52 −5464.74 20463.22
2012 0.37 427.87 1612.10 −6407.30 20611.48
2013 0.38 359.18 958.91 −5871.87 18771.69
2014 0.38 464.40 1102.99 −5182.36 20710.04
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Table 6. Cont.

Year GRPMD
Road-

Density GRPSIMD GRPTIMD IncomMD ConMD PEI PSI CRC ARC

2015 0.40 449.54 −5954.43 19446.60
2016 0.42 437.56 −6942.81 22775.06
2017 0.60 1533.09

Note: see Table 1 for acronyms. The numeric values in the table are the regression coefficients of the corresponding indicators in different
regions. The numeric values in the table are the regression coefficients of the corresponding indicators in different years, and the null value
for the regression coefficients means that the corresponding indicator did not enter the regression model.

4. Discussion
4.1. Influences on LUI Revealed in Overall Assessment
4.1.1. Influences of Natural Factors on LUI

Among all the natural indicators that entered the model (Table 3), we found that
only the climate-related factors (i.e., precipitation and temperature) positively impact
LUI. Between the two indicators, the impact from precipitation was 1.36 times more than
from temperature as the SRC values of indicator Prcp and Temp were 0.066 and 0.028,
respectively. Some studies have explored the influences from precipitation and temperature
on land use, whereas the degrees of such influences were not mentioned [60,61]. Our semi-
quantitate analysis characterized such influences, although the intrinsic reason was not
fully revealed.

Previous studies have revealed that elevation influences land use due to vegetation
suitability, construction cost, and living convenience [30]. Areas with higher elevations
often indicate lower temperatures and oxygen concentration, hence providing less suitable
living conditions for people. Our overall assessment found that elevations negatively
impact LUI with an SRC value of−0.033, implying that cities with higher elevations restrict
efficient land use and thus the product from land—we use the indicator STGRPP (second
and tertiary gross regional product per km2, unit: CNY 10,000 per km2) as the proxy for
the output from land to reflect the degree of LUI. Our findings of the impact of elevations
agree with previous findings [30,62,63].

Steep slopes are sensitive to soil erosion by water runoff [64,65] and liable to geological
hazards such as landslides [66]. However, there is an additional cost to create good drainage
conditions in flat areas compared with areas with slight slopes [67,68]. In our overall
assessment, the factor ’slope’ did not enter the model, suggesting that other factors, e.g., in
the socioeconomic category, may relieve the negative impact of steep slopes and eventually
contribute positively on LUI.

High NDVI values in cities usually mean high vegetation coverage in urban areas,
which provides good living conditions for good mental health and well-being with higher
natural capital. However, this also results in a low economic output per unit area because
vegetated areas tend to be hilly and even mountainous, with insufficient infrastructure, and
do not favor the establishment of factories. In some cases, vegetated areas are protected
and limited to only a few types of industries. Such situations are quite common in east
China. However, high vegetation in western Chinese cities generally implies that good
vegetation coverage may play a dominant role in supporting socioeconomic development
there since other natural factors such as terrain and climate are unfavorable. This finding
is also supported by the positive contributions from NDVI in the western region in the
region-based assessment (Table 4) but negative in the overall assessment (Table 3).

4.1.2. Influences of Socioeconomic Factors on LUI

Socioeconomic factors that influence LUI are mostly related to demography, technol-
ogy, economy, and policy [19]. Our overall assessment reveals that nine of the top ten
indicators with the highest SRC values were in the socioeconomic category, implying that
the socioeconomic factors have the most positive contribution to LUI. It is also noted that
the SRC value of GRPMD (0.594) and IncomeMD (0.207) were the top two highest. As a
large developing country with limited land resources, China has strictly restricted the land
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for residence and industry to protect arable land and the eco-environmental system [69,70].
Socioeconomic development is based more on scientific and technological development
with intensive land use [70] than on developing new land. Rapid economic growth (indi-
cated by GRPC and GRPMD) coupled with the increase in annual average labor income
of downtown (IncomeMD) enhances LUI (Table 3). The SRC value of ConMD (−0.076),
which is the annual average consumption per capita of downtown, indicates its negative
contribution to LUI. This may be owed to the increasing demand for land for recreational
activities or environmental protection other than for production because socioeconomic
development grows demands for tourism, exercises, recreation, and a high environmental
quality [71,72].

Demography is another important LUI influencing factor. China is implementing
the strategy of arable land protection, and has encouraged the intensive use of built-up
land in the context of urban population growth, leading to increased STGRPP values.
PPMC (population proportion of the municipal to the city) and PPC (population of the
city) therefore contributed positively to LUI. The third top highest SRC value of PPMC
(0.139) suggests that the population proportion of the municipal to the city contributes
more to LUI than the population of the city. The expansion of urban areas also validates
this finding because land use is less intensive in rural areas than in urban areas [73]. The
indicator administrative rank of the city (ARC), which reflects policy effects, contributes
positively to LUI based on its SRC value (0.093). However, the indicator commercial
rank of the city (CRC) has a completely different influence on LUI as its SRC value was
−0.064 (Table 3). This may be attributed to the various capabilities of natural conditions
to influence LUI in different cities, which may shelter policy effects in individual cities.
Generally, better traffic infrastructure (indicated as RoadDensity in our assessment) is more
attractive to industries because this can reduce transportation costs. However, it does not
necessarily increase industrial investments despite the expansion of urban areas [74,75].
This is because high road density in some cities may be the result of the intention of some
local officials to increase revenue from the real-estate industry [76], and thus to be promoted
due to the defective appraisal system for governmental achievements [77]. Because of that,
the influence of RoadDensity was negative according to our overall assessment (Table 3).
However, a study on the municipal city of Chongqing, southwest China, showed that
transportation positively impacts LUI [33], which is different from the finding of our overall
assessment. Further investigation according to individual cities with different development
strategies should be conducted to reveal the intrinsic influence mechanism.

4.2. Influences on LUI Revealed in the Region-Based Assessment

China’s socioeconomic regional division is mainly along natural features such as
large rivers and by topography, but it also represents the contrasting economy within
the country. Table 7 and Figure 3 describe the natural and economic characteristics of
the three regions with several indicators. The western region has the highest elevations
(20.21 times more than eastern region) and steepest slopes (over 1.38 times more than the
middle and eastern regions) but the lowest NDVI and precipitation. The eastern region has
the lowest elevations (flat terrain) but the highest NDVI and precipitation. However, the
local variability of the natural factors could not be completely ignored within each region
and seemed to have different local impact. For example, the slope showed a negative
contribution to LUI in the middle cities, but had little influence on LUI in the eastern and
western cities. In the assessment, the slope of individual cities was assigned as the average
slope value of the city area. Combining this situation in the overall assessment where the
slope did not enter the model (Table 3) and the regional-based assessment where the slope
only entered the middle-region model, we conclude that the average value may undermine
the discrepancy within individual cities and, therefore, the influence on LUI, and that
socioeconomic factors may relieve the negative impact of steep slopes and eventually
contribute positively towards LUI. Elevation showed no LUI influence in the three regions
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according to our region-based assessment (Table 4), which was attributed to the relatively
homogenous elevation within each region.

Table 7. Natural and economic features in China’s eastern, middle, and western regions (see Table 1 for acronyms).

Region Elev
(m)

Slope
(◦)

DPR
(m)

NDVI
(-)

Temp
(°C)

Prcp
(mm/year)

PPMC
(-)

GRPMD
(CNY 10,000
per Capital)

East 55.084 0.627 206,910.083 0.443 16.484 1176.945 0.366 38,675.385
Middle 244.369 0.623 172,473.227 0.434 12.534 911.994 0.334 26,727.740

West 1168.070 1.492 173,856.982 0.416 12.506 697.263 0.380 23,293.330
China 391.753 0.833 186,300.666 0.433 14.075 964.320 0.357 31,040.168

Figure 3. Annual average NDVI and Prcp maps of China.

The region-based assessment result also reveals that the influence of socioeconomic
factors on LUI varies from region to region. The PPC, which refers to the overall population
size, contributed positively to LUI in the eastern region but not in the middle and western
regions. The PPMC, reflecting the urban and rural population structure, had the highest
positive contribution in the eastern region, 7.08 times more than that in the middle region,
but this was negative in the western region. This suggests a decreasing trend from east
to west. It can be attributed to the situation that the rate of urban expansion was higher
than that of urban population growth in the western cities, which led to decreased STGRPP
during some years (e.g., from 1997 to 2003), although both the urban population and GRP
in these cities increased during the same period. However, most of the eastern cities have a
higher population but smaller amount of land in most of the eastern cities, leading to more
rapid population growth but slower expansion in urban areas compared with the western
cities. Therefore, the indicator PPMC contributed more to LUI in eastern cities than in the
western cities.

Suggested by their positive regression coefficients, four indicators that reflect the
economic development, namely GRPC (gross regional product of the city), GRPMD (gross
regional product of municipal district/s), GRPSIMD (proportion of secondary industry
gross regional product in municipal district), and GRPTIMD (proportion of the tertiary
industry gross regional product in downtown), contributed positively to LUI in the three
regions, which is consistent with the finding of the overall assessment (Table 3). Because
both the units of indicators GRPC and GRPMD are CNY 10,000 per capital, the regression
coefficients of the two indicators are comparable. It is found that the regression coefficients
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of GRPMD was much larger than of GRPC in each region. For the eastern region, the
value of GRPMD was 0.69, whereas the indicator GRPC did not enter the model. For the
middle region, the value of GRPMD was 0.45, whereas GRPC was 0.001. For the western
region, the value of GRPMD was 0.64, whereas GRPC was 0.0003. In addition, our overall
assessment (Table 3) shows that the contribution from GRPMD was much larger than that
from GRPC. According to the results of both the overall and regional assessments, we
conclude that the economic development in municipal district/s has played a significantly
more impact on LUI than the development in the entire city.

The positive contributions from consumption to LUI in the three regions also coincided
with the overall assessment. However, the regression coefficient of incomeMD in the
western region (0.14) was much smaller than that in the eastern and middle regions,
indicating that contribution from income to LUI in the western region was less than in
the east and middle regions. Moreover, there were no regression coefficient values for the
indicators ConMD (annual average consumption per capita of downtown), PEI (proportion
of education investment to the fiscal expenditure in the city), PSI (proportion of science and
technology investment to the fiscal expenditure in the city), CRC, ARC, GRPTIMD, and
PPC in the west region, implying that some socioeconomic factors, such as consumption,
education, scientific investment, and policy, contributed little to LUI, which is different
from the eastern and middle regions.

4.3. Influences on LUI Revealed in City-Based Assessment

Exploration on large spatial scales and detailed units can better reveal the natural
impact on land-use intensity (LUI) than on small (e.g., county or city level) and moderate
(e.g., province level which is often less than ten thousand km2) scales [33,78]. We prepared
a city-based assessment to explore the detailed spatial variability of LUI influences in China
(Figures A1–A11).

According to Table 3, GRPC and GRPMD entered more than 100 city-specific models—
much more than any other indicators, suggesting that economic development has a wider
influence than other factors in Chinese cities. Considering the contributing degree, the
total economic volume of an entire city contributed more to the western region than that in
the middle and eastern regions did (Figure A3). Because eastern cities are generally more
developed than the middle and western cities, LUI may be more influenced by the total
economic volume in less developed cities than in developed ones. Most cities with high
contributions from GRPSIMD and GRPTIMP, both depicting economic structure, were
located in the eastern region, whereas there were few cities in the western region where
GRPSIMD and GRPTIMP impacted LUI. Economic structure is more likely to contribute
more to LUI than total economic volume is in developed cities, whereas total economic
volume contributes more to less developed cities. Regarding contributions from income
and consumption, cities with IncomeMD and ConMD influences were mainly located in the
middle and eastern regions (Figures A8 and A9), implying that income and consumption
contribute more to LUI in developed cities than in less developed cities.

Investment in education, science, and technology in the majority of Chinese cities
has little influence on LUI, as there were only 36 and 22 cities where PEI and PSI showed
contributions, respectively. Among the 36 cities with educational contribution to LUI, only
9 cities had positive contributions from education input. Education, science, and technology
investment could provide more well-educated employees and advanced technology for
socioeconomic development [33,79,80], and hence more intensified land use. This scenario
is possible when the well-educated workforce and advanced technology are basically
in the same region or country. Wang et al. found that an increase in fiscal expenditure
on education could enhance LUI in the southwestern Chinese city of Chongqing [33].
However, our finding suggests that the impact of PEI varies in different cities. Because
many west Chinese cities have insufficient resources to attract a well-educated workforce
and advanced technology, education, science, and technology do not necessarily lead to
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increased LUI. Since much educational input originates from local investment, cities that
recruit well-educated populations should compensate cities that train and educate them.

Lastly, traffic infrastructure influences LUI in 64 cities, located mainly in the eastern
region when we examined the indicator RoadDensity (Tables 3 and 5, and Figure A5),
suggesting inapparent impact in most Chinese cities mainly in the middle and western
regions. There were only 17 cities with positive contributions and 45 with negative con-
tributions from road density, which might be explained by the fact that high road density
does not necessarily lead to industrial investment, hence increased LUI [76,77]. Cities
with positive contributions from road density were mostly located in the eastern region,
whereas this was negative in the middle and western regions, which indicates that the
increase in road density more likely results from the development of urban areas rather
than industrial investment in the middle and western cities. This is because the expansion
of most middle and western cities is ascribed to accelerated urbanization, and because
western and middles cities are less capable of achieving industrial investment than eastern
cities are. A strategy of formulating city-specific policies is, therefore, suggested to promote
more efficient land use.

4.4. Influences on LUI Revealed in the Temporal Assessment

Temporal assessment provides an understanding of how natural and socioeconomic
contributions to LUI varied over 28 years. While there is no evidence of a relationship
between temperature and land-use intensity, the typical increasing trend in TEMP’s positive
contribution is more likely associated with the influence of location on LUI. Since TEMP
values in each city were annually constant, the increasing trend in temperature’s positive
contribution also suggests a more positive impact on LUI than that of other factors during
this period.

The contribution from the indicator GRPSIMD to LUI showed an increasing trend. In
addition, there was an increasing trend observed for the indicator PEI’s LUI contribution
especially since 2008. Growing education investment, which grows a larger well-educated
workforce and the development of advanced technology [33,79,80], plays a positive role
in accelerating economic structure optimization (e.g., increasing the proportion of sec-
ondary and tertiary industries), and also increasing LUI in the stage of economic structure
optimization [36]. The trend was upward for CRC’s contribution, but downward for
that of ARC. The commercial rank of the city reflects both the policy and other factors
in economic development whereas the administrative rank is the overall expression of
the policy from the central government of China. For example, the central government
of China has a strict land administration strategy in place. A city’s development strategy
including its land use policy is much influenced by such national policies [81], especially
in recent years. As a result, policies from the central government significantly impacts
LUI. However, contributions from these policies to LUI in the cities have been annually
decreasing when compared with those from CRC, which to some extent reflects the overall
achievement of implementing national and local policies, indicating that the degree of LUI
was temporally more likely to be influenced by the administration from local governments
with socioeconomic development.

5. Conclusions

Intensive land use is a feasible way to promote land-use efficiency and eventually to
support sustainable socioeconomic development in the context of limited land resources.
However, land-use intensity is influenced by many natural and socioeconomic factors.
Using the multiple linear stepwise regression method, this study provides detailed in-
sights about natural and socioeconomic influences on LUI in China from four different
perspectives. The findings and conclusions are summarized as follows.

(1) While both natural and socioeconomic factors impact land-use intensity, the degree
and nature (positive or negative) of such impacts differ. The overall assessment reveals that
nine of the top 10 indicators with the highest SRC values were in the socioeconomic category,
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indicating that socioeconomic factors have more positive impact on land-use intensity
than natural factors. (2) The contribution from educational input to LUI is not always
positive, as a well-educated workforce may move out. Among the 36 cities with educational
contribution to LUI, only 9 cities had positive contributions from education input. It is,
therefore, recommended that cities that recruit well-educated populations compensate
cities that train and educate them. (3) Transportation improvement may not promote
intensive land use in remarkably expanding cities, due to the defective appraisal system
for governmental achievements. There were only 17 cities with positive contributions and
45 with negative contributions from road density. A strategy for formulating city-specific
policies is thus suggested to promote more efficient land use. (4) The economy generally
plays a dominant role in promoting efficient land use, whereas the impact of its sub-factors
varies at different development levels. Economic structure contributes more to LUI than
total economic volume does in developed cities, but in less developed cities, the opposite
is the case.

As the largest developing country with limited land resources and high population,
China has been confronting the contradiction between socioeconomic development and
environmental protection. This study provides a comprehensive examination of the mecha-
nism whereby natural and socioeconomic factors influence land-use intensity, and of the
spatiotemporal variability of such influences. It serves as a guide for the government to
establish corresponding strategies on efficient land use in supporting sustainable socioeco-
nomic development. The interaction between individual influencing factors on land-use
intensity is not discussed here and could be a path for future work using methods such as
a principal component analysis and ridge regression.
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Appendix A

Table A1. Regional division of Chinese provinces, as shown in The 7th Five-Year Plan in China and Zhang [44]. The division
is also shown in Figure 1.

Region Province City

East

Beijing, Fujian,
Guangdong,
Guangxi, Hainan,
Hebei, Jiangsu,
Liaoning,
Shandong,
Shanghai, Tianjin,
Zhejiang

Anshan, Baise, Baoding, Beihai, Beijing, Benxi, Binzhou, Cangzhou, Changzhou, Chaoyang, Chaozhou,
Chengde, Chongzuo, Dalian, Dandong, Danzhou, Dezhou, Dongguan, Dongying, Fangchenggang, Foshan,
Fuzhou, Fushun, Fuxin, Guangzhou, Guigang, Guilin, Haikou, Handan, Hangzhou, Hechi, Heyuan, Heze,
Hezhou, Hengshui, Huludao, Huzhou, Huaian, Huizhou, Jinan, Jining, Jiaxing, Jiangmen, Jieyang, Jinhua,
Jinzhou, Laibin, Laiwu, Langfang, Lishui, Lianyungang, Liaoyang, Liaocheng, Linyi, Liuzhou, Longyan,
Maoming, Meizhou, Nanjing, Nanning, Nanping, Nantong, Ningbo, Ningde, Panjin, Putian, Qinzhou,
Qinhuangdao, Qingdao, Qingyuan, Quzhou, Quanzhou, Rizhao, Sanming, Sansha, Sanya, Xiamen, Shantou,
Shanwei, Shanghai, Shaoguan, Shaoxing, Shenzhen, Shenyang, Shijiazhuang, Suzhou, Taizhou, Taian,
Taizhou, Tangshan, Tianjin, Tieling, Weihai, Weifang, Wenzhou, Wuxi, Wuzhou, Xingtai, Suqian, Xuzhou,
Yantai, Yancheng, Yangzhou, Yangjiang, Yingkou, Yulin, Yunfu, Zaozhuang, Zhanjiang, Zhangjiakou,
Zhangzhou, Zhaoqing, Zhenjiang, Zhongshan, Zhoushan, Zhuhai, Zibo

Middle

Anhui,
Heilongjiang,
Henan, Hubei,
Hunan, Jiangxi,
Jilin, Neimenggu,
Shanxi

Anqing, Anyang, Bayannaodong, Baicheng, Baishan, Bangbu, Baotou, Bozhou, Changde, Chenzhou,
Chizhou, Chifeng, Chuzhou, Daqing, Datong, Dongdongdongsi, Dongzhou, Fuzhou, Fuyang, Ganzhou,
Hadongbin, Hefei, Hebi, Hegang, Heihe, Hengyang, Huhehaote, Hulunbeidong, Huaihua, Huaibei, Huainan,
Huanggang, Huangshan, Huangshi, Jixi, Jian, Jilin, Jiamusi, Jiaozuo, Jincheng, Jinzhong, Jingmen, Jingzhou,
Jingdezhen, Jiujiang, Kaifeng, Liaoyuan, Linfen, Liuan, Loudi, Luoyang, Luohe, Lvliang, Maanshan,
Mudanjiang, Nanchang, Nanyang, Pingdingshan, Pingxiang, Puyang, Qitaihe, Qiqihadong, Sanmenxia,
Shangqiu, Shangrao, Shaoyang, Shiyan, Shuangyashan, Shuozhou, Siping, Songyuan, Suihua, Suizhou,
Taiyuan, Tonghua, Tongliao, Tongling, Wuhai, Wulanchabu, Wuhu, Wuhan, Xianning, Xiangtan, Xiangyang,
Xiaogan, Xinzhou, Xinxiang, Xinyu, Xinyang, Suzhou, Xuchang, Xuancheng, Yangquan, Yichun, Yichang,
Yichun, Yiyang, Yingtan, Yongzhou, Yueyang, Yuncheng, Zhangjiajie, Changchun, Changsha, Changzhi,
Zhengzhou, Zhoukou, Zhuzhou, Zhumadian

West

Gansu, Guizhou,
Ningxia, Qinghai,
Shanxi, Sichuan,
Xicang, Xinjiang,
Yunnan, Zhongqing

Ankang, Anshun, Bazhong, Baiyin, Baoji, Baoshan, Bijie, Changdong, Chengdong, Dazhou, Deyang, Dingxi,
Guyuan, Guangan, Guangyuan, Guiyang, Hami, Haidong, Hanzhong, Jiayuguan, Jinchang, Jiuquan,
Kelamayi, Kunming, Lasa, Lanzhou, Leshan, Lijiang, Linzhi, Lincang, Liupanshui, Longnan, Luzhou,
Meishan, Mianyang, Nanchong, Neijiang, Panzhihua, Pingliang, Pudong, Qingyang, Qujing, Rikaze,
Shannan, Shangluo, Shizuishan, Suining, Tianshui, Tongchuan, Tongren, Tulufan, Weinan, Wulumuqi,
Wuzhong, Wuwei, Xian, Xining, Xianyang, Yaan, Yanan, Yibin, Yinchuan, Yulin, Yuxi, Zhangye, Zhaotong,
Zhongwei, Zhongqing, Ziyang, Zigong, Zunyi

Figure A1. Contribution from the indicator PPC (city population) to land-use intensity revealed
in the city-based assessment. Note: in Figures A1–A11, the value for individual cities is the re-
gression coefficient and the value of each grid was determined by the regression coefficient of the
corresponding indicator using inverse distance weighted (IDW) interpolation method.
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Figure A2. Contribution from the indicator PPMC (population proportion of municipal to city) to
land-use intensity revealed in the city-based assessment.

Figure A3. Contribution from the indicator GRPC (gross regional product of the city) to land-use
intensity revealed in the city-based assessment.
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Figure A4. Contribution from the indicator GRPMD (gross regional product of municipal district/s
(CNY/capita)) to land-use intensity revealed in the city-based assessment.

Figure A5. Contribution from the indicator RoadDensity (road area on land per Km2) to land-use
intensity revealed in the city-based assessment.
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Figure A6. Contribution from the indicator GRPSIMD (proportion of secondary industry gross
regional product in municipal district) to land-use intensity revealed in the city-based assessment.

Figure A7. Contribution from the indicator GRPTIMD (proportion of tertiary industry gross regional
product downtown) to land-use intensity revealed in the city-based assessment.
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Figure A8. Contribution from the indicator IncomeMD (annual average labor income of downtown)
to land-use intensity revealed in the city-based assessment.

Figure A9. Contribution from the indicator ConMD (annual average consumption per capita of
downtown) to land-use intensity revealed in the city-based assessment.
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Figure A10. Contribution from the indicator PEI (proportion of education investment to the fiscal
expenditure in the city) to land-use intensity revealed in the city-based assessment.

Figure A11. Contribution from the indicator PSI (proportion of science and technology investment
to fiscal expenditure in the city) to land-use intensity revealed in the city-based assessment.
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Figure A12. Annual contributions from individual indicators to land-use intensity in Chinese cities from 1990 to 2017. 
Note: the values of individual indicators in the above charts are the regression coefficient. 
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