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Abstract: The Brazilian Atlantic Forest is a global biodiversity hotspot and has been extensively
mapped using satellite remote sensing. However, past mapping focused on overall forest cover
without consideration of keystone plant resources such as Araucaria angustifolia. A. angustifolia is
a critically endangered coniferous tree that is essential for supporting overall biodiversity in the
Atlantic Forest. A. angustifolia’s distribution has declined dramatically because of overexploitation
and land-use changes. Accurate detection and rapid assessments of the distribution and abundance
of this species are urgently needed. We compared two approaches for mapping Araucaria angustifolia
across two scales (stand vs. individual tree) at three study sites in Brazil. The first approach used
Worldview-2 images and Random Forest in Google Earth Engine to detect A. angustifolia at the
stand level, with an accuracy of >90% across all three study sites. The second approach relied on
object identification using UAV-LiDAR and successfully mapped individual trees (producer’s/user’s
accuracy = 94%/64%) at one study site. Both approaches can be employed in tandem to map
remaining stands and to determine the exact location of A. angustifolia trees. Each approach has its
own strengths and weaknesses, and we discuss their adoptability by managers to inform conservation
of A. angustifolia.

Keywords: Atlantic Forest; Araucaria angustifolia; Parana pine; Google Earth Engine; UAV-LiDAR;
Worldview-2; conservation; Brazil; multi-scale assessment

1. Introduction

Global changes resulting from human activities (e.g., urban development, agricultural
conversion) are widespread and have been resulting in dramatic declines in global bio-
diversity [1–4]. Rapid land conversions in biodiversity hotpots are likely to have some
of the most significant negative impacts [5–8]. For example, the Brazilian Atlantic Forest
(Mata Atlântica) has been reduced substantially, with only 11.4–16.0% of the original extent
persisting [6]. A large proportion of the remaining forest fragments (32–40%) are in patches
smaller than 100 ha [6,9]. In addition, some of the biologically important tree species, such
as the Parana pine (Araucaria angustifolia), may be more severely affected by these forest
declines than previously thought [6,9].

A. angustifolia is a keystone plant resource in the Brazilian Atlantic Forest because of
its importance for increasing structural complexity, phylogenetic diversity and biodiversity
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as well as for supporting complex food webs [10–12]. This large and unique conifer species
is characterized by a candelabra-shaped crown and is considered highly valuable. Its seeds
and wood represent important economic resources for people in southern Brazil [11,13].
However, because of overexploitation, A. angustifolia is threatened by extinction. It is
classified as endangered (EN) by the Brazilian Red List [14] and critically endangered (CR)
by the IUCN Red List [15]. Previous conservation assessments of the Brazilian Atlantic
Forest were limited to mapping overall forest cover and decline and to delineating very
generalized forest types [6]. No recent and detailed information exists on the remaining dis-
tribution and population status of A. angustifolia, despite the obvious importance of this tree
for maintaining healthy Atlantic Forest ecosystems and for conserving biodiversity [6,13].

Advances in remote sensing technology (unmanned aerial vehicles, UAVs) and geo-
processing analyses (e.g., Google Earth Engine, GEE) provide new and exciting oppor-
tunities to accurately delineate, measure and monitor species and habitat types [16–20].
These advances benefit from the increased availability of remote sensing data collected
at different altitudes by different platforms (e.g., satellite, airplane, unmanned aerial
vehicles) [21–23], the use of new sensors (e.g., LiDAR, hyperspectral) [24–28], improve-
ments in the radiometric and spatial resolution of the data collected [29,30] and vastly en-
hanced algorithms [22,31–33], including the use of Google Earth Engine to classify diverse
types of vegetation [34,35]. The resulting improvements provide technologies for accurately
detecting and mapping critical biodiversity conservation targets such as A. angustifolia.

In this study, we compare two approaches for detecting, mapping and delineating
A. angustifolia at different scales—the stand and the individual tree level. Our approach
integrates multispectral and object-based classification in a machine learning environment
to delineate A. angustifolia stands from Worldview-2 images, UAV-based Light Detection
and Ranging (LiDAR) and field data to improve validation and to assess our ability to
accurately map A. angustifolia. Our research questions were as follows:

1. Can A. angustifolia canopies be accurately delineated using multispectral classification
of pan-sharpened Worldview-2 images in Google Earth Engine?

2. When combined with field estimates of crown sizes, is it possible to extrapolate from
canopy cover the number of A. angustifolia trees?

3. How different are estimates of numbers of trees based on crown segmentation from UAV-
LiDAR imagery and estimates based on multispectral analysis of Worldview-2 images?

2. Methods
2.1. Study Sites

We mapped A. angustifolia across three study sites using different remote sensing
approaches (Table 1). These sites are spread across different municipalities in the state
of Paraná, Brazil (Figure S1), representing variation in the Araucaria population, age and
spatial distribution. Among these sites, Capão do Tigre has the densest distribution of older
Araucaria trees while the others have a mixture of young Araucaria and other plantations.

Table 1. Study site details and remotely sensed data availability for each site.

Site Location Area (ha) Worldview-2 UAV-LiDAR

Canguiri Farm Quatro Barras 103.79 ha Available Not available
Capão do Tigre Curitiba 4.45 ha Available Available

Gralha-Azul Farm Fazenda Rio Grande 571.00 ha Available Not available

2.2. Data
2.2.1. Worldview-2

Worldview-2, a commercial satellite owned by DigitalGlobe, provides high-resolution,
multispectral satellite imagery. It has a panchromatic spatial resolution of 0.46 m ground
sample distance (GSD) at nadir and 0.52 m GSD at 20 degrees off-nadir and a multispectral
spatial resolution of 1.84 m GSD at nadir, with a revisit time of 1.1 days, and 2.08 m GSD
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at 20 degrees off-nadir, with a revisit time of 3.7 days. It has eight multispectral bands:
coastal, blue, green, yellow, red, red edge, near-infrared 1 and near-infrared 2. Worldview-2
images are not free, but we acquired them at no cost through a federal contract between the
Smithsonian Institute and NASA. We downloaded a single Worldview-2 image with the
lowest cloud cover for each site for the year 2018 from (https://earthexplorer.usgs.gov/;
accessed on 18 May 2019). All our images had a cloud coverage of less than 15%.

2.2.2. UAV-LiDAR

In August 2019, we acquired LiDAR data at our Capão do Tigre study site using an
LTM Pegasus (Optech Incorporated), a full-waveform digitizer system with a maximum
frequency of 500 kHz (12 bits). The resulting data represented a point cloud with a density
of 4 points/m2, an altimeter accuracy of 10 cm and a GSD of 18 cm.

2.2.3. Field Data

We were able to access data from a ground survey conducted by the Centro de
Excelência em Pesquisas sobre Fixação Carbono na Biomassa—BIOFIX Lab, Federal Uni-
versity of Paraná, for the Capão do Tigre study site. These data consist of GPS coordinates
for 335 individuals of A. angustifolia [36].

2.3. Methodology

Our overall workflow (Figure 1) included two main approaches:

(a) Map Araucaria forest stands across all three study sites using Worldview-2.
(b) Estimate the population of Araucaria trees at one study site using UAV-LiDAR.

Figure 1. Workflow for mapping Araucaria angustifolia stands and individual tree crowns using
high-resolution satellite data (i.e., Worldview-2) or UAV-based LiDAR in Brazilian Atlantic Forest,
Parana, Brazil.

2.3.1. Mapping Extent of Araucaria Forests across All Three Study Sites Using Worldview-2

To reduce the data volume and processing time we clipped the downloaded images to
the regions of interest. We performed radiometric correction and applied an atmospheric

https://earthexplorer.usgs.gov/
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correction using the Fast Line-of-sight Atmospheric Analysis of Hypercubes algorithm—
FLAASH [37]. To visually enhance the multispectral data, we pan-sharpened [38] the
images using ENVI. Pan-sharpening improved the resolution of our pixels from 2 to
0.5 m (see product specifications by DigitalGlobe; https://dg-cms-uploads-production.s3
.amazonaws.com/uploads/document/file/98/WorldView2-DS-WV2-rev2.pdf; accessed
on 18 May 2019). We then clipped each image again, selecting the forested portions in our
study area and excluding cities, roads and buildings using ArcGIS. We used all spectral
bands in our analysis.

To classify the Worldview-2 images and differentiate A. angustifolia from other species,
we used a pixel-based approach with supervised classification. As the data input, we
included all spectral bands from our Worldview-2 images as well as a number of remote
sensing indices, measures of variation in spectral reflectance and texture indices. Table 2
provides a complete list of the 152 variables entered into our analysis.

Table 2. Variables derived from Worldview-2 spectral bands and entered into supervised classification
of Araucaria forest.

Abbreviation Feature 1

b1 Worldview-2 Coastal Band
b2 Worldview-2 Blue Band
b3 Worldview-2 Green Band
b4 Worldview-2 Yellow Band
b5 Worldview-2 Red Band
b6 Worldview-2 Red Edge Band
b7 Worldview-2 Near Infrared Band 1
b8 Worldview-2 Near Infrared Band 2

asm Angular Second Moment
contrast Contrast

corr Correlation
svar Sum of Squares: Variance
idm Inverse Difference Moment
savg Sum Average
var Sum Variance
sent Sum Entropy
ent Entropy

dvar Difference Variance
dent Difference Entropy

imcorr1 Information Measures of Correlation 1
Imcorr2 Information Measures of Correlation 2
maxcorr Maximal Correlation Coefficient

diss Dissimilarity
inertia Inertia
prom Prominence
shade Shade

1 All statistical indices were calculated for all bands. To identify the specific band, each index abbreviation is
preceded by the band abbreviation.

For our supervised classification, we relied on the Random Forest (RF) algorithm
implemented in Google Earth Engine (GEE). This is a new RF algorithm that was de-
veloped for the Statistical Machine Intelligence and Learning Engine (Smile) library
(https://haifengl.github.io/; accessed on 18 February 2021) [39], which is now widely used for
classifying satellite imagery. This RF algorithm constructs multiple and random decision
trees that are bootstrapped to classify a dataset and allows the analyst to control data noise
and avoid overfitting [40]. In general, RF algorithms appear to be very robust, allowing for
the integration of large sets of variables while reducing the problem of overfitting [40–43].
We digitized a total of 1120 training polygons delineating areas with A. angustifolia tree
crowns (n = 560) and areas without (i.e., other forests; n = 560). The training polygons were
distributed across our three study areas with 120 at Capão do Tigre, 300 at Canguiri Farm

https://dg-cms-uploads-production.s3.amazonaws.com/uploads/document/file/98/WorldView2-DS-WV2-rev2.pdf
https://dg-cms-uploads-production.s3.amazonaws.com/uploads/document/file/98/WorldView2-DS-WV2-rev2.pdf
https://haifengl.github.io/
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and 700 at Gralha-Azul Farm. We used all pixels contained in the training polygons as
input for the supervised classification. This included 2857 training pixels at Capão do Tigre,
11,275 at Gralha-Azul Farm and 1828 at Canguiri Farm. Based on these training data, we
ran RF in GEE with 500 random trees (number of trees obtained after generating an ROC
curve and an AUC measure) for each study site.

2.3.2. Estimating the Number of Araucaria Trees at One Study Site Using UAV-LiDAR

We relied on LAStools (https://rapidlasso.com/lastools/; accessed on 20 June 2020),
a widely used open-source tool for processing and filtering LiDAR data [44]. Specifically,
we applied LASthin and LASnoise to clean the data and LASground and LASheight to
generate the height data needed for detecting A. angustifolia crowns. To generate a digital
surface model (DSM) and a digital elevation model (DEM) based on the point cloud data,
we used ENVI LiDAR software. Finally, we imported the DSM and DEM into R statistical
software [45] to create a canopy height model (CHM) for further analysis.

To define the limits of each crown based on the CHM, we relied on the watershed
segmentation algorithm [46] provided by the “ForestTools” package in R [47]. The water-
shed segmentation algorithm requires a function that specifies a dynamic search window
for delineating crowns based on canopy height. For our analysis, we used a simple
linear equation:

f (y) = a× x + b

where x corresponds to the height of the trees and y represents the crown radius. This
formula creates a radius within which we can check for similarities in canopy height and
use these similarities to delineate crowns. We experimented with different values for a and
b to provide the best visual fit for Araucaria crowns from the LiDAR data. The final values
for our study area were a = 0.2 and b = 0.25.

To automatically separate tree crowns of A. angustifolia from other crowns at the
Capão do Tigre study site, we first extracted crown characteristics using a zonal summary
algorithm (i.e., crown perimeter, area and mean, maximum and standard deviation of
LiDAR values within the crown). We utilized the resulting variables in a random forest
classification of crowns into A. angustifolia and other trees (randomForest package [48]).
For training we identified 20 crowns for both A. angustifolia and other species [38]. The
UAV-LiDAR provided a direct count, i.e., each mapped polygon corresponded to an
individual tree.

2.3.3. Analysis

After our classification using RF in GEE, we generated two classes: A. angustifolia and
other forests. We selected 100 random pixels inside each class boundary and extracted the
wavelength values of each pixel using the “raster” package. We assessed the differences in
the spectral signatures of A. angustifolia and other forests using boxplots in R software [45].

After RF classification in GEE, we extracted the importance of all variables using the
ee.Classifier.explain() function. The variables were ranked in descending order of their
importance. A visual inspection of the graph of variable importance vs. variable yielded
the threshold for determining the most important variables.

We used the classified map of Araucaria to determine the extent of Araucaria at each
study site. The number of pixels classified as Araucaria was multiplied by the size of each
pixel (0.5 m) to determine the total Araucaria extent at each study site.

We used a simple equation that utilizes published data on average crown diameters
for A. angustifolia trees from Klein (2017) [49] and divided the total area mapped by the
average crown size of 10.8 m.

2.3.4. Accuracy Assessment

We evaluated all our products for their accuracy, including the following:

(a) An assessment of how well our pixel-based classification of Worldview-2 images can
separate A. angustifolia stands from other forests across all three study sites.

https://rapidlasso.com/lastools/
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(b) The accuracy of estimating the number of A. angustifolia trees based on a simple model
relating areas of A. angustifolia canopy from Worldview-2 to the number of individual
trees at the Capão do Tigre study site.

(c) The accuracy of counting all A. angustifolia trees using object-based classification of
tree crowns using UAV-LiDAR data at the Capão do Tigre study site.

For all the study sites, we evaluated the classification of A. angustifolia canopies vs.
canopies of other species with Worldview-2. For this, we used out-of-bag (OOB) estimates
provided by the RF algorithm in GEE. The OOB estimate uses 30% of the training data as a
validation dataset to measure the accuracy of the classification.

We overlaid the GPS data with our A. angustifolia map and determined how many
points were missing. For all accuracy estimates involving individual trees at the Capão
do Tigre study site, we counted crowns that included an A. angustifolia GPS location from
the field survey as correctly classified and all other A. angustifolia crowns as incorrectly
classified. Given the large average crown size for A. angustifolia [49], we believe that GPS
error only had a minor influence on our study.

At the Capão do Tigre study site, we also compared our ability to estimate the number
of individual A. angustifolia trees based on our pixel-based, multispectral classification of
Worldview-2 and our object-based classification of UAV-LiDAR data.

3. Results
3.1. Spectral Response of A. angustifolia Trees

Although there was a general pattern, A. angustifolia trees presented a distinctly
different spectral response across the three study sites (Figure S2). At our largest site
(Gralha-Azul Farm), A. angustifolia exhibited a lower reflectance range than other tree
species for bands 2 (blue), 3 (green), 5 (red), 6 (red edge) and 7 (NIR-1) (Figure S3A). At
our smallest study site (Capão do Tigre), differences in reflectance appeared mainly for
bands 3 (green), 4 (yellow), 5 (red), 6 (red edge), 7 (NIR-1) and 8 (NIR-2) (Figure S3B). At
Canguiri Farm, reflectance was higher for A. angustifolia for bands 3 (green), 4 (yellow),
5 (red), 6 (red edge), 7 (NIR-1) and 8 (NIR-2) (Figure S3C). These differences were also
apparent in density plots (Figure S2).

In our pixel-based classification, band b2 (blue) and texture metrics related to variance
(dvar, svar and var) were common variables separating Araucaria from non-Araucaria
forests across all of our study sites. Although the most important variables (values above
thresholds of 8.96 to 9.92) were different across our study sites, they generally fell into
similar categories (Table 3).

Table 3. The most important variables in Random Forest (RF) models for classifying Araucaria
angustifolia stands from Worldview-2 imagery.

Sites Threshold Value Variables 1 and Importance
Values

Accuracy (%)

Canguiri Farm 9.98 b5_ent (10.85), b3_dvar (10.17),
b2_svar (9.98) 93. 69

Capão do Tigre 8.94 b7_savg (11.30), b6 (9.12), b8
(9.03), b2_var (8.94) 97.14

Gralha-Azul Farm 8.96
b7_shade (10.33), b1_savg

(9.37), b6_savg (9.09), b6_dvar
(9.05), b2_shade (8.96)

97.63

1 Variable abbreviations: b1-8 refers to the band number of the original spectral bands provided in Worldview-2
images. The band number is followed by the variable names which are explained in Table 2.

At Capão do Tigre, bands b2 (blue), b6 (red edge), b7 (NIR-1) and b8 (NIR-2) and
the texture metrics savg and var helped to separate the Araucaria from the non-Araucaria
forests (Table 3). Previous studies [50,51] have shown that red edge and NIR-1 and -2 bands
are helpful in mapping coniferous tree species in the boreal region. The texture metric
variance (var) implies the characteristic shape of the Araucaria crown, while the sum of
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average (savg) is related to the thick Araucaria stem volume [52]. These variables reflect
the characteristic physical parameters of Araucaria and contribute to its separation from
surrounding forests with high accuracy (97.14%) (Table 3).

At Gralha-Azul Farm, in addition to the bands (b2, b6 and b7) and texture metrics
(savg and dvar) discussed above, band b1 (coastal band) and the texture metric shade were
important in separating Araucaria from non-Araucaria forests with high accuracy (97.63%)
(Table 3). Band b1 is mainly used for coastal studies but in vegetation analysis is related to
the chlorophyll content of plants [53]. It has been found to be helpful in separating Scots
pine, which is similar to Araucaria [53]. Cluster shade, which is a measure of the degree of
asymmetry, was also helpful in the separation Araucaria at this site.

At Canguiri Farm, apart from b2, dvar and svar, the important variables included
bands b3 (green) and b5 (red) and entropy (ent). This site contains a number of plantations
along with Araucaria, so the important variables reflect the separation of different tree
species with similar structures, and it has the lowest accuracy (93.69%) among the three
sites (Table 3).

3.2. Mapping Araucaria angustifolia Using High-Resolution Satellite Imagery

By using random forest classification of pan-sharpened, high-resolution satellite
imagery, we were able to delineate stands of A. angustifolia, ranging from individuals
to large groups of trees, based on their unique multispectral characteristics (Figure 2).
Araucaria angustifolia was the dominant canopy tree at Capão do Tigre (56.49% of the
canopy; Table 4), less dominant at Canguiri Farm (32.55%; Table 4) and relatively sparse at
Gralha-Azul Farm (15.35%; Table 4).

Table 4. Canopy area and percent cover of Araucaria angustifolia across three study sites in Paraná, Brazil.

Sites Total Forest (ha) A. angustifolia (ha) No. of A.
angustifolia

A. angustifolia Density
(Trees/ha)

Canguiri Farm 103.79 33.78 (32.55%) 3668 35.34
Capão do Tigre 4.45 2.52 (56.49%) 280 62.92

Gralha-Azul Farm 571.00 87.65 (15.35%) 9570 16.76

We made a rough estimate of A. angustifolia abundance (i.e., number of trees) by
dividing the area of A. angustifolia stands by the average crown size for the species (Table 4).
Based on this calculation, we estimated that there were at least 13,518 trees distributed
across our three study areas. The abundance and density of A. angustifolia trees were very
different across our sites, with higher densities at the smaller sites (Table 4).

3.3. Validation—Random Forest

The accuracy for separating A. angustifolia from other species at all study sites was
high, with an overall “out-of-bag” accuracy of 0.9369 (93.69%) for Gralha-Azul Farm, 0.9763
(97.63%) for Capão do Tigre and 0.9714 (97.14%) for Canguiri Farm (Table 5).

Based on a ground survey at Capão do Tigre, we found that our Worldview-2 map
was nearly 90% accurate in delineating A. angustifolia stands (Figure 3A). While the ground
survey detected 335 A. angustifolia individuals, our crude estimate, derived from dividing
the stand area by the average crown size, counted only 280. This value represents an
accuracy of 79% in estimating the local A. angustifolia population. The omissions (21%)
were likely due to the inability to map understory trees of A. angustifolia using optical
remote sensing data from Worldview-2. In our ground survey data, there are 43 individuals
with an average DBH of 18.52 cm, which likely do not reach the canopy.
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Figure 2. Worldview-2 RGB image (A,C,E) and resulting forest canopy maps delineating Araucaria
angustifolia stands and trees using a Random Forest classifier (B,D,F) across three study areas in
Parana, Brazil. Araucaria angustifolia trees are in white; other forest tree species are in black. (A,B)
Capão do Tigre; (C,D) Gralha-Azul Farm; (E,F) Canguiri Farm.
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Table 5. Commission and omission errors for pixel-based classification of Araucaria angustifolia from Worldview-2 images
across three study sites in the Brazilian Atlantic Forest of Paraná, Brazil.

Classified Data

Study Area Araucaria Non-Araucaria Total Commission
Error (%)

Reference Data

Gralha-Azul
Farm

Araucaria 1901 196 2097 9
Non-Araucaria 129 2926 3055 4

Total 2030 3122 5152
Omission error (%) 6 6

Canguiri Farm

Araucaria 407 11 418 2
Non-Araucaria 12 340 352 3

Total 419 351 764
Omission error (%) 2 3

Capão do Tigre

Araucaria 979 17 996 1
Non-Araucaria 12 132 144 8

Total 991 149 1140
Omission error (%) 1 11

Figure 3. (A) Validation for Araucaria angustifolia map based on a Random Forest (RF) classification
of Worldview-2 imagery at the Capão do Tigre study site in Paraná, Brazil. Red dots are the GPS
points of 335 A. angustifolia individuals identified on the ground. White = A. angustifolia stands from
classification, black = other forests. (B) Canopy height model (CHM) derived from LiDAR data
collected via unmanned aerial vehicle (UAV) for Capão do Tigre; height increases from light to dark
red. (C) Tree crowns delineated using watershed segmentation; crowns in red are A. angustifolia and
crowns in green are other species. (D) Cross-validation: Red polygons are A. angustifolia detected
using LiDAR, white raster areas represent A. angustifolia areas delineated using RF classification of
the Worldview-2 approach and black areas represents other tree species.
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3.4. LiDAR Analysis and Validation

Using object-oriented classification of LiDAR data, we were able to account for almost
all the A. angustifolia individuals found at Capão do Tigre (Figure 3). We detected 351 A.
angustifolia individuals (Figure 3C). Compared to our ground survey, the algorithm did
not find 12 A. angustifolia trees (6% omission error) and misidentified 16 crowns of other
trees as A. angustifolia (31% commission error), with a producer’s accuracy of 94% and a
user’s accuracy of 69% (Table 6). Our validation of the LiDAR and Worldview-2 maps
indicates that the tree crowns identified by LiDAR were fully contained in areas classified
as A. angustifolia with Worldview-2 (Figure 3D). LiDAR provided a higher resolution and
identification of individual trees, but Worldview-2 may provide a better representation of
the actual canopy cover/overlap with other tree species based on the physical characteris-
tics of the trees, which is the most important factor to classify this species with LiDAR. The
percent canopy cover was 84% for A. angustifolia and 16% for other canopy tree species. We
obtained kappa values of 0.99 for all our study sites.

Table 6. Error matrix for classification of Araucaria angustifolia from LiDAR images in Capão do Tigre,
Brazilian Atlantic Forest, Parana, Brazil.

Classified Data

Nº of A.
angustifolia

Nº of Other
Species Total Commission

Error (%)

Reference
Data

Nº of A. angustifolia 315 142 457 31
Nº of Other Species 20 954 974 2

Total 335 1096
Omission Error (%) 6 13

4. Discussion

A. angustifolia is a highly endangered keystone plant resource and is considered the
indicator species of the Araucaria mixed forest—one of the most important and diverse
Atlantic Forest types [10,11]. Araucaria mixed forest is rich in biodiversity, especially
phylogenetic diversity, because it is composed of lineages from very different moments of
the evolutionary history of vascular plants [11] and it forms mosaics with native montane
grasslands [12]. Despite their biological significance and importance, Araucaria mixed
forests are highly threatened following over a century of severe habitat fragmentation,
caused mostly by logging and conversion to other land uses [6,13]. Yet, we currently do
not have up-to-date information on the species’ status and distribution, and techniques
for better mapping and monitoring this species have not been made accessible to forest
managers and conservation practitioners.

We explored the utility of two remote sensing technologies for detecting and mapping
endangered A. angustifolia forest stands, delineating individual tree crowns and estimating
A. angustifolia abundance. Using high-resolution, pan-sharpened Worldview-2 imagery,
we were able to delineate A. araucaria stands and separate them from other forest types
with very high accuracy (i.e., >93%). We were able to do this consistently across multiple
sites that varied in percent A. araucaria canopy cover between 15% and 57%. We found that
A. angustifolia canopies had distinct spectral response patters that allowed for separation
from other forest types. Variations in spectral response patterns and variable importance
between study sites, as observed in our study, are likely due to differences between the
study sites in the following:

(a) The density of A. angustifolia individuals, where low densities (i.e., small sample sizes
in training data) may result in less distinct differences from other forest types;

(b) The age and species composition of interspersed forest types.

Our study demonstrates that powerful machine learning algorithms, such as the RF
implemented in the SMILE library used by GEE, are highly successful in detecting A.
angustifolia and separating this forest type from other forests. This can partly be attributed
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to the simple classification system in which we separate only two forest categories (i.e.,
Araucaria vs. other forest) and the fact that accuracy tends to decrease with an increase
in classification categories [54,55]. However, most of the success is likely due to the
distinct differences in the tree crown and canopy structure as well as the spectral responses
of A. angustifolia leaves compared to other species [49]. In contrast to broadleaved tees,
conifers have lower absorption and higher reflectance in the red band because needle leaves
generally have a lower chlorophyll content (i.e., absorb less red light) than broadleaves [56].
Similarly, conifer trees exhibit lower reflectance in the near-infrared bands because conifer
leaves usually have a lower water content [57,58]. As is typical for coniferous trees and
forests, the blue band helped to separate coniferous Araucaria from other deciduous non-
Araucaria forests. In addition, the characteristically star-shaped texture of Araucaria trees
was reflected in several measures of variance, such as difference in variance (dvar), sum of
squares of variance (svar) and variance (var); these measures were important for delineating
Araucaria forest across all three sites. These differences are reflected in the very high
accuracies across our study sites, ranging from 93.69% to 97.14%.

An alternative explanation for the combination of high accuracies and differences in
variable importance may be that our RF models suffered from overfitting [59]. This has been
reported for the use of random forest for tropical forest carbon mapping [60]. However,
most research on this subject indicates that RF is robust to the inclusion of large numbers of
variables [41–43] and can handle high data dimensionality and multicollinearity well [61].
Even Mascaro et al. [60] stated that despite potential issues with overfitting, RF models
performed best.

We believe that mapping of A. angustifolia forests using supervised classification of
spectral data from Worldview-2 imagery is technically feasible. Our results are consistent
with previous research, albeit less detailed and more limited, on mapping A. angustifolia
from high-resolution imagery. Using fuzzy logic and K-nearest neighbor (KNN) applied
to Quickbird II images at 3-meter resolution, Pesck et al. (2018) delineated individual A.
angustifolia crowns at one site in the National Forest of Irati, Paraná [62]. They studied just
one site, with homogeneous characteristics. We showed that there might be differences
between study sites in terms of reflectance, which can be explained based on the density of
A. angustifolia in each area. Therefore, studying only one site is not enough to develop a
more general algorithm that, in the future, may be able to identify Araucaria crowns over
broad spatial scales. Mapping at finer scales enabled us to further improve the separation
of A. angustifolia from other trees with a similar spectral signature.

We also evaluated whether it was possible to develop coarse estimates of A. angustifolia
abundance and local population size by dividing mapped canopy areas by an average A.
angustifolia crown size. There are at least two sources of potential error with this method:
(a) overlapping crowns may allow for many more A. angustifolia trees in one area, and
(b) there may be many A. angustifolia individuals that are too young to reach the canopy.
Both would result in an underestimation. Indeed, when compared to the known number
of A. angustifolia trees at Capão do Tigre, we missed about 21% of the trees.

UAV-LiDAR, however, proved to be highly accurate in delineating individual A.
angustifolia crowns, although we likely missed individual trees in the sub-canopy. The use
of LiDAR in forest monitoring is still limited, especially in the southern hemisphere. A
recent review of 50 LiDAR studies showed a strong bias for research in temperate zones,
with only two papers for tropical regions [63]. However, NASA’s recent launch of the
Global Ecosystems Dynamics Investigation (GEDI) instrument to the International Space
Station (ISS) represents a critical new opportunity to expand the use of LiDAR for large-
scale biodiversity monitoring [64] and to fill critical knowledge gaps. While GEDI cannot
be used to map individual A. angustifolia trees, it will be useful to assess whether forest
communities with a high abundance of A. angustifolia have greater vertical complexity and
how this might add to biodiversity in the Brazilian Atlantic Forest.

In our study, we tried to elucidate how UAV-LiDAR may be used to reliably map
individual A. angustifolia trees. Generally, crown detection and tree mapping can be
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challenging even with LiDAR, and many existing studies rely on complex algorithms
and extensive code development (e.g., [20]). New advances that integrate high-resolution
optical imagery and LiDAR data with deep learning and artificial intelligence algorithms,
such as convolutional neural networks (CNNs), have shown tremendous promise for
reliably and accurately identifying individual trees (or similar objects) for automated
mapping [65,66]. Given the good results using machine learning with Worldview-2 images
and LiDAR, we believe that CNNs could be applied successfully in the future to expand on
our efforts and for more broad-scale application. In addition, more advanced segmentation
algorithms for LiDAR data may also be helpful to detect and delineate individual A.
angustifolia crowns more reliably.

We compared the two approaches adopted in terms of image/data availability, cost
of accessing the data, spatial resolution, scale of detection, detection of A. angustifolia
and accuracy. In terms of image/data availability, there is a higher chance of finding a
Worldview-2 image for a random study site than finding UAV-LiDAR data for the same.
Out of our three selected sites, all had a Worldview-2 image with low cloud cover avail-
able within the study timeframe, whereas only one site had UAV-LiDAR data available.
Wordview-2 images are not free, but similar imagery has been obtained via data purchases
by federal agencies in Brazil and the USA. Comparatively, conducting UAV-LiDAR surveys
is expensive considering the instrument, sensors, expertise and labor involved. Thus, the
cost of images/data is more favorable for Worldview-2. The spatial resolution of UAV-
LiDAR data can be adjusted by modifying the flight height depending on the purpose of
application, while the spatial resolution of Worldview-2 is fixed. In our case, the resolution
of the UAV-LiDAR data was much finer than that of the Worldview-2 images, allowing
the detection of individual A. angustifolia trees where tree canopies did not overlap, while
Worldview-2 images mapped A. angustifolia stands with overlapping canopies. Further-
more, UAV-LiDAR provides information on tree height, so neighboring crowns of the
same height are considered to belong to the same tree. It cannot differentiate between
tree species unless they can be separated by height information. Comparatively, the eight
bands of Worldview-2 can separate A. angustifolia from other species based on spectral
information. In terms of accuracy, UAV-LiDAR was more accurate in the detection of
individual A. angustifolia trees compared to Worldview-2 due to its finer spatial resolution.
Overall, it seems that if mapping individual A. angustifolia trees is not the objective, using
Worldview-2 is a more practical choice for A. angustifolia mapping.

5. Conclusions

Our study should be considered a pilot effort to advance the mapping and monitoring
of A. angustifolia and other similarly threatened keystone tree species. We showed that
high-resolution Worldview-2 imagery can be used in combination with powerful machine
learning algorithms to reliably map stands of the critically endangered A. angustifolia. These
analyses can be implemented using open-source platforms, such as GEE and R, that are
readily available to a broad audience of resource managers and conservation practitioners.
Using these tools, it might be possible to map A. angustifolia stands at a range-wide scale.

It may also be possible to use such maps to roughly estimate remaining A. angus-
tifolia populations. However, collection of airborne or UAV-LiDAR data would greatly
facilitate population monitoring. We showed that open-source analysis packages such as
ForestTools in R can be used to accurately assess A. angustifolia numbers for smaller forest
areas. We compared both these approaches and conclude that, unless mapping individual
A. angustifolia trees is the desired objective, using Worldview-2 images for analysis is a
practical choice.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/land10121316/s1, Figure S1. Study sites in the state of Paraná, Brazil. Canguiri Farm—
Quatro Barras/PR (25◦23′23.06′′ S, 49◦7′53.4′′) (25◦39′29.21′′ S, 49◦17′17.20′′ W); Capão do Tigre—
Curitiba/PR (25◦26′53.01′′ S, 49◦14′21.74′′ W); Gralha-azul Farm (FEGA)—Fazenda Rio Grande/PR
(25◦39′29.21′′ S, 49◦17′17.20′′ W).; Figure S2. Density plots of spectral responses of Araucaria angus-
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tifolia and other forest trees in Brazilian Atlantic Forest from Worldview-2 imagery at three study
sites, Parana State, Brazil. Bands: 1—Coastal; 2—Blue; 3—Green; 4—Yellow; 5—Red; 6—Red Edge;
7—Near-Infrared 1; 8—Near-Infrared 2. A. angustifolia are represented by red curves and other
species by blue; Figure S3. Paired boxplot of spectral responses of Araucaria angustifolia and other
forest trees in Brazilian Atlantic Forest across three study sites in Paraná State, Brazil. Class 1: A.
angustifolia, Class 0: Other species. Reflectance values were derived from Worldview-2 imagery
(Bands: 1—Coastal; 2—Blue; 3—Green; 4—Yellow; 5—Red; 6—Red Edge; 7—Near-Infrared 1; 8—
Near-Infrared 2). (A) Gralha-Azul Farm; (B) Capão do Tigre; (C) Canguiri Farm. The right side of
the plot shows the Worldview-2 images with the best band composition for visually separating A.
angustifolia which appears tree crowns as: (A) Dark green; (B) Dark red; (C) Dark gray/green.
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