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Abstract: Bare soil is a critical element in the urban landscape and plays an essential role in urban
environments. Yet, the separation of bare soil and other land cover types using remote sensing
techniques remains a significant challenge. There are several remote sensing-based spectral indices
for barren detection, but their effectiveness varies depending on land cover patterns and climate
conditions. Within this research, we introduced a modified bare soil index (MBI) using shortwave
infrared (SWIR) and near-infrared (NIR) wavelengths derived from Landsat 8 (OLI—Operational
Land Imager). The proposed bare soil index was tested in two different bare soil patterns in Thailand
and Vietnam, where there are large areas of bare soil during the agricultural fallow period, obstructing
the separation between bare soil and urban areas. Bare soil extracted from the MBI achieved higher
overall accuracy of about 98% and a kappa coefficient over 0.96, compared to bare soil index (BSI),
normalized different bare soil index (NDBaI), and dry bare soil index (DBSI). The results also revealed
that MBI considerably contributes to the accuracy of land cover classification. We suggest using the
MBI for bare soil detection in tropical climatic regions.

Keywords: agricultural fallow period; bare soil index; bare soil detection; Landsat 8; modified bare
soil index (MBI); remote sensing; spectral indices

1. Introduction

Remote sensing and satellite imagery have been widely utilized for monitoring land
and environmental changes, including urban expansion [1–3], deforestation [4–6], climate
change impacts [7,8], wildfire damage [9,10], and other natural and anthropogenic dy-
namics. Presently, there are diverse high-resolution satellites which positively support
urban studies, such as HyMap [11], Worldview [12], SPOT [13,14], and Sentinel-2 [15,16].
An integration of Sentinel-2 and Sentinel-1, a free-of-charge Synthetic Aperture Radar
(SAR) sensor, has potential for urban mapping [17,18]. Yet, the major limitations of these
observation data are data-acquired costs and time of coverage, especially for urban expan-
sion studies, which are often considered over a long-term period. The cost per scene for
commercial satellites is costly relative to the income of developing countries. The freely
accessible data with fine resolution such as the Sentinel mission has only been available
since 2015. Therefore, Landsat data (i.e., 4, 5, 7-ETM, and 8-OLI) are commonly used in
numerous studies worldwide since its data cover nearly 50 years consecutively [19]. With
medium multispectral resolution and powerful thermal infrared (TIR) sensors, Landsat
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data are applied for monitoring urban expansion and surface temperature, an essential
parameter in the urban environment [20–24].

The presence of bare soil in peri-urban and countryside regions has posed difficulties
for accurate classification of urban land covers. This is partly because bare soil and urban
features have relatively similar spectral characteristics [25]. This confusion could be limited
by using settlement products (e.g., World Settlement Footprint-WSF [26], Global Human
Settlement Layer-GHSL [27,28]) to mask out urban areas. Data continuity is a disadvantage
since these data are solely aggregated for a few certain time hooks. Multitemporal data
are a potential approach to detect bare soil since agricultural bare soil is seasonal, whereas
urban features are permanent. Yet, applying multitemporal data in the tropical region is
relatively difficult due to data loss during the rainy season when the cloud cover rate is up
to 85–95% [29,30]. Bare soil detection, therefore, is still a challenging task.

The bare soil includes fallow agricultural land during the fallow period of cultivation-
land preparation time of transition between two crops—and available land after the land
clearance process or pre-urbanized parcels [31]. In some urban areas, the presence and
extension of bare soil are closely related to dust storm frequency, especially in desert
and arid climate regions [32–34]. Besides, barren land without vegetation is vulnerable
to sediment transport, soil erosion, and landslides [35–37]. Such fallow land is essential
because of its relatively lower heat capacity relative to other land cover types, inducing
high temperatures over its land surface. It is, therefore, vital to classify bare soil in urban
studies, mainly when the urban heat island (UHI) is assessed in various temporal and
spatial scales [38]. The dynamics of land cover changes and inaccuracy in classifying bare
soil leads to inadequate assessment of the heat harshness in inner city areas.

Barren land is often misclassified as built-up areas and vice versa. We may face
an “unrealistic urbanization” because the classified urban areas are actually bare soil
areas. Consequently, urban development rates and developing tendencies might be erro-
neously assessed in the very first step of urban planning. Once barren land is efficiently
differentiated from built-up land, it improves urban expansion assessment and helps con-
tribute to other developments such as agricultural management. For instance, there were
238,276 hectares of rice cultivation in the Vietnamese Mekong Delta damaged during the
severe drought and salinity intrusion in the dry season of 2015–2016 [39]. Such damage
could be assessed by monitoring the fallow land areas. An identical evaluation is applica-
ble for aquaculture, such as allocating fallow shrimp ponds [40,41]. Therefore, bare soil
monitoring is crucial for land use planning and agricultural practices, and policymaking.

Scholars worldwide have proposed many spectral indices derived from Landsat to
discriminate bare soil from other lands (Table 1). Generally, bare soil indices are constructed
from various Landsat wavelengths from visible to near-infrared (NIR) and shortwave
infrared (SWIR) wavelengths with a two, three, and four band combined index. Koroleva
et al. [42] proposed an approach to separate bare soil applying the Red-NIR spectral space,
which is a principal basis in determining soil type [43]. Although bare soil occupies an
ellipse-shaped area on the Red-NIR plot, it is smaller than the vegetation area [42]. It
may lead to difficulty in discrimination between bare soil and other land cover types in
general. Lin et al. [44] proposed a non-ratio index, bareness index (BI), for urban feature
extraction in general from band Red, NIR, and SWIR1 (1.57–1.65 µm). However, this
index has limited ability to separate bare soil from built-up areas [44]. Likewise, enhanced
built-up and bareness index (EBBI) was introduced to detect urban features and bare soil,
but its differentiation ability is inadequate [31]. Bare soil features are also not distinguished
from built-up features in bare soil index 3 (BSI3) [45] and normalized difference soil index
1 (NDSI1) [46]. For the bare soil indices, including BSI2 [47], BSI [48], BSI1 [34], and dry
bare soil index (DBSI) [49], barren land and urban area cannot be separated due to their
similarities and overlapping thresholding values. Whether it is a two-band or four-band
ratio, bare soil parcels were differentiated less clearly by these bare soil indices due to their
limited capability. DBSI was initially proposed for arid climatic regions (i.e., Iraq), and
applying DBSI in humid regions is therefore inappropriate. Deng et al. [50] introduced a
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normalized difference soil index (NDSI2) in an attempt to highlight bare soil information by
reversing the modified normalized difference water index (MNDWI) [51] based on the high
reflectance of bare soil in the shortwave infrared wavelength. Yet, the NDSI2 is able to detect
large and dry bare soil parcels while small and sparse parcels are often neglected. Thermal
infrared wavelength (TIR) has been utilized to facilitate bare soil detection; for example,
normalized difference bareness index (NDBaI) [52] and normalized difference bare land
index (NBLI) [53]. The performance of NDBaI and NBLI is relatively high compared to
other barren indices. Nevertheless, the disadvantage of using thermal infrared-based is
low resolution originating from TIR (i.e., 60 m in Landsat TM/ETM, 100 m in Landsat 8).
By using panchromatic (PAN) images with better spatial resolution (i.e., 15 m) and SWIR2
(2.11–2.29 µm), the modified normalized difference soil index (MNDSI) overcomes the
limitation of low resolution on NDBaI. Besides, MNDSI shows excellent discrimination
between urban areas and bare soil in a comparatively hot area like Dehradun (India) [54].
It is also the case that most of these indices were firstly designed for temperate climate and
high latitude regions. It is well known that the barren index’s performance is significantly
affected by climate patterns [49]. Hence it is not suitable for the tropical monsoon climate
with different bare soil patterns (i.e., homogeneous versus sparse bare soil, see Section 2.1).

Table 1. Bare soil indices derived from Landsat imagery.

Index Data Formula Case Study References

Bare soil index Landsat TM, ETM, 8
(OLI) BSI = (SWIR2+R)−(NIR+B)

(SWIR2+R)+(NIR+B)
The Swiss Plateau,

Switzerland [48]

Bare soil index 1 Landsat TM BSI1 = (SWIR1+R)−(NIR+B)
(SWIR1+R)+(NIR+B)

Guangdong, China [34]

Bare soil index 2 Landsat TM BSI2 = 100×
√

SWIR2−G
SWIR2+G

South Africa [47]

Bare soil index 3 Landsat TM, ETM BSI3 =
(SWIR1+R)−(NIR+B)
(SWIR1+R)+(NIR+B) × 100 + 100 Iran [45]

Normalized difference
soil index 1 Landsat TM NDSI1 = SWIR1−NIR

SWIR1+NIR − [46]

Normalized difference
soil index 2 Landsat TM NDSI2 = SWIR2−G

SWIR2+G
Milwaukee and
Waukesha, US [50]

Normalized difference
bareness index Landsat TM, ETM NDBaI = SWIR1−TIR

SWIR1+TIR Northern coastal China [52]

Bareness Index Landsat TM BI = (R + SWIR1−NIR) Beijing, China [44]
Enhanced built-Up and

bareness index Landsat ETM EBBI = SWIR1−NIR
10
√

SWIR1+TIR
Bali, Indonesia [31]

Modified normalized
difference soil index Landsat 8 (OLI) MNDSI = SWIR2−PAN

SWIR2+PAN Dehradun, India [54]

Normalized difference
bare land index Landsat TM, 8 (OLI) NBLI = R−TIR

R+TIR Wuhan, China [53]

Dry bare-soil index Landsat 8 (OLI) DBSI = SWIR1−G
SWIR1+G −

NIR−R
NIR+R Kurdistan, Iraq [49]

R: red wavelength, G: green wavelength, B: blue wavelength, NIR: near-infrared, SWIR1: shortwave infrared band 5 (Landsat TM/ETM)
and band 6 (Landsat 8), SWIR2: shortwave infrared band 6 (Landsat TM/ETM) and band 7 (Landsat 8), PAN: panchromatic band 8
(Landsat ETM/8), TIR: thermal infrared band 6 (Landsat TM/ETM) and band 10 (Landsat 8).

This paper aims to introduce a more accurate bare soil index to support long-term
studies related to land cover classification using Landsat images in the tropics. Firstly,
we introduce a new bare soil index to improve the discrimination between bare soil and
other land covers in finer resolution using a spectral index derived from Landsat 8 imagery.
Subsequently, we assessed the proposed modified bare soil index’s performance in two test
sites and made further comparisons with three other available bare soil indices.

2. Materials and Methods

Figure 1 presents a flowchart that describes the procedures of development and
validation of the modified bare soil index from data used to output. Each step is discussed
in detail below.
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Figure 1. Flowchart showing the detailed research methodology to develop and validate the modified bare soil index.

2.1. Test Sites

We chose the eastern Bangkok metropolis (Thailand) as the first test site (test site #1)
because this is a semi-urban region with heterogeneous urban and annual agricultural
landscapes, which become seasonal bare land in the fallow period [55] (Figure 2). The
concentrated and smaller-size residential areas are interspersed with the fields due to the
suburbanization process [56]. The second site (test site #2) is located in central Soc Trang
province, a local city in the Vietnamese Mekong Delta, where most agricultural land is
double-cropped rice or a rain-fed rice system [57]. The immense paddy fields become
seasonal bare soil during the dry and salinity intrusion periods. Both test sites are located
in flat low plains and distributed over the Gley soil (Gleysols-GL) based on the World
Reference Base for Soil Resources (WRB) [58,59]. Specifically, the test sites are square
with a 20 km edge and dominated by four major land cover types (i.e., bare soil, built-up,
vegetation, and water bodies).

2.2. Data

Two Landsat 8 (OLI/TIRS) scenes were collected from the US Geological Survey
(USGS) website (https://earthexplorer.usgs.gov (accessed on 26 August 2020)) The image
covering Bangkok metropolitan (Thailand) was captured on 19 February 2020 (WRS-2
path/row: 129/50), and the other image was also in the dry season of 2020 in Soc Trang
province (Vietnam) on 25 February with path 125 and row 53. All images are Level-2 data
(surface reflectance) with a cloud cover rate of less than 0.5%, minimizing atmospheric
effects for further analyses.

Compared to other Landsat satellites, Landsat-8 was retrofitted with coastal aerosol
and cirrus bands for cloud-related studies. The main drawback of Landsat 8 data is a low
resolution of thermal infrared bands, about 100 m compared to 60 m in Landsat 7, affecting
the accuracy of urban bare soil detection using the thermal band [60,61]. The thermal in-
frared band therefore was eliminated from potential indices, whereas the remaining bands

https://earthexplorer.usgs.gov
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were preferred to maintain the index resolution at 30 m. Shortwave infrared (SWIR) bands
were especially considered since these bands can penetrate thin clouds and discriminate
vegetation and soil [62,63].
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2.3. Modified Bare Soil Index

Figure 3a shows the reflectance properties of four land cover types, which are visu-
alized by 4000 training pixels on both sites. This graph also shows profiles of bare soil
and built-up cover that are relatively similar and lead to a challenge in urban bare soil
separation in urban studies. These two features’ reflectance values vary depending on to
visible wavelength, but urban features reflect more energy in this wave range. In contrast,
bare soil reflects more near infrared (0.85–0.88 µm) and shortwave infrared 1 (SWIR1:
1.57–1.65 µm), band 5 and band 6 on Landsat 8, respectively. Bare soil tends to absorb
energy in shortwave infrared 2 (SWIR2: 2.11–2.29 µm) against urban features.

On the other hand, water attracts most of the energy from the visible to the infrared
spectrum, especially for the SWIR1 and SWIR2 channels. Vegetation absorbs these SWIR
wavelengths, whereas NIR energy is mostly returned to the sensor onboard after reaching
vegetated surfaces (Figure 3a,b). We applied the dissimilarities among bare soil, urban,
and vegetation in NIR, SWIR1, and SWIR2 bands as the basis for separating bare soil from
other land cover features.

Based on these observations, we developed the modified bare soil index (MBI). Firstly,
we tried a two-band index (Equation (1)) based on the unique distinction between bareness
and urban areas on SWIR1 and SWIR2 to enhance bare soil signals (Figure 4b). This
ratio is a normalized shortwave infrared difference soil-moisture (NSDS), determining
soil-moisture because of water absorption by shortwave infrared [64]. This ratio indicates
that bare soil features were highlighted compared to urban features, but the most positive
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values of the index are vegetation. Subsequently, we proposed to add the NIR band
into Equation (1) for weakening vegetation signals. Despite all land cover features being
negative (approximate −2 to less than 0), bare soil areas are striking compared to urban
areas and vegetation, represented by bright tone pixels in Figure 4c. Thus, we added
an additional factor ( f = 0.5) to redistribute the index’s values with possession of both
negative and positive values (Equation (2)), in which higher positive values present bare
soil and negative values are water bodies and vegetation. Generally, the factor ( f ) only
facilitates determining the value ranges to classify vacant land thresholds and other types
using MBI. Adding f does not affect the ability to distinguish objects of MBI. The MBI
value ranges from −0.5 to + 1.5, in which bare soil is emphasized and received positive
values until maxima.

BI =
SWIR1− SWIR2
SWIR1 + SWIR2

(1)

MBI =
SWIR1− SWIR2− NIR
SWIR1 + SWIR2 + NIR

+ f (2)

where, SWIR1 and SWIR2 are shortwave infrared band 6 (1.57–1.65 µm) and band 7
(2.11–2.29 µm), respectively; NIR is near-infrared band 5 (0.85–0.88 µm) on Landsat 8 OLI;
and f is an additional factor ( f = 0.5).
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Figure 3. (a) Spectral profiles show reflectance properties of different land cover types; (b) 3D plot presents spatial separation
of bare soil and built-up samples based on reflectance values in NIR, SWIR1, and SWIR2 bands. Orange and gray dots
represent bare soil and built-up samples, respectively.
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2.4. Comparisons with Other Bare Soil Indices

This study calculated three other bare soil indices on Landsat 8 to compare with the
MBI. Bare soil index (BSI1) was first introduced by Rikimaru et al. [65] to monitor forest
status. Diek et al. [48] then modified SWIR1 to SWIR2 to improve bare soil detection, also
called bare soil index (BSI). A modified bare soil index proposed by Zhao and Chen [52],
normalized difference bareness index (NDBaI), is based on higher radiation of bare soil on
the thermal band. NDBaI was an option to monitor bare soil, land conversion, impervious
surface, and its relation to surface temperature [66–70]. Applying the thermal band in
urban bare soil separation is inefficient as expected because the thermal band’s pixel size
is always coarser than multispectral bands, at 60 m for Landsat TM/ETM, and 100 m for
Landsat 8. A recent bare soil index is dry bare soil index (DBSI). This DBSI is a four-band
index, which is an inverse modified normalized difference index (MNDWI) adjusted by
the normalized difference vegetation index (NDVI) [49]. The three mentioned indices were
computed using the corresponding formulas in Table 1.

2.5. Bare Soil Classification Using Thresholding

Although a single index image together with other multispectral bands can be clas-
sified by supervised and unsupervised algorithms, thresholding is the simplest method
to identify a specific land cover type [71–76]. The thresholding method was applied for
evaluating the remote sensing-based index’s performance [49]. After the four bare soil
indices were computed, the ratio images were then classified into two land cover types,
bare soil and non-bare soil using an appropriate threshold value. In practice, an index
image depicts more than two land cover types with several histogram peaks. A con-
ventional binary thresholding is irrelevant for classifying this index image. We applied
multi-Otsu thresholding (MOT), with a basis of Otsu thresholding [77], for indicating the
bare soil thresholding values for different bare soil indices. To ensure uniformity in bare
soil identification between the two test sites, the mean threshold values were considered
instead of particular values. The computed threshold values were then slightly adjusted by
comparing with false color composite (FCC) images to get the most appropriate threshold
for bare soil detection on each index.

2.6. Pure Pixel Selection

We selected “pure pixels” or confident pixels for four land cover types, namely bare
soil, built-up, vegetation, and water bodies. The pixel selection bases are diverse from
different image interpretation, ground sampling, and field experience. Besides, very high
resolution (VHR) images in Google Earth were also used as references, as suggested
by previous studies [78–82]. To increase objectivity and independence, we selected two
isolated datasets in each test site to compare index performance and evaluate bare soil
extraction. The first dataset consists of 2000 separated pixels and 500 pixels for each land
cover type. Meanwhile, the second dataset contains 400 pixels, 200 for bare soil and 200 for
non-bare soil. A pixel was randomly chosen when it was accurately known as a particular
land cover, and was not adjacent to another land cover. Additionally, the two nearest
pixels need to be no closer than 90 m (i.e., about 3 pixels on the Landsat image). Finally,
pixel purity was tested by Jeffries-Matusita and Transformed Divergence separability
measures [83–85]. The measurement indicates a land cover pixel group’s separative ability
against another land cover in a pair. Likewise, all land cover types are compared, in which
a group is separated from another with a value range of 1.71–2.01. All selected pixel groups
achieved fine separability (>1.99).

2.7. Performance Assessment

The second datasets of pure pixels (i.e., bare soil and non-bare soil) were used to
evaluate the ability to separate bare soil and other land cover types on four bareness indices.
The bare soil maps were then compared to the truth points and the well-known indicators
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in remote sensing were estimated, which are overall accuracy and kappa coefficient, by
constructing a confusion matrix.

In addition to the thresholding classification evaluated by the above metrics, a random
forest classifier (RFC) was applied for assessing the performance of MBI in a multivariate
classification against the other three indices. The dataset of four land cover types was divided
into two sets. The classifier was trained by 70% of the pixels and validated by the remaining
30% of samples [71,86]. There were seven spectral bands (i.e., RGB, NIR, SWIR1, SWIR2,
TIR1) and four bare soil indices contributing to training the model. There are two critical
parameters in the RFC: the number of trees (ntree) and the number of randomly sampled
variables (mtry). The mtry parameter is automatically optimized. The classification trees were
defined as a number that is not too small, i.e., ntree = 500 [7,71,87]. Subsequently, individual
mean decrease accuracy (MDA) was computed for the corresponding contributor. A more
important variable is indicated by a higher MDA, reflecting the model’s accuracy loss by
excluding this variable [87]. The classifier was repeated with an iteration time of n = 1000
on completely different training datasets to limit possible biases resulting from the variable
selection.

3. Results
3.1. Bare Soil Indices

Four bare soil indices calculated for test sites #1 and #2 are presented in Figure 5. The
index images were uniformly rescaled on a value range of −1 to 1 for peer comparison
among the indices. Regarding image visibility, we can see that BSI emphasizes built-up
covers instead of bare soil areas because buildings in index images are in a lighter tone
(i.e., higher than 0.5) compared to bare soil parcels (Figure 5a,c). Although DBSI can better
highlight bare areas against BSI, several built-up areas are still in a light tone, especially in
the city center and buildings with high reflectance from roof materials. The NDBaI and
our bare soil index, MBI, performed well for both bare soil emphasis and separation with
built-up covers. Those bareness areas are able to be visibly identified by pixels with values
moving towards 1.0 on both NDBaI and MBI (Figure 5b,d).
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Density graphs were created by extracted points (i.e., 4000 points for both test sites),
illustrating how land cover types are differently classified in BSI, NDBaI, DBSI, and MBI
(Figure 6). The mean values of bare soil and urban areas in NDBaI and DBSI are over-
laid (i.e., NDBaIbaresoil = 0.122± 0.023, NDBaIurban = 0.047± 0.110 and DBSIbaresoil =
0.212± 0.016, DBSIurban = 0.209± 0.060). An overlapping rate test shows the overlapping
rate (OLR) between bare soil and urban pixels reaches 35% and 25% for DBSI and ND-
BaI, respectively. Therefore, determining an optimal thresholding value to differentiate
bareness from urban areas is relatively challenging. Nevertheless, once we can pick out
an approximate value, it does not mean that these two covers can be altogether distin-
guished because of existing overlapping. The mean ranges in BSI are relatively distinct,
BSIbaresoil = −0.365± 0.022 versus BSIurban = −0.268± 0.058, with the OLR at approx-
imately 21%. There is another complication when using BSI for bare soil detection. BSI
emphasizes urban features instead of bareness, so the most positive values on this index
represent built-up areas. Therefore, the determination of the bare soil thresholding value
in BSI is a double task with upper and lower limit values. MBI shows its efficiency with
seemingly no overlapping zones for bare soil, built-up, and other land covers (Figure 6d).
The MBI mean values for bare soil and urban features are MBI = 0.332 ± 0.010 and
MBI = 0.249± 0.020, respectively. The OLR between bare soil and urban pixels does not
exceed 10% on either test site. It reasonably implies the applicability of MBI in urban and
bare soil discrimination.
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3.2. Extraction of Bare Soil Areas Using Modified Bare Soil Index

Bare soil index images were applied with different thresholding values for mapping
ratio images into bare soil and other land cover types (i.e., as values out of the thresholding
ranges). In the first test site, bare soil thresholding ranges were BSI (−0.46 to − 0.32),
NDBaI (> 0.0), DBSI (> 0.125), and MBI (> 0.27). The values were modified a little for
the second test site due to its unique weather, soil, and land cover patterns, which were
NDBaI (> −0.05) and DBSI (> 0.10). The thresholding range was selected using MOT
and a visualization technique based on image interpretation keys (e.g., color, tone, texture,
size, shape, and association) when as much bare soil as possible is able to be retrieved.

The bare soil extraction results using threshold values are shown in Figure 7. Gen-
erally, these four indices were able to detect bare soil features, especially for large and
homogeneous areas of bare soil (Figure 7b,c). Yet, the classification ability of these bareness
indices is dissimilar. The BSI classified more bare soil areas than there are in reality, i.e.,
it is clearly depicted in the overview bare soil layers. For instance, once many bare soil
areas were detected using the BSI index, several built-up areas were misclassified as bare
soil (Figure 7a,c: BSI). The misclassification of bare soil was reduced when using the DBSI,
but there are still buildings classified as having bare soil features, especially in the city
core of Soc Trang province (test site #2) and a dense cluster of residential areas in eastern
Bangkok (Figure 7a,c: DBSI). The extracted bareness layers using NDBaI and MBI were
relatively similar to visible bare soil in composite images in terms of spatial patterns and
distribution, except for some small-size and scattered residential areas that were incorrectly
identified. The difference can only be seen in Figure 7a,c for NDBaI and MBI, where a strip
of scattered residential areas and the city center were accurately classified as other land
cover types by MBI instead of bare soil features as classified by NDBaI. In short, among
four indices of bare soil, MBI is the most effective index in identifying bare soil features
using index values in terms of visibility. Detection performance is detailed in Section 3.3.
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3.3. Performance Assessment

The bare soil layers were compared to ground truth points (i.e., the second dataset
of pure pixels). The results were mainly evaluated by the overall accuracy and kappa
coefficients (Table 2). The DBSI and BSI did not perform well compared to other indices
for classifying bareness in test site #1 (K = 0.82) and test site #2 (K = 0.72), respectively.
The NDBaI was the second highest-performance index in detecting bare soil in test site
#1 (K = 0.93) and test site #2 (K = 0.86). The new bareness index, MBI, effectively dis-
tinguished the bare soil from other urban covers. The kappa coefficients attained a level
greater than 0.95 for both test sites for MBI. This assessment demonstrated the ability of
MBI to detect bare soil regardless of bare soil patterns being sizeable or heterogeneous
bare soil.

Table 2. Accuracy assessment of bare soil features extracted by four bareness indices.

Site Indicator BSI NDBaI DBSI MBI

Site #1 Overall Accuracy 93.2 96.5 91.0 98.0
Kappa coefficient 0.87 0.93 0.82 0.96

Site #2 Overall Accuracy 84.3 92.8 91.5 98.5
Kappa coefficient 0.72 0.86 0.83 0.97

Figure 8 shows the important variable assessment using the RFC that reveals the
MDA in test site #1 which is generally lower than the value in test site #2. The more
extensive the bare soil areas are, the more misclassification there is liable to be. MBI is the
most significant contributor to the classifier in comparison to the multispectral bands and
three bare soil indices. The classification accuracy decreases by 28 ± 14.6% in test site #1
and 26.3 ± 4.2% in test site #2 without MBI. In test site #2, the accuracy drops by 77.1%
without the contribution of MBI. The contribution of BSI is noticeable with the MDA about
22.7 ± 3.3% and 25.1± 2.3% in test sites #1 and #2, respectively. It is followed by the NDBaI
with a small difference in MDA between the two test sites. The DBSI efficiency is relatively
low in this test when its MDA lies between 14 ± 1.5% (test site #2) and 16.6 ± 1.3% (test
site #1). Among the individual spectral bands, the TIR wavelength is indicated as the least
contributing variable for the classification.
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In contrast, it is predictable that NIR, SWIR1, and SWIR2 are the most individually
meaningful contributors among the multispectral wavelengths. The contribution of these
bands is even higher than that of NDBaI and DBSI. Once again, it demonstrates the
rationale for suggesting band combination is appropriate, and the MBI has potentially
higher efficiency than other indices in this study.

4. Discussions

Several remote sensing indices are derived from different spectral wavelengths to
enhance and separate bare soil from other land cover features. Unlike some other indices
(e.g., NDVI and MNDWI), which can be widely applied in many regions regardless of
climate conditions and geographical features, the bare soil index is a relatively sensitive
indicator. The bare soil index’s performance depends on soil composition, soil moisture,
and even surrounding green covers [49,64]. Rasul [49] also indicated that the bare soil
index’s performance differs in humid and dry-arid regions. For example, the dry bareness
index (DBSI) was assessed as having high accuracy in Erbil (Iraq), but it is an inappropriate
indicator for bareness mapping in our test sites (i.e., tropical monsoon regions). We
should consider the study area’s climatic conditions as well as the effectiveness when
choosing an appropriate bare soil index. Furthermore, surface characteristics should be
considered when applying the spectral indices in general and the MBI in particular. For
instance, the effectiveness of NDVI in vegetation detection is negatively influenced by
urban architectures such as cool roofs, cool pavement materials, and rooftop gardens.
Similarly, the MBI performance may be affected by urban materials such as clay roof tiles
and road paving bricks.

The modified bare soil index (MBI) is based on NIR, SWIR1, and SWIR2 spectral
wavelengths. This index shows the ability to effectively distinguish bare soil from other
areas at both test sites. Meanwhile, the NDBaI also had high isolation efficiency (Table 2),
but the accuracies varied between these two test sites. Thus, we can primarily consider that
bare soil classification efficiency by the applied MBI is independent of bare soil and urban
patterns. Compared with the NDBaI, the proposed index utilizes infrared wavelengths
with similar pixel resolution instead of the 100 m thermal infrared band in Landsat 8.

Additionally, the application of NDBaI for finer resolution satellites, e.g., Sentinel-2,
WorldView, is impossible because the thermal infrared band is unavailable from these
satellites. However, the wavelengths required for MBI estimation are all applicable for
Sentinel-2 and WorldView. MBI can even be considered for bare soil-related studies at
larger scales using low-resolution data such as MODIS and Sentinel-3. Therefore, the MBI
may provide a better option and has the potential to be applied to a wide range of data
in bare soil-related research, such as the pre-urbanization stage and agricultural losses
caused by natural disasters. Although there are comparable spectrum bands among the
satellites, the dissimilarities in pixel size and central wavelengths may affect the MBI’s
performance. Therefore, empirical studies on MBI’s ability to identify bare soil based on
the data mentioned earlier are expected to be carried out in the future.

There are two kinds of bare soil which are visible in a color composite image, namely
dry and humid bare soil (Figure 9c–f). The dry bare soil (type #2) has a high reflectance value
in shortwave infrared wavelengths, while humid bare soil (type#1) has a low reflectance
value in these wavelengths, absorbed by high moisture content (Figure 9g). Therefore, the
humid bare soil is identified as urban features (Figure 9a,b). When we reduce the MBI
thresholding value to select the whole area of humid bare soil, several urban areas are
misclassified. Fortunately, the humid bare soil is uncommon in both test sites, so it does
not significantly affect the general bare soil extraction. Despite this, future studies should
continue to seek an index or technique to complete the distinction between urban areas
and wet bare soil for research in urban, semi-urban, and countryside areas.
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Figure 9. (a) False-color composite (RGB: 6-5-3) at a mixed bare soil area, (b) bare soil classified by
the MBI thresholding (red), the remnant bare soil areas are in a bright tone, (c) a fragment of typical
dry bare soil (type #2) can be detected by MBI on Landsat 8 image, (d) dry bare soil on Google Earth
image, (e) a typical moist bare soil (type #1) is undetectable by MBI on Landsat 8 image, (f) wet
bare soil on Google Earth image with darker brown tone compared to dry bare soil, and (g) spectral
profiles of dry and wet bare soil.

5. Conclusions

We enhanced the bare soil signals by a three-band bare soil index called modified
bare soil index (MBI) using NIR, SWIR1, and SWIR2 wavelengths in Landsat 8 to precisely
classify and differentiate bare soil from built-up and other land covers, especially for areas
disturbed by seasonal bare soil in the tropical regions. The value range of urban area and
bareness in MBI has fewer overlapping zones in comparison to BSI, NDBaI, and DBSI,
whereby MBI significantly reduces misclassification between built-up and bare soil features.
Bare soil areas derived by MBI thresholding value achieved high accuracy with kappa
coefficients over 0.96 and overall accuracy higher than 98% in the study areas. The MBI is
also a critical predictor in land cover classification compared to individual bands and other
considered bare soil indices.

The proposed MBI is a potential option for classifying bare soil in the tropical climatic
region. Usage of MBI is more efficient than NDBaI, which is based on a low resolution
thermal infrared wavelength in Landsat 8. Besides, the MBI might be applicable for a finer
satellite such as Sentinel 2, WorldView, and any satellite with similar spectrum bands. Yet,
when applying MBI, climatic conditions, bare soil patterns, and land cover characteristics
should be considered to optimize the bare soil index’s effectiveness.
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