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Abstract: Best management practices (BMP) are defined in the United States Clean Water Act (CWA)
as practices or measures that have been demonstrated to be successful in protecting a given water
resource from nonpoint source pollution. Unfortunately, the greatest majority of BMPs remain
unvalidated in terms of demonstrations of success. Further, there is not a broadly accepted or
standardized process of BMP implementation and monitoring methods. Conceivably, if standardized
BMP validations were a possibility, practices would be much more transferrable, comparable, and
prescriptive. The purpose of this brief communication is to present a generalized yet integrated
and customizable BMP decision-making process to encourage decision makers to more deliberately
work towards the establishment of standardized approaches to BMP monitoring and validation
in mixed-use and/or municipal watersheds. Decision-making processes and challenges to BMP
implementation and monitoring are presented that should be considered to advance the practice(s)
of BMP implementation. Acceptance of standard approaches may result in more organized and
transferrable BMP implementation policies and increased confidence in the responsible use of
taxpayer dollars through broad acceptance of methods that yield predictable and replicable results.

Keywords: best management practices; watershed management; experimental watershed study
design; municipal watershed; adaptive management

1. Introduction

Pollution from diffuse sources is most often driven by meteorological events (i.e.,
precipitation) and alterations to stormwater runoff processes [1,2]. The latter, termed hy-
drologic modification can increase or decrease diffuse pollution loads, the extents of which
are poorly understood and difficult to mitigate based on research from other locations. The
challenge of transferability necessitates the need to monitor and subsequently quantify
stormwater runoff processes, pollutant transporting mechanism(s), and the various path-
ways contaminants may travel from source areas to receiving water bodies in most if not
all contemporary municipal and/or mixed land use watersheds. This is important because
with limited information for local watersheds, stormwater managers struggle to predict
the effect of local ordinances on local receiving water bodies water quality. Given the chal-
lenges of predicting climate and landscape interactions, it is not surprising that meeting
water quality goals such as Total Maximum Daily loads (TMDLs) is a challenge, particu-
larly in rapidly urbanizing watersheds. Certainly, estimating a TMDL for water quality is
laudable goal. However, translating pollutant loading to specific land uses, and subsequent
development-related mitigation strategies, is a difficult task without understanding water
and pollutant transport at multiple locations in a watershed [3–5].

There is thus an ongoing need for cost-sensitive and effective methods of monitoring
best management practices (BMPs) in contemporary watersheds that are transferrable and
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adaptable to local watershed needs. This includes the need for standardized methods to
make BMP decisions in the most effective locations using accepted methods of monitoring
that thereby meaningfully advance BMP decision making, efficacy and cost reductions.
For example, the experimental watershed study design (EWSD) provides an overarching
and customizable monitoring structure that has been shown to successfully quantitatively
characterize the effects of land use practices on receiving waters in mixed land use settings
for well over a century [6–10]. Nested EWSDs divide a larger watershed into a series
of sub-catchments to investigate the influence of land use practices on environmental
variables of interest [4,8,11]. This monitoring design is important because sub-catchment
delineation isolates varying land use practices, BMPs, and hydrologic characteristics [4].
The monitoring design enables the identification of the cumulative effects of land use
practices on response variables of interest. It does this through the quantification of the
influencing processes observed at the sub-catchment scale thereby improving BMP decision-
making efficacy based on validation. The purpose of this communication is to present
a process, and by implication the need, for more deliberate integration of BMP decision
implementation and validation processes and to encourage consideration of a standardized
approach that may significantly advance validation and transferability of BMPs in complex
mixed-use municipal watersheds. The reader is referred to the many supporting citations
(and citations therein) for further understanding of the state of the science.

2. The BMP Decision-Making Process and the Critical Source Area

BMPs are generally categorized based on the intended pollutant or pollutants a given
practice will mitigate. For example, stormwater management BMPs are control measures
that are intended to mitigate changes to both the quantity and quality of urban runoff
caused by land use impacts [11]. Stormwater BMPs are typically designed to reduce
stormwater volume, peak flows, and/or nonpoint source pollution through independent
or combined evapotranspiration, infiltration, detention, and filtration or biological and
chemical processes [12]. BMPs can improve receiving-water quality by extending the
duration of outflows in comparison to inflow duration (known as hydrograph extension),
which dilutes the stormwater discharged into a larger volume of upstream flow [13]. To at
least in part address this challenge, the United States Environmental Protection Agency
(USEPA) recommends that effective application of agricultural, urban, and other nonpoint
source (NPS) BMPs should include the identification of critical source areas (CSAs), or
areas that are particularly susceptible to flow and pollutant sink and source processes, and
that are therefore important to the BMP implementation planning processes and short and
long-term BMP efficacy [14]. BMP implementation in tandem with other practices in CSAs
is important to achieve the goals often delineated in Watershed Management Plans (WMPs)
or Total Maximum Daily Loads (TMDLs). The outcomes of these are intended to result in
achieving water quality and quantity goals and objectives, including (but not limited to)
the restoration and protection of the designated beneficial uses of source waters [14]. The
USEPA approach to identifying CSAs is a results-based methodology designed for select-
ing both appropriate BMPs and BMP systems and identifying the necessary management
strategies to support or promote BMP implementation in critical locations. The methodol-
ogy includes (in brief) (a) determining restoration/protection priorities, (b) identifying the
connections between potential source and transport pathways, (c) estimating the relative
contribution from source and transport pathways, (d) describing the expectation of CSAs
and BMP performance including implementation opportunities, (e) focusing CSAs and
associated BMPs and BMP systems where they will be most effective, and (f) monitoring
progress and adjusting as needed through an adaptive management approach [14]. The
USEPA further recommends a multi-disciplinary ecosystem approach for identifying CSAs
and selecting BMPs, BMP systems, or other management measures to take advantage of the
knowledge, data, and expertise of all stakeholders [14]. The importance of stakeholder en-
gagement (and stakeholder engagement theory) is particularly relevant given that fairness
and reciprocity of decision making should be among the primary objectives to encourage
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greater value in outcomes [15,16]. It is therefore important to encourage a process that
includes many different actors including (but not limited to) government authorities, local
communities, environmentalists, consumer defense organizations, competitors, special
interest groups, and the media [17].

The process of ecosystem restoration planning and implementation can be aided by
the use of conceptual frameworks, which typically include a conceptual diagram illus-
trating relationships between key drivers, stressors, ecological impacts, and management
responses [18,19]. In addition to visualizing relationships between known or suspected
stressors and ecological impacts, such diagrams can help ensure appropriate management
actions are being taken to address key problems, reduce impacts, and subsequently lead to
restoration. An important component regarding the identification of CSAs is determining
priorities that will address recognized problems/concerns relative to water quality man-
agement plan goals and objectives (Figure 1). Information used to target priority areas of
the greatest concern includes water quality data, flow data, biological assessments, and
habitat evaluations [14]. Following priority determination, the methodology helps identify
connections linking problems to potential sources. This approach facilitates delineation of
potential source areas through the utilization of mapping tools designed to aid in the as-
sessment of key factors such as land use information, management measures and practices
(e.g., livestock rearing or urbanization).
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Figure 1. Process for integrating necessary information to develop critical source area (CSA) assess-
ments and prioritize best management practice (BMP) implementation. Simplified after [14].

The goal of the process presented in Figure 1 is to reduce the number of poten-
tial source areas to those locations where BMP implementation will be most effective in
achieving water quality goals. Ideally, this would be a standardized practice for all BMP
implementation decision processes. The estimates used in this step can vary from narrative
descriptors (e.g., high, medium, low) resulting from aerial photo analysis or field invento-
ries to quantitative values developed from desktop screening tools or models. Following
estimation of relative contributions, CSAs and BMP opportunities are targeted with the goal
of ensuring that implementation resources are utilized on suitable management practices
and are directed to areas that contribute disproportionally to problems and concerns [14].
Source areas are rated based on detailed survey data analysis. The process may be iterative
given that choices and decisions are not always apparent, often requiring additional data
collection, compiling or reexamining information used in preceding steps [14]. Finally,
monitoring implemented BMPs for efficacy will produce the information required to make
improvements to an adaptive management framework.

3. BMP Monitoring

Many observational studies and modeled scenarios have been utilized to evalu-
ate BMP efficacy, particularly BMPs aimed at improving water quality [1,20–25]. For
example, studies assessing the impacts of agricultural BMPs on physiochemical condi-
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tions in streams have produced a wide range of values for reductions in nutrients and
sediments [24,26–29]. Other study parameters have included physical habitat, geomorphic
characteristics, chemical metrics, temperature, and other variables [30]. Habitat (e.g., sub-
strate, bank, and riparian condition) and stream geomorphology (e.g., channel shape and
width) have also been shown to be intermediate-term response indicators of incremental
change during the time lag between improvement in chemistry and improvement in biolog-
ical health [31–33]. It must be acknowledged that the improvement of aquatic ecosystems
following BMP implementation is subject to the response of other functional processes as
well, including (but not limited to) hydrology, hydraulic processes, geomorphology, and
physiochemistry [34,35].

Biological community assessments can be used to monitor the long-term and large-
scale outcomes of BMPs [30]. Many organisms are typically present in streams over
longer periods of time relative to physiochemical components and can therefore be used to
determine the stability of the ecosystem response to BMPs [36,37]. Additionally, the simul-
taneous assessment of integrated biological communities (e.g., algae, fish, and macroin-
vertebrates) can provide a more complete assessment of stressors and impacts on sev-
eral temporal and spatial scales [38,39]. For example, diatoms (Bacillariophyta) can be
exceptional indicators of BMP effectiveness as they are sensitive to specific levels of nu-
trient concentrations, conductivity, and pH [30]. Diatoms also exhibit rapid response
times to BMPs, making them well-suited to indicate short-term changes, at a scale of
weeks or months [40–42]. Macroinvertebrates are less susceptible to nutrient enrichment
than diatoms [43]; however, they can be utilized to study watershed-scale eutrophica-
tion, the impacts of land use change, and monitor local-scale habitat health, temperature,
streamflow, and oxygen levels over the medium- to long-term (5–20+ years) [30]. Conse-
quently, monitoring macroinvertebrates over numerous years, accounting for interannual
variation, can be useful for determining the stability of the ecosystem response to BMP
implementation [44,45].

Model development using data gathered from observational studies of water chem-
istry or biotic communities and the professional consensus of experts facilitate the ability to
predict the potential or expected effects of BMPs [30]. Indeed, models are often used for the
development of decision-making tools to help managers and landowners implement BMPs
that have the greatest possible benefit to water quality [46–49]. These tools commonly
include assumptions regarding BMP efficacy in reducing constituent concentrations (e.g.,
sediment and nutrients) [30]. For example, efficiency estimates, ranges of percentages in
nutrient and sediment reduction expected from different BMPs, are commonly developed
for model inputs from a range of observational water quality studies and best professional
judgement [25,31,50]. Efficiency estimates have been implemented in conservation prac-
tices utilized in numerous models implemented in the US Mid-Atlantic region including
the Chesapeake Bay Model [24,51–53], MapSheds and PRedICT [30]. For example, in the
Chesapeake Bay Watershed it is anticipated that total phosphorus (TP) reductions would
be roughly equivalent to 75% of total suspended sediment (TSS) reductions, given the
assumption that 75% of TP is bound to sediment and not dissolved [24,54].

4. Measuring Effects of BMPs

A review of 94 investigations indicated that only 60% of management practices showed
clear evidence of reductions in nutrient concentrations [55]. The authors noted a lack
of consistency regarding the study designs, BMP type, or treatment area. Modeling-
based studies more consistently predicted water quality improvement following BMP
implementation. However, that was presumably due to controlled model routines [55]. The
inherent subjectivity of modeling can therefore create problems regarding data comparison,
given observational and modeled results are often not interchangeable [30]. The lack of
consistent sampling and indicators used in different BMPs also complicates the comparison
of results and the ability to draw conclusions [30].



Land 2021, 10, 1402 5 of 11

Implemented BMPs have also resulted in inconsistent validation results, with both
study design and spatial and temporal scale of monitoring influencing inconclusive out-
comes and resultant lack of transferability [30], a problem that could be addressed with
standardized monitoring protocols [4]. Generally, positive water quality outcomes were
reported for larger scales in watersheds comprising an aggregation of combinations of
various BMPs [26,56–61]. Evidence of the success of BMPs includes reduced eutrophication
and algal growth, and hypoxic or anoxic conditions decreasing in area and duration in
large receiving waters [30,61,62]. The success of BMPs may also be localized; for example,
the effects of BMPs for livestock grazing and activities within streams on small scales can
be difficult to detect farther downstream [62,63]. For example, Thomas (2002) showed
improved Index of Biological Integrity (IBI) scores at the site of BMP implementation,
although not downstream, in a 140 ha watershed in the Altamaha River basin. Conversely,
BMP impacts may only be detectable on larger scales. For example, Line et al. (2000)
did not observe total suspended solid (TSS) reductions at the site level but observed a
cumulative reduction at the watershed scale in North Carolina. Notably, the results of
BMPs are also impacted by the period over which they are studied. Studies that take place
over long periods (5–20 years), including both small and large spatial extents, are typically
more representative of the effects of BMPs [20,64].

Several factors can contribute to the lack of consistency in the measurable effects of
BMPs. For example, detecting changes in streams can be complicated by the intended scale
of impact, the lag time for ecosystem response, weather events, and local conditions [30].
A review of farm BMPs in 2019 showed that BMP implementation is often opportunis-
tic, involving widely dispersed implementations throughout large geographic regions
focusing on reaching desired effects at the local scale [30]. However, other recent studies
demonstrated that merely increasing the number of implementation sites for BMPs may
not optimize investment towards improved water quality at local or watershed scales;
rather, targeting specific geographic locations and preferentially investing in specific BMPs
is expected to result in greater overall impact [15,48,65–68]. This is of particular relevance
given that planning BMPs should occur at a watershed level to ensure upstream impacts
that place stress on lower reaches can be fully accounted for and addressed [14,47].

5. Monitoring Mixed-Use and Municipal Watersheds: A Standardized Approach

The above challenges can be contended with using targeted monitoring programs at
the reach to the watershed scale [30]. The experimental watershed study design (EWSD) can
serve this purpose [4]. The EWSD includes multiple sites monitoring the same indices at the
same time. This in-situ monitoring approach has the potential to enhance understanding of
when BMPs are having their intended effect, and alternatively when they are not achieving a
significant or measurable reduction in inputs at stream reach or watershed scales [45,69,70].
A review in 2019 of 277 studies showed that baseline (prior to implementation) data should
be collected (when possible) to understand pretreatment conditions and better predict BMP
success [30]. The long-term multi-spatial resolution sampling characteristic of the EWSD
study design is ideal to monitor water quality metrics both prior to and following the
implementation of BMPs and can greatly increase the confidence landowners and water
quality managers have in the efficacy of implemented BMPs. Figure 2 shows examples
of typical EWSDs including paired and nested (Figure 2A,B), modelled after [71], the
nested-scale design, modelled after [4], and the nested-scale and paired design, modelled
after [72]. These designs are useful for municipal and/or mixed land use watersheds
because they can be applied to watersheds that are currently in a dynamic multiple-use
state. The designs can therefore be considered in-situ designs that can be used at any
time, at any stage of design and BMP implementation. What is important is to simply
start monitoring, and continue monitoring so that before and after periods are captured
pre- and post-BMP implementation [4]. Notably, these designs also increase monitoring
efficacy due to multiple monitoring sites and can also ensure that limited taxpayer funds
spent on BMPs are used effectively. This is important given that in the United States alone,
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funding invested in BMPs can constitute substantial sums. For example in the period of
approximately 2005 to 2015, an estimated USD 30 billion was invested to fund federal
conservation programs and protect public health and the environment [73].

Land 2021, 10, x FOR PEER REVIEW 6 of 12 
 

can be used at any time, at any stage of design and BMP implementation. What is im-

portant is to simply start monitoring, and continue monitoring so that before and after 

periods are captured pre- and post-BMP implementation [4]. Notably, these designs also 

increase monitoring efficacy due to multiple monitoring sites and can also ensure that 

limited taxpayer funds spent on BMPs are used effectively. This is important given that 

in the United States alone, funding invested in BMPs can constitute substantial sums. For 

example in the period of approximately 2005 to 2015, an estimated USD 30 billion was 

invested to fund federal conservation programs and protect public health and the envi-

ronment [73]. 

 

Figure 2. Nested figures include idealized catchments with examples of (A) and (B) paired and 

nested EWSD with (A), control (left) and treatment (right) catchments, and monitoring during a 

calibration period, (B) control (left) and treatment (right) catchments, and monitoring after 

changes (arbitrary) in management practices (shaded area in B), modelled after [71], (C) the nested 

scale design, modelled after [4], and (D), the scale-nested and paired design, modelled after 

[72,74]. These can be considered in-situ designs as there may be land use practices occurring (pre-

existing) before, during and after subsequent BMP implementation. Monitoring site locations 

shown are arbitrary and must be user-defined. 

The EWSD monitoring approach is an increasingly used, globally accepted, method 

to monitor hydrologic and water quality processes, identify CSAs and most impactful lo-

cations for BMPs in municipal watersheds. The EWSD has been shown to quantitatively 

characterize hydrologic and water quality conditions and changes effectively. It also is 

effective at addressing both site-specific management questions, BMP efficacy, and assist-

ing model development, validation, and calibration [4,69–72,74–78]. Historically, the 

method may have been infeasible for many municipalities due to funding constraints and 

Figure 2. Nested figures include idealized catchments with examples of (A,B) paired and nested
EWSD with (A), control (left) and treatment (right) catchments, and monitoring during a calibration
period, (B) control (left) and treatment (right) catchments, and monitoring after changes (arbitrary)
in management practices (shaded area in B), modelled after [71], (C) the nested scale design, mod-
elled after [4], and (D), the scale-nested and paired design, modelled after [72,74]. These can be
considered in-situ designs as there may be land use practices occurring (pre-existing) before, during
and after subsequent BMP implementation. Monitoring site locations shown are arbitrary and must
be user-defined.

The EWSD monitoring approach is an increasingly used, globally accepted, method
to monitor hydrologic and water quality processes, identify CSAs and most impactful
locations for BMPs in municipal watersheds. The EWSD has been shown to quantitatively
characterize hydrologic and water quality conditions and changes effectively. It also is
effective at addressing both site-specific management questions, BMP efficacy, and assisting
model development, validation, and calibration [4,69–72,74–78]. Historically, the method
may have been infeasible for many municipalities due to funding constraints and the
historic high costs of instrumentation, labor, the often time-consuming process of data
collection, as well as the expertise required for data analyses and interpretation of re-
sults [4,6,8,75]. While these perceptions may persist, recent reduced-cost technologies and
the inherent long-term fiscal advantages of the experimental watershed study design far
outweigh the potential disadvantages. Importantly, if preemptive, the design can be used
to collect pre-treatment information (Figure 2). This is important given that pre-existing (an-
tecedent) conditions prior to BMP implementation are most often infeasible and completely
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missing, but critical for BMP efficacy assessments. Unfortunately, without this information
it is nearly impossible to justify changes in approach(es) for future implementations.

To advance and/or consider standardization of the BMP process, there may be a need
to couple the EWSD with a process that includes a logical sequence of steps to satisfy
project objectives before, during, and after implementation. There are many such plans
adapted by managers and policy makers including that used by the Natural Resource
Conservation Service (NRCS) [79], recreated and simplified in Figure 3. Planning steps
are not always linear but may be cycled through iteratively to develop the best set of
alternative solutions to a given problem, and ultimately select and implement a certain
set of practices. For this example (Figure 3), the steps generally include the following.
(1) Identify problems and opportunities: What characteristics should be changed? Is the
noted condition actually a problem? (2) Determine overall goals and specific objectives:
What are the desired physical, chemical, and biological outcomes? (3) Inventory resources:
Understand the dominant physical processes, and impact variables of interest. (4) Assess
assembled information and decide what processes most influence the desired condition.
(5) Determine which processes can be changed (if any). (6) Assess alternatives. (7) Decide
on courses of action. (8) Implement the plan. (9) Evaluate outcomes to assess performance
and revise practices. Other methods include the integrated watershed management (IWM)
approach that includes management planning to improve areas of concern including
(but not limited to) water availability, increased food production, improved livelihoods,
and sustainability of mixed land use watersheds [80]. In many locations (globally), the
IWM approach has also been used to address gender issues and the generation of social
capital and economic benefits for rural populations [80,81]. This approach, therefore,
facilitates the protection of critical water resources while simultaneously addressing issues
such as the current and future impacts of population and/or population and land use
growth and climate change [4]. Finally, outcomes of these efforts can be improved in
the long-term through effective collaborative adaptive management (CAM; or derivative)
efforts [4,16–18].
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6. Synthesis and Conclusions

The processes described and diagrammed above imply an iterative approach. The
properly prioritized identification of CSA and BMP implementation will help prioritize
the most sensitive CSAs and the most effective locations for BMPs. The in-tandem EWSD
approach can facilitate the pre-implementation assessment, monitoring following imple-
mentation, and provide critical information necessary to determine the short- and long-term
quantitative efficacy of implemented BMPs [4,67–71,74,75]. The coupled EWSD and logical
flowpath (steps) approach, from identifying the problem to BMP implementation and
validation, can lead to greater confidence and stakeholder buy-in regarding BMP efficacy.

The integration of approaches outlined herein facilitates the identification and quan-
tification of factors contributing to impairment, and provides information needed to target
mechanistic drivers, both natural and anthropogenic, of hydrologic and/or water quality
alteration. Efficiency in planning and monitoring pre- and post- BMP implementation
can quantitatively chronicle the compounding impacts of land use practices, hydrocli-
matic variability, and physical watershed characteristics on water quantity and quality
regimes. There is a need for studies focused on the lifecycle of these processes, including
the econometric benefits (or detriments). Ultimately, the ability to supply more scientific
and socioeconomic information to stakeholders ensures buy-in and support for watershed
best practices leading to improved long-term watershed management decision-making.
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