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Abstract: An understanding of the scientific layout of surface water space is crucial for the sustainable
development of human society and the ecological environment. The objective of this study was
to use land-use/land-cover data to identify the spatiotemporal dynamic change processes and the
influencing factors over the past three decades in Henan Province, central China. Multidisciplinary
theories (landscape ecology and graph theory) and methods (GIS spatial analysis and SPSS correlation
analysis) were used to quantify the dynamic changes in surface water pattern and connectivity. Our
results revealed that the water area decreased significantly during the periods of 1990–2000 and
2010–2018 due to a decrease in tidal flats and linear waters, but increased significantly in 2000–2010
due to an increase in patchy waters. Human construction activities, socioeconomic development
and topography were the key factors driving the dynamics of water pattern and connectivity. The
use of graph metrics (node degree, betweenness centrality, and delta probability of connectivity) in
combination with landscape metrics (Euclidean nearest-neighbor distance) can help establish the
parameters of threshold distance between connected habitats, identify hubs and stepping stones, and
determine the relatively important water patches that require priority protection or development.

Keywords: surface water space; landscape pattern; graph connectivity; dynamic change; Henan Province

1. Introduction

China has experienced rapid urbanization over the past 40 years of reform and open-
ing. According to statistics, the urbanization rate increased by approximately 40% during
this time, from less than 20% in 1978 to 59.58% in 2018 (National Bureau of Statistics, China).
Through this process, rapid population increase and economic development consumed a
large amount of water [1], as well as land and other resources [2]. Urban construction activ-
ities also greatly changed the land-use pattern and affected the water environment [3,4].
Changes to the surface water system [5], such as a lake being filled to construct a city [6], the
weakening of the length and development capacity of a river network, the simplification
of the structure of a river network, and artificial modifications of a river channel [7] are
examples of land-use changes. These changes have greatly impacted the aquatic environ-
ment and water circulation by decreasing the quantity of water, deteriorating the aquatic
environment, and reducing river network connectivity [8]. Moreover, in the past urban
expansion process, the natural water body outside the city has gradually evolved into
the artificial water body inside the city. Artificial lakes and rivers were built and became
the main surface water landscape of the new urban area. Reservoirs and aquaculture
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ponds have also been built to support human livelihoods and production. These human
activities have increased the area of urban water bodies, and likely greatly changed the
spatial pattern and morphological characteristics of surface water bodies [9].

China is the country with the largest population in the world. Water resources are
unevenly distributed between north and south. The contradiction between water supply
and water consumption is becoming more and more serious, especially in the big cities in
the north. Water shortages have been a major problem in China’s past rapid urbanization
process and will be the bottleneck of sustainable urbanization in the future [10]. The
development strategy of the South–North Water Diversion was formulated to balance
the spatial distribution of water resources. For example, the middle route of the South–
North Water Diversion Project diverts water from the Danjiangkou Reservoir in Nanyang
City, Henan Province, to Tuancheng Lake in Beijing. The main channel passes through
four provinces and 14 large and medium-sized cities, with a focus on addressing water
shortages in these cities. After summarizing and considering the past urbanization process,
and to promote healthy and high-quality development of human society, the Chinese
government has paid more attention to the restoration and sustainable development of the
water ecological environment in the new era. Thus, recently China has adopted guidelines
for water conservancy work in the new era [11,12]. Given the relatively recent adoption
of Chinese water conservancy measures, and historic land-use/land-cover changes, we
predicted that there will be alterations of surface water body types, spatial arrangements,
and ultimately surface water connectivity through the period 1990–2018. Due to changes in
precipitation patterns/urbanization, we also predict that changes would be greatest during
the past 28 years. Therefore, it is highly important to study the dynamic change processes
of surface water spatial patterns over the past decades to understand the influence of
human activities and development strategies on surface water space.

Land-use/land-cover (LULC) data [13,14], in combination with landscape metrics,
have been widely used to monitor long-term changes in landscape patterns [15,16], and
quantify land-cover change processes [17,18] and gradient differences [19,20]. For example,
landscape dominance, fragmentation, and connectivity have often been calculated using
metrics such as the largest patch index (LPI), patch density (PD), effective mesh size
(MESH) [21,22], interspersion and juxtaposition index (IJI) [23] and patch cohesion index
(COHESION) [24,25]. The Euclidean nearest-neighbor distance (ENN) has been used
extensively to quantify patch isolation, and its variability provides a measure of patch
dispersion [26]. Using landscape metrics to monitor land-cover changes and landscape
pattern processes at different spatial and temporal scales [19,27] has become a standard
approach; however, its use for connecting graph metrics to quantify surface water spatial
patterns and connectivity at different levels remains rare for the water shortage area in
central China.

Graphab software, developed by Gilles Vuidel and Jean-Christophe Foltête based
on graph theory, provides a powerful and simple platform for computing graph metrics
and analyzing the landscape graph pattern [28,29]. A graph is created from a series of
nodes and links (or edges) such that each link connects two nodes. All connected nodes
and links comprise a component (connected region) [30]. The links can be set based on
a spatial distance representing the neighbor distance, the cost of movement of a species,
or the potential ability of an organism to disperse between patches. Such graph-based
analysis of landscape connectivity can be used to identify key and priority habitat patches
for protection to maintain network connectivity and the resulting ecological fluxes [31–33].

In recent years, graph metrics have been used to assess the connectivity of a habitat
network and the important role habitat patches play in the entire landscape network [34,35].
For example, the node degree (Dg) and betweenness centrality (BC) metrics have been
used at the local level to identify hubs and potential stepping stone nodes for the en-
tire landscape network [34–36]. The integral index of connectivity (IIC) is an improved
probability of connectivity (PC) metric that was proposed for and has been computed
at the global and component levels to assess the level of connectivity within an entire
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habitat network and compare different component connectivity values [37]. Fractions
of delta probability of connectivity (dPC) can be used to determine the prioritization of
landscape elements (patches and links) and rank them by their contribution to overall
habitat availability and connectivity [35,38]. The equivalent probability index (EC), which
is defined as the size of a single habitat patch (maximally connected), provides a simple
and straightforward interpretation of connectivity, especially when it is directly compared
with temporal changes in habitat area [35,39]. These graph metrics have been applied in
many conservation [40–42] and landscape planning case studies [43], and they are well
suited to evaluating the impacts of spatial changes on landscape connectivity [30,44]. We
assert that the combined application of landscape metrics and graphic metrics will provide
a more scientific reference for future landscape spatial planning.

Henan Province in central China is located in the transitional zone between northern
and southern climates. It is also the source province of the middle route of the South-to-
North Water Diversion Project. The region faces serious water shortages and an unbalanced
distribution of water resources. Surface water, such as rivers and lakes, is mostly distributed
in the south and less in the north. As a major national agricultural and economic province,
Henan is in the rapid development period of agricultural production and economic con-
struction. The demand for water resources is increasing rapidly, and the conflict between
conservation and utilization is becoming increasingly prominent. Therefore, understanding
the current situation and development process of surface waters in Henan Province and
then the layout of the surface water space network is important and urgently needed for
future high-quality development of the human-influenced ecological environment in this
region. In consideration of this need and focusing on the surface water space in Henan
Province, we integrated multiple methods (GIS spatial analysis, landscape pattern analysis,
and graph connectivity analysis) to clarify the dynamic change processes and influence
of human activities in surface water pattern and connectivity, identify hubs and stepping
stones, and determine the potential and priority of water patches for future spatial pattern
optimization and high-quality development of the water resources in Henan Province.

2. Materials and Methods
2.1. Study Area

Henan Province is located in central China (31◦23′–36◦22′ N, 110◦21′–116◦39′ E),
within the middle and lower reaches of the Yellow River, and covers approximately
167,000 km2. Currently, the core region of the Central Plains Urban Agglomeration
(Figure 1a), Henan Province is an important node region on the “new Silk Road” be-
tween Europe and Asia and a traffic artery from North China to South China. This region
contains 18 cities, including the capital city of Zhengzhou. An elevation gradient extends
from east to west across the region, with mountains and higher topographic variability
in the west at the southern and northern boundaries, the Huang-huai-hai alluvial plain
in the middle eastern region, and the Nanyang Basin in the southwest (Figure 1a). As
of 2019, Henan Province, an important economic and agricultural region in China, had
a population of 109.52 million people, the third largest provincial population in China.
The gross domestic product (GDP), the fifth largest in China, is 5,425,920 billion yuan.
According to information released by the People’s Government of Henan Province, Henan
has a northern subtropical to warm temperate transitional continental monsoon climate,
with most regions located in the warm temperate zone and part of the south region in the
subtropical zone. The mean annual temperature of the province over the previous 10 years
was 12.8–16.4 ◦C, and the annual average precipitation was 461.1–1144.2 mm. Henan is
the only province that spans the four major river basins of the Yangtze, Huaihe, Haihe
and Yellow Rivers (Figure 1b), and its distribution of topography and water resources is
considered characteristic of the Chinese landscape. The province’s annual average volume
of water resources is 40.353 billion m3, and the per capita volume of water resources is
approximately 370 m3, less than one-fifth of the national average. Henan is a province that
faces a serious water shortage.
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2.2. Basic Data Acquisition and Processing

The land-use and land-cover datasets (30 m cell size; 1990, 2000, 2010, 2018) and
data on the administrative boundaries of Henan Province were provided by the Data
Center for Resources and Environment Sciences, Chinese Academy of Sciences (RESDC)
(http://www.resdc.cn/, accessed on 21 October 2020). These datasets were constructed
by man-machine interactive visual interpretation based on Landsat TM/ETM (1990–2010)
and Landsat 8 (2018) satellite remote sensing data [14]. The time of collected images in
Henan Province was between May and October. All images were classified to 25 land-
cover classes according to the natural attributes of land resources, and further grouped
into 6 aggregated classes of land cover: croplands, woodlands, grasslands, water bodies,
unused land and built-up areas including urban areas. Water bodies include streams and
rivers, lakes, reservoirs and ponds, permanent ice and snow, beach and shore, and bottom-
land [45]. Henan province contains 22 land-cover classes and 5 water bodies (Table 1). A
digital elevation model image was downloaded using Local Space Viewer software. The
correlation factors of precipitation, population, urbanization rate, and per-capita GDP
were obtained from the Statistical Yearbook for Water Resource and Socioeconomic of
Henan Province.

The basic data processing steps were as follows. First, all images were unified
to the same spatial projection and coordinate system (World Geodetic System (WGS)
1984_UTM_49N) using ArcGIS 10.2 (ESRI, Redlands, CA, USA) and BIGEMAP software.
Second, the four land-use datasets were reclassified to eight types (Table 1). Surface wa-
ter spaces, including linear water spaces (rivers and canals), patchy water spaces (lakes,
reservoirs, and ponds), and tidal flat areas (intertidal zone and bottomland), were the main
research objects of this study. Third, the shapes, quantities, distributions, changes, and
conversions of the various water types were calculated and analyzed at different time and
space scales using the ArcGIS spatial analysis tool and Excel data analysis tool. Fourth, the
dynamic changes in pattern and connectivity of the various surface water spaces were cal-
culated and analyzed using FRAGSTATS 4.2 and Graphab 2.4 software based on landscape
ecology and graph theory. Finally, we performed a Pearson correlation analysis using SPSS
(IBM) software of the surface water spatial pattern and the possible influencing factors
mentioned above to explore the drivers of dynamic changes in the surface waters.

http://www.resdc.cn/
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Table 1. Reclassification standard of land-use and land-cover data.

Original Node Original Land Use New Land Use New Node

11 Paddy field Crop land 112 Dry farm

21 Forest land

Forest land 2
22 Shrub land
23 Open forest land
24 Other woodland

31 High coverage
grassland

Grass land
3

32 Medium coverage
grassland

33 Low coverage
grassland

41 River and canal Liner waters 4
42 Lake Patchy waters 543 Reservoir and pond
45 Intertidal zone

Tidal flats 646 Bottomland

51 Urban land

Built-up land 752 Rural residential area

53 Other construction
land

61 Sand

Other unused land
8

63 Saline and alkaline
land

64 Marshland
65 Bare land

66 Bare rock stony
ground

2.3. Landscape Metric Selection and Calculation

To quantify the changes in surface water space in the landscape pattern, all reclassified
image datasets were converted into TIFF grid format (cell size of 30 m × 30 m) and then
entered into FRAGSTATS 4.2 software to calculate landscape metrics using the 4 cell and
8 cell neighborhood rule. Six relevant and independent metrics (Table 2) were used to
quantify landscape dominance, fragmentation, and connectivity at the regional scale as
well as at the class and landscape levels. These metrics are well described in previous
spatial studies of water [23,25] and other landscapes [24,26], and they allowed us to
compare the influences of human activities on the water space pattern and connectivity in
Henan Province.

2.4. Graph Metric Selection and Calculation

To further measure the dynamic changes in spatial connectivity of the surface waters,
all reclassified image datasets (TIFF grid format) were entered into Graphab 2.4 software to
calculate graph metrics (Table 3) at three levels (global, component, and local). We selected
4-connexity (a habitat patch consists of the central pixel with its four neighbors if they are
of the same value) to determine the patch connexity because the landscape fragmentation
was larger under this neighbor rule. According to the average shortest distance between
different water patches in 2018 (ENN_MN at patch level, 3803 m), we set 4 km as the
maximum distance of the complete topology and the threshold distance of the connected
nodes to create the linkset and graph based on the shortest-cost path method. The cost value
(Table 4) was generated by the multi-factor weighted overlay analysis method including the
landscape moisture of different land covers [46], ease of conversion from different land use
to surface water body during the study period, and the topographic characteristics (slope
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and elevation) of this region. Each factor was mapped into six exponentially increasing
resistance classes [34]. The weight value of different factors was assigned according to the
influence of topography and land cover on the development of the surface water body.
Seven graph metrics were selected to analyze the size and quantity of connected patches at
global level, compare the connectivity of different areas at component level, identify the
hub and stepping stone water patches at local level, and assess the relative importance
of each water patch to the overall connectivity at delta level. These metrics have been
described in detail in previous landscape connectivity studies [36–38].

Table 2. Landscape pattern metrics representing landscape dominance, fragmentation, and connectivity.

Landscape Metrics Meaning Brief Description Computing Level

Largest patch index
(LPI) landscape dominance Percent of total area covered by the largest patch Class

Landscape

Patch density (PD) landscape fragmentation Number of patches per area Class
Landscape

Effective mesh size
(MESH)

The subdivision of a landscape independent of
the size, lower values indicate higher
fragmentation

Class
Landscape

Mean Euclidean Nearest
Neighbor distance
(ENN_MN)

landscape distance The mean of the shortest paths between the
patches of a given land-cover type

Class
Landscape

Interspersion Juxtaposition Index
(IJI) landscape connectivity

Distribution of patch adjacencies and isolates the
interspersion or intermixing of patch types

Class
Landscape

Patch cohesion index
(COHESION)

Physical contentedness of the patches, expresses
the aggregation or clumping of cover types into
patches

Class
Landscape

Table 3. Graph metrics representing habitat patch importance and spatial connectivity.

Connectivity Metrics Computing Level Brief Description Computing Purpose

Size of the largest components
(SLC) Global

Largest capacity of components, higher
values indicate larger size of component
consists of connected patches

Compare the size and quantity
of the connected patches at
different time periodsNumber of components

(NC) Global Number of components in the study area,
lower values indicate higher connectivity

Integral index of connectivity
(IIC)

Global
Component

Improved connectivity for the entire
graph, indicates that two points
randomly placed in the study area are
connected

Estimate total connectivity
and determine the highly
connected patch distribution
at different spatial scalesEquivalent connectivity

(EC)
Global
Component

The size of a single maximally connected
habitat patch

Node degree
(Dg) Local Indicates the ability of a patch to connect

with other patches Identify the hub patches

Betweenness centrality index
(BC) Local The potential for a patch to be crossed by

a path linking other patches
Identify the stepping stone
patches

Fractions of delta probability
of connectivity
(dPC)

Delta

Assess the relative importance of each
graph element by computing the rate of
variation in the global metric induced by
each removal

Assess the relative importance
of each water patch to the
overall connectivity

2.5. Correlation Analysis

Based on the aforementioned results, we performed Pearson correlation analysis (SPSS
22.0 software) to assess the relationships between climate, socioeconomic data, and changes
in landscape pattern and surface water connectivity. Finally, we explored strategies for
optimizing the surface water spatial pattern in Henan Province based on the changes in
pattern and connectivity metrics.
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Table 4. Resistance values of different factors.

Resistance Value Land Use/Land Cover Elevation (Natural Breaks) Slope (Natural Breaks)

1 Surface water 20–140 0–2%
20 Crop land 140–316 2–5%
40 Grass land 316–554 5–9%
80 Forest land 554–847 9–14%
160 Unused land 847–1198 14–20%
320 Built-up land 1198–2378 20–50%

Weight 0.4 0.3 0.3

3. Results
3.1. Dynamic Changes of Surface Waters

The surface waters of Henan Province are more prevalent in the south than in the
north (Supplementary Materials Figure S1). Among these waters, patchy waters (lakes,
reservoirs, and ponds) are distributed mainly in the low mountainous area in the southwest,
linear waters (rivers and canals) are distributed mainly in the eastern plains, and tidal flats
are distributed mainly along the Yellow River and around large lakes. From 1990 to 2018,
surface waters in this region changed dramatically (Figure 2). In particular, there was a
significant loss in tidal flats with an increase in developed land and crop land, and a gain in
patchy water spaces (lakes, reservoirs and ponds) at the expense of crop land (Figure 3a).
The total area of surface waters in the region was reduced by 145.30 km2. The average
annual variations of three-time sub-intervals (1990–2000, 2000–2010, and 2010–2018) were
−43.39, 36.74 and −9.85 km2, respectively. In terms of surface waters in the region, there
was an initial decrease in river water area and tidal flats in 1990–2000, an increase in
primarily patchy waters (by 337.74 km2, accounting for 70.59% of the total increase) in
2000–2010, and a decrease in linear waters and tidal flats accompanied by an increase in
patchy waters in 2010–2018 (Figure 3b).

Among the average annual variations of each water type in different cities (Figure S2), the
losses of linear waters occurred mainly in Nanyang, Sanmenxia, Zhengzhou, Xinxiang, Zhu-
madian, Jiaozuo and Luoyang during the 2010–2018 period, considerable decreases in tidal
flats occurred mainly in Zhengzhou, Xinxiang, Kaifeng and Jiaozuo during the 1990–2000 and
2010–2018 periods, and increases in patchy waters occurred mainly in Luoyang, Zhumadian,
Nanyang, Jiyuan and Zhengzhou during the 2000–2018 period.

3.2. Landscape Transition of Surface Waters

The landscape conversion matrix is shown in Table 5 and Table S1. Considering the
result of the patch change analysis performed in ArcGIS 10.2, from 1990 to 2018, the total
conversion water area was 1865.12 km2, 44.59% of the total surface water area in 1990.
The loss in water area was 778.49 km2, with large conversion from tidal flats (320.43 km2)
and linear waters (241.26 km2) to crop land. The increase in new waters was 668.01 km2,
with large conversion from crop land to patchy waters (353.32 km2) and linear waters
(115.50 km2). It is also noteworthy that 21.47% of the loss of patchy waters was attributable
to conversion to developed land. The area associated with this conversion was largest
during the 2000–2010 period. The conversion area among the different types of surface
waters was 418.62 km2, with conversion occurring mainly from tidal flats to linear waters
(161.67 km2) and patchy waters (112.23 km2). Among the different time periods (Table S1),
the total water-to-land conversion area was largest in 1990–2000 (1272.49 km2). The area of
water loss was also highest during the 1990–2000 period, with substantial conversion of
tidal flats (−270.76 km2) and linear waters (−191.36 km2) to crop land. Water-area increases
occurred mainly during the 2000–2010 period (+507.02 km2), with substantial crop land
conversion to patchy waters (+213.75 km2). The areas of land converted to the different
water types in the three periods were 397.48, 227.07 and 205.57 km2, respectively, showing
a trend of progressive decrease. Water self-conversion occurred mainly from tidal flats
to linear waters (162.94 km2) and from patchy waters to tidal flats (104.00 km2) during



Land 2021, 10, 471 8 of 21

the 1990–2000 period, and then from tidal flats to patchy waters (108.58 km2) during the
2000–2010 period.
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Table 5. Land-use conversion matrix from 1990 to 2018.

Base Year
Compared Year

Land Use Area in 2018 (Compared Year) (km2)
Crop
Land

Forest
Land

Grass
Land

Linear
Waters

Patchy
Waters

Tidal
Flats

Built-up
Land

Other
Land Total

Land
Use Area
In 1990
(Base
year)
(km2)

Crop
land 100,823.04 488.40 165.30 115.50 353.32 66.40 3654.00 2.57 105,668.53

Forest
land 837.55 25,705.03 289.37 9.93 30.71 4.46 84.48 0.23 26,961.76

Grass
land 612.34 737.72 8324.46 14.40 42.72 6.33 63.55 1.25 9802.77

Linear
waters 241.26 38.21 11.45 1526.95 58.50 48.71 7.53 5.23 1937.83

Patchy
waters 55.22 15.52 6.11 12.46 1223.24 25.04 21.10 0.35 1359.04

Tidal
flats 320.43 10.50 27.74 161.67 112.23 235.43 8.45 9.41 885.85

Built-up
land 585.20 17.96 13.85 5.29 5.87 0.36 17,857.16 0.02 18,485.71

Other
land 98.65 7.55 2.76 2.85 8.43 1.46 7.86 10.86 140.42

Total 103,573.69 27,020.88 8841.03 1849.04 1835.03 388.17 21,704.14 29.92 165,241.90

note: changed
waters greatly changed waters unchanged waters

3.3. Landscape Pattern Changes in Surface Waters

Dynamic changes in the surface water pattern in terms of landscape dominance,
fragmentation and connectivity were evident in the province, as demonstrated by the
six landscape- and class-level metrics (Figure 4). There was no difference in the change
trend of landscape pattern by using the 8 cell or 4 cell neighborhood rule to compute
these metrics. However, values of PD, MESH and ENN_MN exhibited a larger landscape
fragmentation and a shorter neighbor distance between different patches by using the
4 cell neighbor rule. Trends in PD (Figure 4a) and MESH (Figure 4e) reflected a decrease in
landscape fragmentation through the conversion of large patches of crop land and tidal
flats to patchy waters. The MESH values also showed that the effective mesh size of patchy
waters exceeded the size of linear waters after 2010. Additionally, the LPI of patchy waters
increased rapidly after 2000 (Figure 4b). The trend in IJI at landscape level reflected an
increase from 1990 to 2010 dominated by linear waters, whereas a decrease trend from 2010
to 2018 was influenced by the decline of patch adjacency of all water cover types (Figure 4c).
The IJI of tidal flats was the largest among all water cover types, and had a decreasing trend
after 2000. The trends in ENN_MN reflected a rapid increase in patch neighbor distance
between 2000 and 2010 (Figure 4d). Linear waters had the lowest value of IJI and ENN_MN,
the largest value of COHESION, and dominated the trends in surface water connectivity
at the landscape level during the 1990–2010 period. Patchy waters had the largest LPI
in 2010, the most rapid growth in COHESION and IJI during the 2000–2010 period, and
dominated the increasing trends in surface water connectivity at the landscape level after
2000, counteracting the negative effects of the significant reduction in tidal flat area.

3.4. Changes in Surface Water Spatial Connectivity

Dynamic changes in surface water spatial connectivity in Henan Province over the
past three decades were assessed using four global-level (Table 6), two component-level
(Figures 5 and 6), and three local-level graph metrics (Figures 7–11).
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Table 6. Variations in four global-level graph metrics during different periods.

Global Level

Period EC (km2) SLC (km2) IIC NC

Variations during
different periods

1990–2000 −391.72
(−48.08%)

−104.12
(−9.79%)

−3.79
(−64.90%)

9
(1.62%)

2000–2010 324.65
(76.74%)

30.56
(3.18%)

3.20
(155.89%)

−15
(−2.66%)

2010–2018 −265.90
(−35.56%)

−173.35
(−17.50%)

−2.88
(−54.90%)

38
(−6.92%)

1990–2018 −332.97
(−40.87%)

−246.91
(−23.21%)

−3.47
(−59.49%)

32
(5.77%)
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3.4.1. Global-Level Analysis

From 1990 to 2018, the graph connectivity of surface waters exhibited a decreasing
trend, with negative growth in EC, SLC, and IIC at the global level (Table 6). Their variation
trends indicated the largest reduction in surface water connectivity from 1990 to 2000 and
a large increase from 2000 to 2010. From the combination of the four graph metrics and
the areal change trends of the various surface waters (Figure 3), during the 1990–2000 and
2010–2018 periods, the number of components increased significantly, probably due to
the disappearance of large areas of tidal flats along the Yellow River and linear waters in
western mountainous area. The decline in NC from 2000 to 2010 was possibly due to the
increase in patchy water areas and connected water patches.

3.4.2. Component-Level Analysis

The distributions of IIC (Figure 5) and EC (Figure 6) at component level indicated that
the Yellow River had the highest integral index of connectivity and equivalent connectivity
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during the entire time, followed by the catchments of the Danjiang, Huai, Shaying, Tangbai,
and Ru Rivers, respectively. The largest values of IIC and EC at the component level
exhibited a gradual decreasing trend, with the first decline between 1990 and 2000 and
the second between 2010 and 2018. The lowest values of IIC and EC were observed in
2000, probably because of construction related to the Xiaolangdi Water Conservancy Project
along the Yellow River during the 1997–2001 period.
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3.4.3. Local-Level Analysis

The contribution of each water patch to overall water spatial connectivity was mea-
sured using three local- and delta-level graph metrics (Figures 7–10). The Yellow River had
the largest node degree index values throughout the study period of 1990–2010 (Figure 7),
while Xiaolangdi Reservoir had the largest Dg value in 2018. Patchy waters had higher
node degree values, and they play the hub role in the overall connectivity of surface water
bodies. The other top five patches with higher Dg values in 1990 were the Danjiangkou
Reservoir in Nanyang, Yahekou Reservoir in Nanyang, Nianyushan Reservoir in Xinyang,
and Danjiang River in Nanyang. Among these nodes, from 1990 to 2018, the node degree of
the Xiaolangdi Reservoir increased from zero to the most, whereas that of the Yellow River
decreased and changed the most (Figure 7). Furthermore, the Yellow River was seriously
fragmented into several sections in 2000 and 2018 (Figure 8a). The Dg of the Danjiangkou
Reservoir and Danjiang River also exhibited some reduction, while Nanwan, Yahekou, and
Nianyushan Reservoirs exhibited some increase (Figure 8b). The water body with a higher
betweenness centrality index of stepping stone patches was mainly concentrated between
the reservoirs and the rivers (Figure 9). The size of these patches was relatively small.
The position of these patches also changed frequently. The largest value of BC decreased
firstly (1990–2000) and then increased from 1990 to 2018, and finally decreased by 35.78%
compared with 1990.
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In an analysis wherein one node was removed at a time, the relative importance of
each water patch was assessed based on the dPC metric at the delta level (Figure 10). The
Yellow River was the most important water patch for overall water spatial connectivity.
Other patches including Danjiangkou Reservoir (second in 1990, 2000, and 2018, third in
2010), Xiaolangdi Reservoir (second in 2010 and third in 2018), and Suyahu Reservoir (third
in 1990 and 2000) were the top three most important graph nodes for the total water spatial
connectivity in Henan Province (Figure 11). The change trend of dPC showed that the
relative importance of the Yellow River decreased dramatically in 1990–2000 and 2010–2018,
probably due to the construction of the Xiaolangdi Reservoir and its regulation of the water
quantity in the Yellow River. The relative importance of the Danjiang increased during
1990–2000 and 2010–2018. The relative importance of the Xiaolangdi Reservoir increased
from none to the second level in 2010 and the third level in 2018.

4. Discussion

The results from this study reflected the dynamic changes and evolution processes
of the surface waters and their structural connectivity in Henan Province from 1990 to
2018 and helped with identifying the hubs, stepping stones and relatively important water
patches that need to be protected and developed in future spatial pattern optimization
and high-quality development of the water environment in Henan Province. The use
of a combination of approaches (GIS spatial analysis, landscape pattern analysis, graph
connectivity analysis) constitutes a reference model for other similar studies.

4.1. Surface Water Pattern Dynamics and Relevant Influencing Factors

Surface waters in Henan Province exhibited fluctuating decrease trends, attributable
mainly to a loss in linear waters during the 2010–2018 period, a gain in patchy waters
during the 2000–2010 period, and a considerable decrease in tidal flats (patches along
the Yellow River) (Figures 2 and 3), which were converted to crop land during 1990–2000
(Table 5 and Table S1). This is mainly because the water-sediment regulation of the Xi-
aolangdi Reservoir in the Yellow River stabilized the water level, and a large number of
flood lands were reclaimed for farming [47]. The results of landscape metrics reflected
a decrease in landscape fragmentation (Figure 4a,e) due to the disappearance of a large
number of isolated and broken tidal flat patches and the growth of large patchy water
patches. The landscape dominance of patchy waters was dramatically increased after
2000 (Figure 4b), and they dominate the growth of landscape connectivity (Figure 4c,f) and
offset the impact of the steep decline in the patch cohesion index of the tidal flats on the
overall landscape connectivity (Figure 4f). However, the distance between patches was
increased as well due to the loss of rivers. Trends of ENN_MN at landscape and class level
(Figure 4d) indicated that the nearest neighbor distance and shortest paths between water
patches were increasing from 1990 to 2018. This indirectly reflected the decrease in the
structural connectivity of surface water bodies. Graph metrics at global level (Table 6) also
confirmed these change trends in surface water graph connectivity.

The conversion matrix (Table 5 and Table S1) presented two situations. One was the
conversion between water bodies and other land, mainly from tidal flats and linear waters
to crop land as a compensation for the encroachment of urban land onto crop land and
from crop land to patchy waters to meet the needs of economic and population growth.
There was also some conversion from patchy water patches to construction land. This
may have been caused by the activity of “lake filling for urban construction” during the
rapid urbanization process [9]. New urban water bodies were also excavated during the
construction of new towns, such as the North Long lake (6.08 km2) in Zhengdong New
District, and Feng lake (0.77 km2) in Xinxiang Plain New Area. The other was conversion
between different water types, mainly from tidal flats to linear waters or patchy waters,
that was probably caused by changes in timings of precipitation, and the expansion of
aquaculture farming [48].
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Correlation analysis (Table S2) revealed that the patchy water area was positively
correlated with economic level (per-capita GDP) and urbanization rate, whereas tidal flat
area and pattern (LPI, COHESION, and MESH) was negatively correlated with population
size. There was also a positive correlation between the urbanization rate and surface water
pattern (ENN_MN of linear and patchy waters, COHESION and MESH at landscape level).
Population growth, rapid economic development and urbanization have increased the
wasteland cultivation, aquaculture farming pond excavation and reservoir construction for
water resource collection and management. The increase in patchy water area and decrease
in tidal flat area had a strong influence on landscape fragmentation and connectivity. This
indicated that surface water area was more influenced by human construction activities.
For example, the rapid expansion of urban construction land consumed water patches
in the suburbs of cities, increased the impervious surface area [49], and increased the
neighbor distance between water patches. The construction related to the Xiaolangdi
Water Conservancy Project [50] and the middle route of the South–North Water Diversion
Project [51] had a great influence on the spatial pattern of water bodies in Henan Province,
especially the Yellow River and Danjiangkou Reservoir. In addition, the IJI of patchy waters
was negatively correlated with the rainfall. This is probably due to the decrease in rainfall
which has resulted in the disappearance of some seasonal rivers and the fall of the patchy
water level, which increased the isolation of patchy water patches.

The topography also influenced the spatial distribution and connectivity of surface
waters. For example, shallow hilly areas have more patchy waters and higher water
spatial connectivity, whereas plain areas have more linear waters and tidal flats, and lower
water spatial connectivity due to the influence of urban construction and agricultural
development. Previous studies also revealed that urban expansion had a significant impact
on surface water bodies [52].

4.2. Surface Water Graph Connectivity Dynamics and Identification of Key Patches

Graph metrics are commonly used to measure and monitor changes in landscape
structure connectivity, and can also provide valuable data for evaluating human construc-
tion activities and optimizing the landscape pattern [30,36,53]. In our study, graph metrics
helped to illustrate the dynamic changes in surface water structure connectivity in Henan
Province over the past three decades, identify hubs and stepping stones, and indicate the
relative importance of water patches and key catchments for overall connectivity, making
up for the deficiencies of landscape metrics at the local and component levels. The graphs
at the component and local levels can provide accurate locations of key areas and important
patches for future water-pattern optimization. Our results showed that patchy waters
in the catchments of the Yellow, Danjiang, Huai, Shaying, Tangbai, and Ru Rivers play
very important roles in the water pattern and spatial connectivity of the whole province,
especially the Yellow River and Danjiangkou Reservoir. The importance of each water
patch to the overall water-space connectivity changed considerably under the impacts of
human construction activities and socioeconomic development. The Yellow River had the
largest node degree index throughout the study period (Figure 7) and acts as a hub in
terms of overall water connectivity in Henan Province. The water patches with the highest
betweenness centrality index (Figure 9), mainly concentrated between the reservoir and
the river, changed over time and act as the foremost stepping stone in terms of integral
water connectivity in Henan Province. According to the removal analysis, from 1990 to
2018, the relative importance of the Danjiangkou Reservoir increased significantly, whereas
that of the Yellow River declined (Figure 11). This may be related to the construction of the
middle route of the South–North Water Diversion Project. Danjiangkou Reservoir, as the
source of the middle route of the South–North Water Transfer Project, has received more
attention and protection in recent years [27]. The Yellow River was fragmented into serval
sections in 2000 and 2018 due to the construction of Xiaolangdi Reservoir and its regulation
of water quantity. These results provide reference and point out the important objects for
future optimization and development of the water spatial pattern in Henan Province.
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4.3. Method Applicability and Future Work

In this study, land-cover change detection based on GIS spatial analysis combined
with the application of landscape metrics and graph metrics was used to analyze the
dynamic changes of surface water bodies in spatial pattern and structural connectivity
during the past decades. Those theories and methods have been widely used in many
previous studies. For instance, LULC combined with landscape metrics is often used to
analysis the spatial-temporal dynamics of landscape pattern [22,24]. Any change could
be perceived by examining variations in the metrics over time [26]. Graph metrics are
often calculated based on a land-cover dataset to analyze the landscape connectivity and
identify key habitats for a certain purpose [44,54]. Previous studies have used the migration
distance of a species to determine the connection threshold in the parameter settings [33,55].
However, the migration distance and ability of different species in the same landscape
type is not the same. It is difficult to determine a general distance for creating graphs.
Some scholars have combined the morphological analysis of forest spatial patterns with
graph metrics for analyzing forest structural connectivity [31]. Considering that both
landscape metrics and graph metrics are quantified and calculated based on topological
and morphological relations between patches and classes, there are few studies on surface
water structure connectivity by combining landscape metrics with graph metrics. Here,
we connected landscape metrics and graph metrics to analyze the surface water patterns
and changes in structural connectivity in a significant and innovative manner. We used the
mean Euclidean nearest-neighbor distance (ENN_MN) landscape metrics to determine the
maximum distance and connection threshold from edge to edge between water patches
in the graph creation process, which provides a simple method for the determination of
distance threshold. It is also applicable to other landscape types. The integrated application
of multiple methods is the development trend in the future. We will explore the relevance
between landscape metrics and graph metrics through various landscape types and spatial
scales over a longer time period.

5. Conclusions

This study characterized the spatiotemporal changes in surface water pattern and con-
nectivity in Henan Province using multiple methodologies (GIS spatial analysis, landscape
pattern and graph connectivity) and highlighted the relationships between landscape met-
rics, graph metrics, socioeconomic development level, and water conservancy construction
during the rapid urbanization process between 1990 and 2018. The surface water area
exhibited a decreasing trend, and most of the surface water loss was due to conversion
to crop land as compensation for land consumed by urban development. Most of the
increase in patchy waters came at the expense of crop land as a result of the requirements
of the aquaculture industry and new urban environment construction. The large change
in the Yellow River water area was caused by construction related to the Xiaolangdi Wa-
ter Conservancy Project, which was the main reason for the dramatic changes in water
pattern and connectivity in 2000. The Danjiangkou Reservoir and Danjiang River had
the greatest increases in relative importance, possibly due to the decline of the Yellow
River node degree and the construction of the middle route of the South-to-North Water
Diversion Project. As a water source, the Danjiangkou Reservoir has become progressively
more important to the overall water spatial pattern and connectivity in Henan Province.
Human construction activity was the key driving force of surface water pattern dynamic
changes, especially these main rivers and reservoirs, which play the hub, stepping stone
and relatively important role in overall water landscape connectivity. In future high-quality
development of surface waters in Henan Province, more attention should be paid to the
scientific layout of the surface waters and the quantitative analysis of their spatial pattern
and connectivity. To make scientific decisions and construct a complete, connected surface
water network system, graph metric analysis suggested giving priority to the protection
of hubs (high Dg) and relatively important (high dPC) patches and the development of
stepping stone (high BC) patches.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/land10050471/s1, Figure S1: Classification and distribution maps of various surface water
bodies in Henan Province in 1990, 2000, 2010, and 2018. Figure S2: Average annual variations in
surface waters in different cities during different periods (1990–2000, 2000–2010, 2010–2018, and
1990–2018). Table S1: Conversion matrix of land use in different time periods from 1990 to 2018.
Table S2: Correlation analysis between socioeconomic factors, precipitation, water area, landscape
metrics, and graph metrics in the Henan Province region.
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